
A main concern shared by reviewers #1 and #3 is the lack of mathematical rigour. We address this in two points:1

• The proposed parametrization of Hr should not be seen as a simple tuning of a hyper-parameter. It is on the contrary2

the only consistent possible choice, according to three arguments: i) ζ is the eigenvalue resulting from the linearization3

of BP around its trivial fixed point (see Eq. (11) of [9]) and the corresponding eigenvector g, once processed as4

gin
i =

∑
i∈∂j gij satisfies Hζg

in = 0, that is precisely the eigenvector studied in the present article; ii) the mapping5

to the Ising Hamiltonian, from which Hr was derived in the first place ([8]), is consistent only at r = ζ as explained6

in Section A of the supplementary material; iii) choosing r = ζ enables a resilience to degree heterogeneity in the7

DC-SBM, as developed in Section 2.2. These three arguments are independent and lead to the same parameter, creating8

a deep connection between B and Hζ other than the graph Laplacian to which Hζ tends in easy problems.9

• We agree that most of our derivations are heuristic. This has nevertheless been the case in the last few years in this10

research domain: a first heuristic derivations of the results via different techniques – mainly based on tools from11

statistical physics – is a first necessary step before the mathematical formalization. The study of B in the sparse regime12

is a hot topic in research, and technically very challenging, see e.g. [10], [15], [16]. As suggested by reviewer #2,13

even fewer results are available on Hr, and this work, to our knowledge, represents a first attempt to characterize its14

eigenvectors. Finally, we also point out that our work already triggered new mathematical research (Coste, Zhu 2019:15

arXiv:1907.05603) in which some of our claims were formally proved.16

We now address more specific concerns raised by each reviewer.17

• Reviewer#1. Thank you for your detailed review. We hope that your concerns are fully addressed.18

Comparison with regularized Laplacian techniques of, e.g., (Qin 2013). Based on simulations, these methods have19

comparable performance to ours (ours never being worse). The regularized Laplacian, however, relies heavily on the20

normalization of the rows of the matrix containing the eigenvectors. Such normalization appears very powerful and21

in practice effective for many matrices. We believe that such step is not completely justified because i) the study of22

||Lτ −Lτ || is relevant when such quantity is small compared to the eigengap (Joseph, Yu 2014), that is, for simple23

classification problems. No guarantee is given for harder scenarios. ii) the detectability threshold is not mentioned in24

(Qin 2013) and it represents instead a fundamental aspect of our algorithm. We are currently working on a precise25

description of the connection between these two spectral techniques.26

In Eq. (5) the result is the expectation of the sum of Bernoulli random variables. This has been clarified in the new27

version. The independence comes from the tree like approximation: neighbours of a same node belong to conditionally28

independent branches. This is a standard technique used in BP (Mezard 2009), also formalized in e.g. (Salez 2011).29

In l120 we are taking a conditional expectation. The notation has been clarified in the new version. νp is the p-th30

smallest eigenvalue of Hr, as defined in l177. In l214-215, the vector u(p) corresponds to the p-th largest eigenvalue of31

CΠ, denoted with τp , hence to the p-th smallest ζp = c/τp. Decreasing the value of r, starting from r =
√
cΦ, the32

informative eigenvalues go from negative to positive, hitting zero at ζp. The k-th smallest will be the first, so it will33

correspond to ζk then the others follow, so the the p-th corresponds to ζp. This has been clarified in the new version.34

The statement β̃ = O(βi) means that the random variable βi has the same scaling (with respect to the average degree)35

than its expectation. The argument of Gaussianity is an assumption made on reasonable intuitions to conclude the36

calculus and is to be tested on the expression of the overlap compared to the simulations. Given the very good37

agreement, we understand that the approximations made to that point are reasonable and justify the description we38

made on the shape of the informative eigenvector.39

Figure 2 supp mat: k̂ represents the number of classes estimated from our algorithm, while kd is the number of classes40

that are theoretically detectable. The color scale plots the quantity 2(k̂ − kd)/(k̂ + kd) as a function of the actual41

number classes (k ≥ kd) and the hardness of the problem. When this quantity is zero (white), the algorithm has42

detected all the detectable classes. In the caption U(·)4 stands for uniform distribution raised to power 4.43

• Reviewer #2. Thank you for your very positive review.44

We agree that the term (r2 − 1)In doesn’t affect the spectral properties, but it is necessary to make the connections45

with B and Hr. In order not to introduce a further matrix (D − rA), we chose to write everything in terms of Hr for46

the sake of clarity. Your interpretation about the kernel is correct: in the new version this has been pointed out.47

To estimate ζp we need to recompute each time the first p eigenvalues (not the whole spectrum). This method is self48

contained in terms of Hr, but using the eigenvalues of B′ ([9]) can be an alternative way to estimate ζp. We are49

currently working on an alternative and faster solution, based on a polynomial approximation.50

• Reviewer #3. Thank you for your review. We hope that your concerns are fully addressed.51

The comparison of the performances for different values of r is certainly interesting and has been added to the new52

version. Note however that the spectral algorithm on the matrix B corresponds to H(cin−cout)Φ/2 and has been seen in53

the literature (see e.g. [8]) to underperform the H√cΦ, consistently with the fact that (cin − cout)Φ/2 is farther away54

from ζ then
√
cΦ.55


