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Abstract

This paper investigates the theory of robustness against adversarial attacks. It
focuses on the family of randomization techniques that consist in injecting noise
in the network at inference time. These techniques have proven effective in many
contexts, but lack theoretical arguments. We close this gap by presenting a theo-
retical analysis of these approaches, hence explaining why they perform well in
practice. More precisely, we make two new contributions. The first one relates
the randomization rate to robustness to adversarial attacks. This result applies for
the general family of exponential distributions, and thus extends and unifies the
previous approaches. The second contribution consists in devising a new upper
bound on the adversarial risk gap of randomized neural networks. We support our
theoretical claims with a set of experiments.

1 Introduction

Adversarial attacks are some of the most puzzling and burning issues in modern machine learning.
An adversarial attack refers to a small, imperceptible change of an input maliciously designed to fool
the result of a machine learning algorithm. Since the seminal work of [42] exhibiting this intriguing
phenomenon in the context of deep learning, a wealth of results have been published on designing
attacks [18, 34, 32, 23, 6, 31] and defenses [18, 35, 20, 29, 39, 27]), or on trying to understand the
very nature of this phenomenon [17, 40, 15, 16]. Most methods remain unsuccessful to defend against
powerful adversaries [6, 28, 1]. Among the defense strategies, randomization has proven effective
in some contexts. It consists in injecting random noise (both during training and inference phases)
inside the network architecture, i.e. at a given layer of the network. Noise can be drawn either from
Gaussian [26, 24, 37], Laplace [24], Uniform [44], or Multinomial [12] distributions. Remarkably,
most of the considered distributions belong to the Exponential family. Albeit these significant efforts,
several theoretical questions remain unanswered. Among these, we tackle the following, for which
we provide principled and theoretically-founded answers:

Q1: To what extent does a noise drawn from the Exponential family preserve robustness
(in a sense to be defined) to adversarial attacks?

A1: We introduce a definition of robustness to adversarial attacks that is suitable to the randomization
defense mechanism. As this mechanism can be described as a non-deterministic querying process,
called probabilistic mapping in the sequel, we propose a formal definition of robustness relying on a
metric/divergence between probability measures. A key question arises then about the appropriate
metric/divergence for our context. This requires tools for comparing divergences w.r.t. the introduced
robustness definition. Renyi divergence turned out to be a measure of choice, since it satisfies most of
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the desired properties (coherence, strength, and computational tractability). Finally, thanks to the
existing links between Renyi divergence and the Exponential family, we prove that methods based on
noise injection from the Exponential family ensures robustness to adversarial attacks (cf Theorem 1).

Q2: Can we guarantee a good accuracy under attack for classifiers defended with these noises?

A2: We present an upper bound on the drop of accuracy (under attack) of the methods defended
with noise drawn from the Exponential family (cf. Theorem 2). We also provide a certificate on
accuracy under attack for this kind of noise (cf Theorem 3). We illustrate this result by training
different randomized models with Laplace and Gaussian distributions on CIFAR10/CIFAR100. These
experiments highlight the trade-off between accuracy and robustness that depends on the amount of
noise one injects in the network. Our theoretical and experimental conclusion is that randomized
defenses are competitive (with the state-of-the-art [28]) given the intensity of the injected noise.

Outline of the paper: We present in Section 2 the related work on randomized defenses to adversarial
examples. Section 3 introduces the definition of robustness relying on a metric/divergence between
probability measures, and discusses the key role of the Renyi divergence. We state in Section 4 our
main results on the robustness and accuracy of Exponential family-based defenses. Section 5 presents
extensive experiments supporting our theoretical findings. Section 6 provides concluding remarks.

2 Related works

Injecting noise into algorithms to improve their robustness has been used for ages in detection and
signal processing tasks [46, 7, 30]. It has also been extensively studied in several machine learning
and optimization fields, e.g. robust optimization [4] and data augmentation techniques [36]. Recently,
noise injection techniques have been adopted by the adversarial defense community, especially for
neural networks, with very promising results. Randomization techniques are generally oriented
towards one of the following objectives: experimental robustness or provable robustness.

Experimental robustness: The first technique explicitly using randomization at inference time as a
defense appeared during the 2017 NIPS defense challenge [44]. This method uniformly samples over
geometric transformations of the image to select a substitute image to feed the network. Then [12]
proposed to use stochastic activation pruning based on a multinomial distribution for adversarial
defense. Several papers [26, 37] propose to inject Gaussian noise directly on the activation of selected
layers both at training and inference time. While these works hypothesize that noise injection makes
the network robust to adversarial perturbations, they do not provide any formal justification on the
nature of the noise they use or on the loss of accuracy/robustness of the network.

Provable robustness: In [24], the authors proposed a randomization method by exploiting the link
between differential privacy [14] and adversarial robustness. Their framework, called “randomized
smoothing” 1, inherits some theoretical results from the differential privacy community allowing
them to evaluate the level of accuracy under attack of their method. Initial results from [24] have been
refined in [25], and [9]. Our work belongs to this line of research. However, our framework does
not treat exactly the same class of defenses. Notably, we provide theoretical arguments supporting
the defense strategy based on randomization techniques relying on the exponential family, and
derive a new bound on the adversarial risk gap, which completes the results obtained so far on
certified robustness. Furthermore, our main focus is on the network randomized by noise injection,
“randomized smoothing” instead uses this network to create a new classifier robust to attacks.

Since the initial discovery of adversarial examples, a wealth of non randomized defense approaches
have also been proposed, inspired by various machine learning domains such as adversarial train-
ing [18, 27], image reconstruction [29, 39] or robust learning [18, 27]. Even if these methods have
their own merits, a thorough evaluation made by [1] shows that most defenses can be easily broken
with known powerful attacks [27, 6, 8]. Adversarial training, which consists in training a model
directly on adversarial examples, came out as the best defense in average. Defense based on ran-
domization could be overcome by the Expectation Over Transformation technique proposed by [2]
which consists in taking the expectation over the network to craft the perturbation. In this paper, to
ensure that our results are not biased by obfuscated gradients, we follow the principles of [1, 5] and
evaluate our randomized networks with this technique. We show that randomized defenses are still
competitive given the intensity of noise injected in the network.

1Name introduced in [9] which came later than [24].
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3 General definitions of risk and robustness

3.1 Risk, robustness and probabilistic mappings

Let us consider two spaces X (with norm ‖.‖X ), and Y . We consider the classification task that
seeks a hypothesis (classifier) h : X → Y minimizing the risk of h w.r.t. some ground-truth
distribution D over X × Y . The risk of h w.r.t D is defined as Risk(h) := E(x,y)∼D [1 (h(x) 6= y)].
Given a classifier h : X → Y , and some input x ∈ X with true label ytrue ∈ Y , to generate an
adversarial example, the adversary seeks a τ such that h(x+ τ) 6= ytrue, with some budget α over
the perturbation (i.e with ‖τ‖X ≤ α). α represents the maximum amount of perturbation one can
add to x without being spotted (the perturbation remains humanly imperceptible). The overall goal of
the adversary is to find a perturbation crafting strategy that both maximizes the risk of h, and keeps
the values of ‖τ‖X small. To measure this risk "under attack" we define the notion of adversarial
α-radius risk of h w.r.t. D as follows

Riskα(h) := E(x,y)∼D

[
sup
‖τ‖X≤α

1 (h(x+ τ) 6= y)

]
.

In practice, the adversary does not have any access to the ground-truth distribution. The literature
proposed several surrogate versions of Riskα(h) (see [13] for more details) to overcome this issue.
We focus our analysis on the one used in e.g [42], or [15] denoted α-radius prediction-change risk of
h w.r.t. DX (marginal of D for X ), and defined as

PC-Riskα(h) := Px∼DX [∃τ ∈ B(α) s.t. h(x+ τ) 6= h(x)]

where for any α ≥ 0, B(α) := {τ ∈ X s.t. ‖τ‖X ≤ α} .
As we will inject some noise in our classifier in order to defend against adversarial attacks, we need
to introduce the notion of “probabilistic mapping”. Let Y be the output space, and FY a σ-algebra
over Y . Let us also denote P(Y) the set of probability measures over (Y,FY).
Definition 1 (Probabilistic mapping). Let X be an arbitrary space, and (Y,FY) a measurable space.
A probabilistic mapping from X to Y is a mapping M : X → P(Y). To obtain a numerical output
out of this probabilistic mapping, one needs to sample y according to M(x).

This definition does not depend on the nature of Y as long as (Y,FY) is measurable. In that sense, Y
could be either the label space or any intermediate space corresponding to the output of an arbitrary
hidden layer of a neural network. Moreover, any mapping can be considered as a probabilistic
mapping, whether it explicitly injects noise (as in [24, 37, 12]) or not. In fact, any deterministic
mapping can be considered as a probabilistic mapping, since it can be characterized by a Dirac
measure. Accordingly, the definition of a probabilistic mapping is fully general and equally treats
networks with or without noise injection. There exists no definition of robustness against adversarial
attacks that comply with the notion of probabilistic mappings. We settle that by generalizing the
notion of prediction-change risk initially introduced in [13] for deterministic classifiers. Let M be
a probabilistic mapping from X to Y , and dP(Y) some metric/divergence on P(Y). We define the
(α, ε)-radius prediction-change risk of M w.r.t. DX and dP(Y) as

PC-Riskα(M, ε) := Px∼DX
[
∃τ ∈ B(α) s.t. dP(Y)(M(x+ τ),M(x)) > ε

]
.

These three generalized notions allow us to analyze noise injection defense mechanisms (Theorems 1,
and 2). We can also define adversarial robustness (and later adversarial gap) thanks to these notions.
Definition 2 (Adversarial robustness). Let dP(Y) be a metric/divergence on P(Y). A probabilistic
mapping M is called dP(Y)-(α, ε, γ) robust if PC-Riskα(M, ε) ≤ γ, dP(Y)-(α, ε) robust if γ = 0.

It is difficult in general to show that a classifier is dP(Y)-(α, ε, γ) robust. However, we can derive
some bounds for particular divergences that will ensure robustness up to a certain level (Theorem 1).
It is worth noting that our definition of robustness depends on the considered metric/divergence
between probability measures. Lemma 1 gives some insights on the monotony of the robustness
according to the parameters, and the probability metric/divergence at hand.
Lemma 1. Let M be a probabilistic mapping, and let d1 and d2 be two metrics on P(Y). If there
exists a non decreasing function φ : R→ R such that ∀µ1, µ2 ∈ P(Y), d1(µ1, µ2) ≤ φ(d2(µ1, µ2)),
then the following assertion holds: M is d2-(α, ε, γ)-robust =⇒ M is d1-(α, φ(ε), γ)-robust.
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As suggested in Definition 2 and Lemma 1, any given choice of metric/divergence will instantiate a
particular notion of adversarial robustness and it should be carefully selected.

3.2 On the choice of the metric/divergence for robustness

The aforementioned formulation naturally raises the question of the choice of the metric used to
defend against adversarial attacks. The main notions that govern the selection of an appropriate
metric/divergence are coherence, strength, and computational tractability. A metric/divergence is
said to be coherent if it naturally fits the task at hand (e.g. classification tasks are intrinsically linked to
discrete/trivial metrics, conversely to regression tasks). The strength of a metric/divergence refers to
its ability to cover (dominate) a wide class of others in the sense of Lemma 1. In the following, we will
focus on both the total variation metric and the Renyi divergence, that we consider as respectively the
most coherent with the classification task using probabilistic mappings, and the strongest divergence.
We first discuss how total variation metric is coherent with randomized classifiers but suffers from
computational issues. The Renyi divergence provides good guarantees about adversarial robustness,
enjoys nice computational properties, in particular when considering Exponential family distributions,
and is strong enough to dominate a wide range of metrics/divergences including total variation.

Let µ1 and µ2 be two measures in P(Y), both dominated by a third measure ν. The trivial distance
dT (µ1, µ2) := 1 (µ1 6= µ2) is the simplest distance one can define between µ1 and µ2. In the
deterministic case, it is straightforward to compute (since the numerical output of the algorithm
characterizes its associated measure), but this is not the case in general. In fact one might not
have access to the true distribution of the mapping, but just to the numerical outputs. Therefore,
one needs to consider more sophisticated metrics/divergences, such as the total variation distance
dTV (µ1, µ2) := supY ∈FY |µ1(Y )− µ2(Y )|. The total variation distance is one of the most broadly
used probability metrics. It admits several very simple interpretations, and is a very useful tool in
many mathematical fields such as probability theory, Bayesian statistics, coupling or transportation
theory. In transportation theory, it can be rewritten as the solution of the Monge-Kantorovich problem
with the cost function c(y1, y2) = 1 (y1 6= y2): inf

∫
Y2 1 (y1 6= y2) dπ(y1, y2) , where the infimum

is taken over all joint probability measures π on (Y × Y,FY ⊗ FY) with marginals µ1 and µ2.
According to this interpretation, it seems quite natural to consider the total variation distance as a
relaxation of the trivial distance on [0, 1] (see [43] for details). In the deterministic case, the total
variation and the trivial distance coincides. In general, the total variation allows a finer analysis of the
probabilistic mappings than the trivial distance. But it suffers from a high computational complexity.
In the following of the paper we will show how to ensure robustness regarding TV distance.

Finally, denoting by g1 and g2 the respective probability distributions w.r.t. ν, the Renyi divergence of

order λ [38] writes as dR,λ(µ1, µ2) := 1
λ−1 log

∫
Y g2(y)

(
g1(y)
g2(y)

)λ
dν(y). The Renyi divergence is a

generalized measure defined on the interval (1,∞), where it equals the Kullback-Leibler divergence
when λ→ 1 (that will be denoted dKL), and the maximum divergence when λ→∞. It also has the
very special property of being non decreasing w.r.t. λ. This divergence is very common in machine
learning, especially in its Kullback-Leibler form as it is widely used as the loss function (cross
entropy) of classification algorithms. It enjoys the desired properties since it bounds the TV distance,
and is tractable. Furthermore, Proposition 1 proves that Renyi-robustness implies TV-robustness,
making it a suitable surrogate for the trivial distance.
Proposition 1 (Renyi implies TV-robustness). Let M be a probabilistic mapping, then for all λ ≥ 1,
ε > 0, there exists ε′ > 0 s.t. if M is dR,λ-(α, ε, γ)-robust then M is dTV -(α, ε′, γ)-robust.

A crucial property of Renyi-robustness is the Data processing inequality. It is a well-known inequality
from information theory which states that “post-processing cannot increase information” [10, 3].
In our case, if we consider a Renyi-robust probabilistic mapping, composing it with a deterministic
mapping maintains Renyi-robustness with the same level.
Proposition 2 (Data processing inequality). Let us consider a probabilistic mapping M : X → P(Y),
and denote ρ : Y → Y ′ a deterministic function. If U ∼ M(x) then the probability measure M ′(x)
s.t. ρ(U) ∼ M ′(x) defines a probabilistic mapping M ′ : X → P(Y ′). For any λ > 1, if M is
dR,λ-(α, ε, γ) robust then M ′ is also dR,λ-(α, ε, γ) robust.

Data processing inequality will allow us later to inject some additive noise in any layer of a neural
network and to ensure Renyi-robustness.
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4 Defense mechanisms based on Exponential family noise injection

4.1 Robustness through Exponential family noise injection

For now, the question of which class of noise to add is treated ad hoc. We choose here to investigate
one particular class of noise closely linked to the Renyi divergence, namely Exponential family
distributions, and demonstrate their interest. Let us first recall what the Exponential family is.
Definition 3 (Exponential family). Let Θ be an open convex set of Rn, and θ ∈ Θ. Let ν be a
measure dominated by µ (either by the Lebesgue or counting measure), it is said to be part of the
Exponential family of parameter θ (denoted EF (θ, t, k)) if it has the following p.d.f.

pF (z, θ) = exp {〈t(z), θ〉 − u(θ) + k(z)}
where t(z) is a sufficient statistic, k a carrier measure (either for a Lebesgue or a counting measure)
and u(θ) = log

∫
z

exp {< t(z), θ > +k(z)} dz.

To show the robustness of randomized networks with noise injected from the Exponential family, one
needs to define the notion of sensitivity for a given deterministic function:
Definition 4 (Sensitivity of a function). For any α ≥ 0 and for any ||.||A and ||.||B two norms, the
α-sensitivity of f w.r.t. ||.||A and ||.||B is defined as

∆A,B
α (f) := sup

x,y∈X ,||x−y||A≤α
||f(x)− f(y)||B .

Let us consider an n-layer feedforward neural network N (.) = φn ◦ ... ◦ φ1(.). For any i ∈ [n],
we define N|i(.) = φi ◦ ... ◦ φ1(.) the neural network truncated at layer i. Theorem 1 shows that,
injecting noise drawn from an Exponential family distribution ensures robustness to adversarial
example attacks in the sense of Definition 2.
Theorem 1 (Exponential family ensures robustness). Let us denoteN i

X(.) = φn ◦ ... ◦φi+1(N|i(.) +
X) with X a random variable. Let us also consider two arbitrary norms ||.||A and ||.||B respectively
on X and on the output space of N i

X .

• If X ∼ EF (θ, t, k) where t and k have non-decreasing modulus of continuity ωt and ωk.
Then for any α ≥ 0, N i

X(.) defines a probabilistic mapping that is dR,λ-(α, ε) robust with
ε = ||θ||2ωB,2t (∆A,B

α (φ)) + ωB,1k (∆A,B
α (φ)) where ||.||2 is the norm corresponding to the

scalar product in the definition of the exponential family density function and ||.||1 is the
absolute value on R. Notions of continuity modulus is defined in the supplementary material.

• If X is a centered Gaussian random variable with a non degenerated matrix parameter Σ.
Then for any α ≥ 0, N i

X(.) defines a probabilistic mapping that is dR,λ-(α, ε) robust with

ε =
λ∆A,2

α (φ)2

2σmin(Σ) where ||.||2 is the canonical Euclidean norm on Rn.

In simpler words, the previous theorem ensures stability in the neural network when injecting noise
w.r.t. the distribution of the output. Intuitively, if two inputs are close w.r.t. ‖.‖A, the output
distributions of the network will be close in the sense of Renyi divergence. It is well known that
in the case of deterministic neural networks, the Lipschitz constant becomes bigger as the number
of layers increases [19]. By injecting noise at layer i, the notion of robustness only depends on the
sensitivity of the first i layers of the network and not the following ones. In that sense, randomization
provides a more precise control on the “continuity” of the neural network. In the next section, we
show that thanks to the notion of robustness w.r.t. probabilistic mappings, one can bound the loss of
accuracy of a randomized neural network when it is attacked.

4.2 Bound on the risk gap under attack and certified accuracy

The notions of risk and adversarial risk can easily be generalized to encompass probabilistic mappings.
Definition 5 (Risks for probabilistic mappings). Let M be a probabilistic mapping from X to Y , the
risk and the α-radius adversarial risk of M w.r.t. D are defined as envoenvoie le

Risk(M) := E(x,y)∼D
[
Ey′∼M(x) [1 (y′ 6= y)]

]
Riskα(M) := E(x,y)∼D

[
sup
‖τ‖X≤α

Ey′∼M(x+τ) [1 (y′ 6= y)]

]
.
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The definition of adversarial risk for a probabilistic mapping can be matched with the concept of
Expectation over Transformation (EoT) attacks [1]. Indeed, EoT attacks aim at computing the best
opponent in expectation for a given random transformation. In the adversarial risk definition, the
adversary chooses the perturbation which has the greatest probability to fool the model, which is
a stronger objective than the EoT objective. Theorem 2 provides a bound on the gap between the
adversarial risk and the regular risk:

Theorem 2 (Adversarial risk gap bound in the randomized setting). Let M be the probabilistic
mapping at hand. Let us suppose that M is dR,λ-(α, ε) robust for some λ ≥ 1 then:

|Riskα(M)− Risk(M)| ≤ 1− e−εEx
[
e−H(M(x))

]
where H is the Shannon entropy H(p) = −

∑
i pi log(pi) .

This theorem gives a control on the loss of accuracy under attack w.r.t. the robustness parameter ε
and the entropy of the predictor. It provides a tradeoff between the quantity of noise added in the
network and the accuracy under attack. Intuitively, when the noise increases, for any input, the output
distribution tends towards the uniform distribution, then, ε→ 0 and H(M(x))→ log(K), and the
risk and the adversarial risk both tends to 1

K where K is the number of classes in the classification
problem. On the opposite, if no noise is injected, for any input, the output distribution is a Dirac
distribution, then, if the prediction for the adversarial example is not the same as for the regular one,
ε → ∞ and H(M(x)) → 0. Hence, the noise needs to be designed both to preserve accuracy and
robustness to adversarial attacks. In the Section 5, we give an illustration of this bound when M is a
neural network with noise injection at input level as presented in Theorem 1. In practice, we do not
have access to the real value of the entropy, but we estimate it with classical estimators [33].

Our framework being general enough it encompasses several known accuracy certificates from the
literature, e.g. the one provided in [24]. Interestingly, we can introduce the following one, based on
our definition of robustness.

Theorem 3. Let x ∈ X , and M be a probabilistic mapping with values in RK . If M is dR,λ-(α, ε)
robust, and if there exist k∗ and δ∗ ∈ (0, 1) s.t. Ey∼M(x) [yk∗ ] > e2ε′ max

i 6=k∗
Ey∼M(x) [yi]+(1+eε

′
)δ∗,

with ε′ = ε+ log(1/δ∗)
λ−1 . Then, for the classifier f : x 7→ argmax

k∈[K]

Ey∼M(x) [yk] there is no perturbation

τ ∈ B(α) such that f(x) 6= f(x+ τ).

As the main focus of this work is to give theoretical evidence for randomization techniques, numerical
experiments will mainly focus on Theorem 1 and 2 and not on certificates (Theorem 3).

5 Numerical experiments

To illustrate our theoretical findings, we train randomized neural networks with a simple method
which consists in injecting a noise drawn from an Exponential family distribution in the image during
training and inference. This section aims to answer Q2 stated in the introduction, by tackling the
following sub-questions:

Q2.1: How does the randomization impact the accuracy of the network? And, how does the
theoretical trade-off between accuracy and robustness apply in practice?

Q2.2: What is the accuracy under attack of randomized neural networks against powerful iterative
attacks? And how does randomized neural networks compare to state-of-the-art defenses
given the intensity of the injected noise?

5.1 Experimental setup

We present our results and analysis on CIFAR-10, CIFAR-100 [22] and ImageNet datasets [11]. For
CIFAR-10 and CIFAR-100 [22], we used a Wide ResNet architecture [45] which is a variant of the
ResNet model from [21]. We use 28 layers with a widen factor of 10. We train all networks for
200 epochs, a batch size of 400, dropout 0.3 and Leaky Relu activation with a slope on R− of 0.1.
We minimize the Cross Entropy Loss with Momentum 0.9 and use a piecewise constant learning
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Figure 1: (a) Impact of the standard deviation of the injected noise on accuracy in a randomized
model on CIFAR-10 with a Wide ResNet architecture. (b) and (c) illustration of the guaranteed
accuracy of different randomized models with Gaussian (b) and Laplace (c) noises given the norm of
the adversarial perturbation. The accuracies and entropies and estimated empirically.

rate of 0.1, 0.02, 0.004 and 0.00008 after respectively 7500, 15000 and 20000 steps. The networks
achieve for CIFAR10 and 100 a TOP-1 accuracy of 95.8% and 79.1% respectively on test images.
For ImageNet [11], we use an Inception ResNet v2 [41] which is the sate of the art architecture for
this dataset and achieve a TOP-1 accuracy of 80%. For the training of ImageNet, we use the same
hyper parameters setting as the original implementation. We train the network for 120 epochs with
a batch size of 256, dropout 0.8 and Relu as activation function. All evaluations were done with a
single crop on the non-blacklisted subset of the validation set.

To transform these classical networks to probabilistic mappings, we inject noise drawn from Laplace
and Gaussian distributions, each with various standard deviations. While the noise could theoretically
be injected anywhere in the network, we inject the noise on the image for simplicity. More experiments
with noise injected in the first layer of the network are presented in the supplementary material.
To evaluate our models under attack, we use three powerful iterative attacks with different norms:
ElasticNet attack (EAD) [8] with `1 distortion, Carlini&Wagner attack (C&W) [6] with `2 distortion
and Projected Gradient Descent attack (PGD) [27] with `∞ distortion. All standard deviations and
attack intensities are in between −1 and 1. Precise descriptions of our numerical experiments and of
the attacks used for evaluation are deferred to the supplementary material.

Attacks against randomized defenses: It has been pointed out by [2, 5] that in a white box setting,
an attacker with a complete knowledge of the system will know the distribution of the noise injected
in the network. As such, to create a stronger adversarial example, the attacker can take the expectation
of the loss or the logits of the randomized network during the computation of the attack. This
technique is called Expectation Over Transformation (EoT) and we use a Monte Carlo method with
80 simulations to approximate the best perturbation for a randomized network.

5.2 Experimental results

Trade-off between accuracy and intensity of noise (Q2.1): When injecting noise as a defense
mechanism, regardless of the distribution it is drawn from, we observe (as in Figure 1(a)) that the
accuracy decreases when the noise intensity grows. In that sense, noise needs to be calibrated to
preserve both accuracy and robustness against adversarial attacks, i.e. it needs to be large enough to
preserve robustness and small enough to preserve accuracy. Figure 1(a) shows the loss of accuracy on
CIFAR10 from 0.95 to 0.82 (respectively 0.95 to 0.84) with noise drawn from a Gaussian distribution
(respectively Laplace) with a standard deviation from 0.01 to 0.5. Figure 1(b) and 1(c) illustrate the
theoretical lower bound on accuracy under attack of Theorem 2 for different distributions and standard
deviations. The term in entropy of Theorem 2 has been estimated using a Monte Carlo method with
104 simulations. The trade-off between accuracy and robustness from Theorem 2 thus appears w.r.t
the noise intensity. With small noises, the accuracy is high, but the guaranteed accuracy drops fast
w.r.t the magnitude of the adversarial perturbation. Conversely, with bigger noises, the accuracy is
lower but decreases slowly w.r.t the magnitude of the adversarial perturbation. These Figures also
show that Theorem 2 gives strong accuracy guarantees against small adversarial perturbations. Next
paragraph shows that in practice, randomized networks achieve much higher accuracy under attack
than the theoretical bound, and against much larger perturbations.
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Table 1: Accuracy under attack on the CIFAR-10 dataset with a randomized Wide ResNet architecture.
We compare the accuracy on natural images and under attack with different noise over 3 iterative
attacks (the number of steps is next to the name) made with 80 Monte Carlo simulations to compute
EoT attacks. The first line is the baseline, no noise has been injected.

Distribution Sd Natural `1 – EAD 60 `2 – C&W 60 `∞ – PGD 20
- - 0.958 0.035 0.034 0.384

Normal 0.01 0.954 0.193 0.294 0.408
0.50 0.824 0.448 0.523 0.587

Laplace 0.01 0.955 0.208 0.313 0.389
0.50 0.846 0.464 0.494 0.589

Table 2: Accuracy under attack of randomized neural network with different distributions and
standard deviations versus adversarial training by Madry et al. [27]. The PGD attack has been made
with 20 step, an epsilon of 0.06 and a step size of 0.006 (input space between −1 and +1). The
Carlini&Wagner attack uses 30 steps, 9 binary search steps and a 0.01 learning rate. The first line
refers to the baseline without attack.

Madry et al.
[27]

Normal 0.32 Laplace 0.32 Normal 0.5 Laplace 0.5Attack Steps
- - 0.873 0.876 0.891 0.824 0.846

`∞ – PGD 20 0.456 0.566 0.576 0.587 0.589
`2 – C&W 30 0.468 0.512 0.502 0.489 0.479

Performance of randomized networks under attacks and comparison to state of the art (Q2.2):
While Figure 1(b) and 1(c) illustrated a theoretical robustness against growing adversarial pertur-
bations, Table 1 illustrates this trade-off experimentally. It compares the accuracy under attack of
a deterministic network with the one of randomized networks with Gaussian and Laplace noises
both with low (0.01) and high (0.5) standard deviations. Randomized networks with a small noise
lead to no loss in accuracy with a small robustness while high noises lead to a higher robustness
at the expense of loss of accuracy (∼ 11 points). Table 2 compares the accuracy and the accuracy
under attack of randomized networks with Gaussian and Laplace distributions for different standard
deviations against adversarial training [27]. We observe that the accuracy on natural images of both
noise injection methods are similar to the one from [27]. Moreover, both methods are more robust
than adversarial training to PGD and C&W attacks. With all the experiments, to construct an EoT
attack, we use 80 Monte Carlo simulations at every step the attacks. These experiments show that
randomized defenses can be competitive given the intensity of noise injected in the network. Note
that these experiments have been led with EoT of size 80. For much bigger sizes of EoT these results
would be mitigated. Nevertheless, the accuracy would never drop under the bounds illustrated in
Figure 5.2, since Theorem 2 gives a bound that on the worst case attack strategy (including EoT).

6 Conclusion and future work

This paper brings new contributions to the field of provable defenses to adversarial attacks. Principled
answers have been provided to key questions on the interest of randomization techniques, and on their
loss of accuracy under attack. The obtained bounds have been illustrated in practice by conducting
thorough experiments on baseline datasets such as CIFAR and ImageNet. We show in particular that a
simple method based on injecting noise drawn from the Exponential family is competitive compared
to baseline approaches while leading to provable guarantees. Future work will focus on investigating
other noise distributions belonging or not to the Exponential family, combining randomization with
more sophisticated defenses and on devising new tight bounds on the adversarial risk gap.
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