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Abstract

Gibbs sampling is a Markov chain Monte Carlo method that is often used for learn-
ing and inference on graphical models. Minibatching, in which a small random
subset of the graph is used at each iteration, can help make Gibbs sampling scale
to large graphical models by reducing its computational cost. In this paper, we
propose a new auxiliary-variable minibatched Gibbs sampling method, Poisson-

minibatching Gibbs, which both produces unbiased samples and has a theoretical
guarantee on its convergence rate. In comparison to previous minibatched Gibbs
algorithms, Poisson-minibatching Gibbs supports fast sampling from continuous
state spaces and avoids the need for a Metropolis-Hastings correction on discrete
state spaces. We demonstrate the effectiveness of our method on multiple ap-
plications and in comparison with both plain Gibbs and previous minibatched
methods.

1 Introduction

Gibbs sampling is a Markov chain Monte Carlo (MCMC) method which is widely used for infer-
ence on graphical models [7]. Gibbs sampling works by iteratively resampling a variable from its
conditional distribution with the remaining variables fixed. Although Gibbs sampling is a powerful
method, its utility can be limited by its computational cost when the model is large. One way to
address this is to use stochastic methods, which use a subsample of the dataset or model—called a
minibatch—to approximate the dataset or model used in an MCMC algorithm. Minibatched variants
of many classical MCMC algorithms have been explored [18, 10, 3, 9], including the MIN-Gibbs
algorithm for Gibbs sampling [3].

In this paper, we propose a new minibatched variant of Gibbs sampling on factor graphs called
Poisson-minibatching Gibbs (Poisson-Gibbs). Like other minibatched MCMC methods, Poisson-
minibatching Gibbs improves Gibbs sampling by reducing its computational cost. In comparison
to prior work, our method improves upon MIN-Gibbs in two ways. First, it eliminates the need for
a potentially expensive Metropolis-Hastings (M-H) acceptance step, giving it a better asymptotic
per-iteration time complexity than MIN-Gibbs. Poisson-minibatching Gibbs is able to do this by
choosing a minibatch in a way that depends on the current state of the variables, rather than choosing
one that is independent of the current state as is usually done in stochastic algorithms. We show that
such state-dependent minibatches can still be sampled quickly, and that an appropriately chosen state-
dependent minibatch can result in a reversible Markov chain with the correct stationary distribution
even without a Metropolis-Hastings correction step.

The second way that our method improves upon previous work is that it supports sampling over
continuous state spaces, which are common in machine learning applications (in comparison, the
previous work only supported sampling over discrete state spaces). The main difficulty here for Gibbs
sampling is that resampling a continuous-valued variable from its conditional distribution requires
sampling from a continuous distribution, and this is a nontrivial task (as compared with a discrete
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State Space Algorithm Computational Cost/Iter

Discrete Gibbs sampling O(D�)
MIN-Gibbs [3] O(D 2)
MGPMH [3] O(DL

2 +�)
DoubleMIN-Gibbs [3] O(DL

2 + 2)
Poisson-Gibbs O(DL

2)

Continuous Gibbs with rejection sampling O(N�)
PGITS: Poisson-Gibbs with ITS O(L3)
PGDA: Poisson-Gibbs with double approximation O(L2 logL)

Table 1: Computational complexity cost for a single-iteration of Gibbs sampling. Here, N is the
required number of steps in rejection sampling to accept a sample, and the rest of the parameters are
defined in Section 1.1.

random variable, which can be sampled from by explicitly computing its probability mass function).
Our approach is based on fast inverse transform sampling method, which works by approximating
the probability density function (PDF) of a distribution with a polynomial [13].

In addition to these two new capabilities, we prove bounds on the convergence rate of Poisson-
minibatching Gibbs in comparison to plain (i.e. not minibatched) Gibbs sampling. These bounds
can provide a recipe for how to set the minibatch size in order to come close to the convergence rate
of plain Gibbs sampling. If we set the minibatch size in this way, we can derive expressions for the
per-iteration computational cost of our method compared with others; these bounds are summarized
in Table 1. In summary, the contributions of this paper are as follows:

• We introduce Poisson-minibatching Gibbs, a variant of Gibbs sampling which can reduce
computational cost without adding bias or needing a Metropolis-Hastings correction step.

• We extend our method to sample from continuous-valued distributions.
• We prove bounds on the convergence rate of our algorithm, as measured by the spectral gap,

on both discrete and continuous state spaces.
• We evaluate Poisson-minibatching Gibbs empirically, and show that its performance can

match that of plain Gibbs sampling while using less computation at each iteration.

1.1 Preliminaries and Definitions

In this section, we present some background about Gibbs sampling and graphical models and give
the definitions which will be used throughout the paper. In this paper, we consider Gibbs sampling
on a factor graph [7], a type of graphical model that defines a probability distribution in terms of its
factors. Explicitly, a factor graph consists of a set of variables V (each of which can take on values
in some set X ) and a set of factors �, and it defines a probability distribution ⇡ over a state space
⌦ = XV , where the probability of some x 2 ⌦ is

⇡(x) = 1
Z · exp

⇣P
�2� �(x)

⌘
= 1

Z ·
Q

�2� exp (�(x)) .

Here, Z denotes the scalar factor necessary for ⇡ to be a distribution. Equivalently, we can think of
this as the Gibbs measure with energy function

U(x) =
P

�2� �(x), where ⇡(x) / exp(U(x));

this formulation will prove to be useful in many of the derivations later in the paper. (Here, the /
notation denotes that the expression on the left is a distribution that is proportional to the expression
on the right with the appropriate constant of proportionality to make it a distribution.) In a factor
graph, the factors � typically only depend on a subset of the variables; we can represent this as a
bipartite graph where the nodesets are V and � and where we draw an edge between a variable i 2 V
and a factor � 2 � if � depends on i. For simplicity, in this paper we assume that the variables are
indexed with natural numbers V = {1, . . . , n}. We denote the set of factors that depend on the ith
variable, as

A[i] = {�|� depends on variable i, � 2 �}.
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Algorithm 1 Gibbs Sampling
Input: initial point x
loop

sample variable i ⇠ Unif{1, . . . , n}
for all v 2 X do

x(i) v

Uv  
P

�2A[i] �(x)
end for

construct distribution ⇢ where

⇢(v) / exp(Uv)

sample v from ⇢

update x(i) v

output sample x

end loop

An important property of a factor graph is that the
conditional distribution of a variable can be computed
using only the factors that depend on that variable.
This lends to a particularly efficient implementation
of Gibbs sampling, in which only these adjacent fac-
tors are used at each iteration (rather than needing
to evaluate the whole energy function U ): this is
illustrated in Algorithm 1.

The performance of our algorithm will depend on
several parameters of the graphical model, which
we will now restate, from previous work on MIN-
Gibbs [3]. If the variables take on discrete values,
we let D = |X | denote the number of values each
can take on. We let � = maxi |A[i]| denote the
maximum degree of the graph. We assume that the
magnitudes of the factor functions are all bounded,
and for any � we let M� denote this bound

M� = (supx2⌦ �(x))� (infx2⌦ �(x)) .

Without loss of generality (and as was done in previous works [3]), we will assume that 0  �(x) 
M� because we can always add a constant to any factor � without changing the distribution ⇡. We
define the local maximum energy L and total maximum energy  of the graph as bounds on the sum
of M� over the set of the factors associated with a single variable i and the whole graph, respectively,

L = maxi2{1,2,...,N}
P

�2A[i] M� and  =
P

�2� M�.

If the graph is very large and has many low-energy factors, the maximum energy of a graph can be
much smaller than the maximum degree of the graph. All runtime analyses in this paper assume that
evaluating a factor � and sampling from a small discrete distribution can be done in constant time.

2 Poisson-Minibatching Gibbs Sampling

In this section, we will introduce the idea of Poisson-minibatching under the setting in which we
assume we can sample from the conditional distribution of x(i) exactly. One such example is when
the state space of x is discrete. We will consider how to sample from the conditional distribution
when exact sampling is impossible in the next section.

In plain Gibbs sampling, we have to compute the sum over all the factors in A[i] to get the energy
in every step. When the graph is large, the computation of getting the energy can be expensive; for
example, in the discrete case this cost is proportional to D�. The main idea of Poisson-minibatching
is to augment a desired distribution with extra Poisson random variables, which control how and
whether a factor is used in the minibatch for a particular iteration. Maclaurin and Adams [10] used a
similar idea to control whether a data point will be included in the minibatch or not with augmented
Bernoulli variables. However, this method has been shown to be very inefficient when only updating
a small fraction of Bernoulli variables in each iteration [15]. Our method does not suffer from the
same issue due to the usage of Poisson variables which we will explain further later in this section.

We define the conditional distribution of additional variable s� for each factor � as

s�|x ⇠ Poisson
⇣

�M�

L + �(x)
⌘

where � > 0 is a hyperparameter that controls the minibatch size. Then the joint distribution of
variables x and s, where s is a variable vector including all s�, is ⇡(x, s) = ⇡(x) ·P(s|x) and so

⇡(x, s) / exp

0

@
X

�2�

✓
s� log

✓
1 +

L

�M�
�(x)

◆
+ s� log

✓
�M�

L

◆
� log (s�!)

◆1

A . (1)

Using (1) allows us to compute conditional distributions (of the variables xi) using only a subset of
the factors. This is because the factor � will not contribute to the energy unless s� is greater than
zero. If many s� are zero, then we only need to compute the energy over a small set of factors. Since

E [|{� 2 A[i] | s� > 0}|]  E
hP

�2A[i] s�

i
=
P

�2A[i]

⇣
�M�

L + �(x)
⌘
 �+ L,
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this implies that �+ L is an upper bound of the expected number of non-zero s�. When the graph
is very large and has many low-energy factors, �+ L can be much smaller than the factor set size,
in which case only a small set of factors will contribute to the energy while most factor terms will
disappear because s� is zero.

Using Poisson auxiliary variables has two benefits. First, compared with the Bernoulli auxiliary
variables as described in FlyMC [10], there is a simple method for sampling n Poisson random
variables in total expected time proportional to the sum of their parameters, which can be much
smaller than n [3]. This means that sampling n Poisson variables can be much more efficient than
sampling n Bernoulli variables, which allows our method to avoid any inefficiencies caused by
sampling Bernoulli variables as in FlyMC. Second, compared with a fixed-minibatch-size method
such as the one used in [18], Poisson-minibatching has the important property that the variables s�
are independent. Whether a factor will be contained in the minibatch is independent to each other.
This property is necessary for proving convergence rate theorems in the paper.

In Poisson-Gibbs, we will sample from the joint distribution alternately. At each iteration we can
(1) first re-sample all the s�, then (2) choose a variable index i and re-sample x(i). Here, we can
reduce the state back to only x, since the future distribution never depends on the current value of s.
Essentially, we only bother to re-sample the s� on which our eventual re-sampling of x(i) depends:
statistically, this is equivalent to re-sampling all s�. Doing this corresponds to Algorithm 2.

However, minibatching by itself does not mean that the method must be more effective than plain
Gibbs sampling. It is possible that the convergence rate of the minibatched chain becomes much
slower than the original rate, such that the total cost of the minibatch method is larger than that of
the baseline method even if the cost of each step is smaller. To rule out this undesirable situation,
we prove that the convergence speed of our chain is not slowed down, or at least not too much, after
applying minibatching. To do this, we bound the convergence rate of our algorithm, as measured
by the spectral gap [8], which is the gap between the largest and second-largest eigenvalues of the
chain’s transition operator. This gap has been used previously to measure the convergence rate of
minibatched MCMC [3].
Theorem 1. Poisson-Gibbs (Algorithm 2) is reversible and has a stationary distribution ⇡. Let

�̄ denote its spectral gap, and let � denote the spectral gap of plain Gibbs sampling. If we use a

minibatch size parameter � � 2L, then

�̄ � exp

✓
�4L2

�

◆
· �.

This theorem guarantees that the convergence rate of Poisson-Gibbs will not be slowed down by
more than a factor of exp(�4L2

/�). If we set � = ⇥(L2), then this factor becomes O(1), which is
independent of the size of the problem. We proved Theorem 1 and the other theorems in this paper
using the technique of Dirichlet forms, which is a standard way of comparing the spectral gaps of
two chains by comparing their transition probabilities (more details are in the supplemental material).

Next, we derive expressions for the overall computational cost of Algorithm 2, supposing that we
set � = ⇥(L2) as suggested by Theorem 1. First, we need to evaluate the cost of sampling all the
Poisson-distributed s�. While a naïve approach to sample this would take O(�) time, we can do
it substantially faster. For brevity, and because much of the technique is already described in the
previous work [3], we defer an explicit analysis to the supplementary material, and just state the
following.
Statement 1. Sampling all the auxiliary variables s� for � 2 A[i] can be done in average time

O(�+ L), resulting in a sparse vector s�.

Now, to get an overall cost when assuming exact sampling from the conditional distribution, we
consider discrete state spaces, in which we can sample from the conditional distribution of x(i)
exactly. In this case, the cost of a single iteration of Poisson-Gibbs will be dominated by the loop
over v. This loop will run D times, and each iteration will take O(|S|) time to run. On average, this
gives us an overall runtime O((�+ L) ·D) = O(L2

D) for Poisson-Gibbs. Note that due to the fast
way we sample Poisson variables, the cost of sampling Poisson variables is negligible compared to
other costs.

In comparison, the cost of the previous algorithms MIN-Gibbs, MGPMH and DoubleMIN-Gibbs [3]
are all larger in big-O than that of Poisson-Gibbs, as showed in Table 1. MGPMH and DoubleMIN-
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Gibbs need to conduct an M-H correction, which adds to the cost, and the cost of MIN-Gibbs and
DoubleMIN-Gibbs depend on  which is a global statistic. By contrast, our method does not need
additional M-H step and is not dependent on global statistics. Thus the total cost of Gibbs sampling
can be reduced more by Poisson-minibatching compared to the previous methods.

Application of Poisson-Minibatching to Metropolis-Hastings. Poisson-minibatching method
can be applied to other MCMC methods, not just Gibbs sampling. To illustrate the general applica-
bility of Poisson-minibatching method, we applied Poisson-minibatching to Metropolis-Hastings
sampling and call it Poisson-MH (details of this algorithm and a demonstration on a mixture of
Gaussians are given in the supplemental material). We get the following convergence rate bound.
Theorem 2. Poisson-MH is reversible and has a stationary distribution ⇡. If we let �̄ denote its

spectral gap, and let �̄ denote the spectral gap of plain M-H sampling with the same proposal and

target distributions, then

�̄ � 1
2 exp

⇣
� L2

�+L

⌘
· �.

3 Poisson-Gibbs on Continuous State Spaces

In this section, we consider how to sample from a continuous conditional distribution, i.e. when
X = [a, b] ⇢ R, without sacrificing the benefits of Poisson-minibatching. The main difficulty is
that sampling from an arbitrary continuous conditional distribution is not trivial in the same way as
sampling from an arbitrary discrete conditional distribution is. Some additional sampling method is
required. In principle, we can combine any sampling method with Poisson-minibatching, such as
rejection sampling which is commonly used in Gibbs sampling. However, rejection sampling needs
to evaluate the energy multiple times per sample, so even if we reduce the cost of evaluating the
energy by minibatching, the total cost can still be large, besides which there is no good guarantee on
the convergence rate of rejection sampling.

In order to sample from the conditional distribution efficiently, we propose a new sampling method
based on inverse transform sampling (ITS) method. The main idea is to approximate the continuous
distribution with a polynomial; this requires only a number of energy function evaluations proportional
to the degree of the polynomial. We provide overall cost and theoretical analysis of convergence rate
for our method.

Poisson-Gibbs with Double Chebyshev Approximation. Inverse transform sampling is a clas-
sical method that generates samples from a uniform distribution and then transforms them by the
inverse of cumulative distribution function (CDF) of the desired distribution. Since the CDF is often
intractable in practice, Fast Inverse Transform Sampling (FITS) [13] uses a Chebyshev polynomial ap-
proximation to estimate the PDF fast and then get the CDF by computing an integral of a polynomial.
Inspired by FITS, we propose Poisson-Gibbs with double Chebyshev approximation (PGDA).

The main idea of double Chebyshev approximation is to approximate the energy function first and
then the PDF by using Chebyshev approximation twice. Specifically, we first get a polynomial
approximation to the energy function U on [a, b], denoted by Ũ , the Chebyshev interpolant [17]

Ũ(x) =
mX

k=0

↵kTk

✓
2(x� a)

b� a
� 1

◆
, ↵k 2 R, x 2 [a, b], (2)

where Tk(x) = cos(k cos�1
x) is the degree-k Chebyshev polynomial. Although the domain is

continuous, we only need to evaluate U on m+ 1 Chebyshev nodes to construct the interpolant, and
the expansion coefficients ↵k can be computed stably in O(m logm) time. The following theorem
shows that the error of a Chebyshev approximation can be made arbitrarily small with large m.
(Although stated for the case of [a, b] = [�1, 1], it easily generalizes to arbitrary [a, b].)
Theorem 3 (Theorem 8.2 from Trefethen [17]). Assume U is analytic in the open Bernstein ellipse

B([�1, 1], ⇢), where the Bernstein ellipse is a region in the complex plane bounded by an ellipse

with foci at ±1 and semimajor-plus-semiminor axis length ⇢ > 1. If for all x 2 B([�1, 1], ⇢),
|U(x)|  V for some constant V > 0, the error of the Chebyshev interpolant on [�1, 1] is bounded

by

|Ũ(x)� U(x)|  �m where �m =
4V ⇢

�m

⇢� 1
.
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Algorithm 2 Poisson-Gibbs
given: initial state x 2 ⌦
loop

sample variable i ⇠ Unif{1, . . . , n}.
for all � in A[i] do

sample s� ⇠ Poisson
⇣

�M�

L + �(x)
⌘

end for

S  {�|s� > 0}
for all v 2 X do

x(i) v

Uv  
P

�2S s� log
⇣
1 + L

�M�
�(x)

⌘

end for

construct distribution ⇢ where

⇢(v) / exp(Uv)

sample v from ⇢

update x(i) v

output sample x

end loop

Algorithm 3 PGDA: Poisson-Gibbs Double Cheby-
shev Approximation

given: state x 2 ⌦, degree m and k, domain [a, b]
loop

set i, s�, S, and U as in Algorithm 2.
construct degree-m Chebyshev polynomial ap-
proximation of energy Uv on [a, b]: Ũv

construct degree-k Chebyshev polynomial
approximation:f̃(v) ⇡ exp(Ũv)
compute the CDF polynomial

F̃ (v) =

 Z b

a
f̃(y) dy

!�1 Z v

a
f̃(y) dy

sample u ⇠ Unif[0, 1].
solve root-finding problem for v: F̃ (v) = u

. Metropolis-Hastings correction:
p exp(Uv)f̃(x(i))

exp(Ux(i))f̃(v)

with probability min(1, p), set x(i) v

output sample x

end loop

After getting the approximation of the energy, we can get the PDF by exp(Ũ). However, it is generally
hard to get the CDF now since the integral of exp(Ũ) for polynomial Ũ is usually intractable. So, we
use another Chebyshev approximation f̃ to estimate exp(Ũ). Constructing the second Chebyshev
approximation requires no additional evaluations of energy functions; its total computational cost
is Õ(mk) because we need to evaluate a degree-m polynomial k times to compute the coefficients.
After doing this, we are able to compute the CDF directly since it is the integral of a polynomial.
With the CDF F̃ (x) in hand, inverse transform sampling is used to generate samples. First, a pseudo-
random sample u is generated from the uniform distribution on [0, 1], and then we solve the following
root-finding problem for x: F̃ (x) = u. Since F̃ (x) is a polynomial, this root-finding problem can
be solved by many standard methods. We use bisection method to ensure the robustness of the
algorithm [13].

Importantly, the sample we get here is actually from an approximation of the CDF. To correct the
error introduced by the polynomial approximation, we add a M-H correction as the final step to make
sure the samples come from the target distribution. Our algorithm is given in Algorithm 3. As before,
we prove a bound on PGDA in terms of the spectral gap, given the additional assumption that the
factors � are analytic.
Theorem 4. PGDA (Algorithm 3) is reversible and has a stationary distribution ⇡. Let �̄ denote

its spectral gap, and let � denote the spectral gap of plain Gibbs sampling. Assume ⇢ > 1 is some

constant such that every factor function �, treated as a function of any single variable x(i), must

be analytically continuable to the Bernstein ellipse with radius parameter ⇢ shifted-and-scaled so

that its foci are at a and b, such that it satisfies |�(z)|  M� anywhere in that ellipse. Then, if

� log(2) � 4L, and if m is set large enough that 4⇢�m/2  p⇢� 1, then it will hold that

�̄ �
�
1� 4

p
z
�
exp

✓
�4L2

�

◆
· �, where z =

4 · exp (8L) · ⇢� k
2

p
⇢� 1

+ exp

✓
16L · ⇢�m

2

p
⇢� 1

◆
� 1.

Similar to Theorem 1, this theorem implies that the convergence rate of PGDA can be slowed down by
at most a constant factor relative to plain Gibbs. If we set m = ⇥(logL), k = ⇥(L) and � = ⇥(L2),
then the ratio of the spectral gaps will also be O(1), which is independent of the problem parameters.
Note that it is possible to combine FITS with Poisson-Gibbs directly (i.e. use only one polynomial
approximation to estimate the PDF directly), and we call this method Poisson-Gibbs with fast inverse
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(a) (b) (c)

Figure 1: (a) Marginal error comparison among Poisson-Gibbs and previous methods on a Potts
model. (b) Marginal error of Poisson-Gibbs on varying values of � on a Potts model. (c) Symmetric
KL divergence comparison among PGITS, PGDA and previous methods on a continuous spin model.

(a) (b) (c)

Figure 2: Runtime comparisons with the same experimental setting as in Figure 1.

transform sampling (PGITS). It turns out that PGDA is more efficient than PGITS since PGDA
requires fewer evaluations of U to achieve the same convergence rate. If we set the parameters as
above, the total computational cost of PGDA is O(m · (�+ L) +m · k) = O(logL · (L2 + L)) =
O(logL · L2). On the other hand, the cost of PGITS to achieve the same constant-factor spectral gap
ratio is O(L3). A derivation of this is given in the supplemental material.

4 Experiments

We demonstrate our methods on three tasks including Potts models, continuous spin models and
truncated Gaussian mixture in comparison with plain Gibbs sampling and previous minibatched
Gibbs sampling. We release the code at https://github.com/ruqizhang/poisson-gibbs.

4.1 Potts Models

We first test the performance of Poisson-minibatching Gibbs sampling on the Potts model [14] as in
De Sa et al. [3]. The Potts model is a generalization of the Ising model [6] with domain {1, . . . , D}
over an N ⇥N lattice. The energy of a configuration is the following:

U(x) =
nX

i=1

nX

j=1

� ·Aij · � (x(i), x(j))

where the � function equals one only when x(i) = x(j) and zero otherwise. Aij is the interaction
between two sites i and j and � is the inverse temperature. As was done in previous work, we set the
model to be fully connected and the interaction Aij is determined by the distance between site i and
site j based on a Gaussian kernel [3]. The graph has n = N

2 = 400 variables in total, � = 4.6 and
D = 10. On this model, L = 5.09.

We first compare our method with two other methods: plain Gibbs sampling and the most efficient
MIN-Gibbs methods on this task, DoubleMIN-Gibbs. Note that, in comparison to our method,
DoubleMIN-Gibbs needs an additional M-H correction step which requires a second minibatch to
be sampled. We set � = 1 · L2 for all minibatch methods. We tried two values for the second
minibatch size in DoubleMIN-Gibbs �2 = 1 · L2 and 104 · L2. We compute run-average marginal
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distributions for each variable by collecting samples. By symmetry, the marginal for each variable
in the stationary distribution is uniform, so the `2-distance between the estimated marginals and
the uniform distribution can be used to evaluate the convergence of Markov chain. We report this
marginal error averaged over three runs.

Figure 1a shows the `2-distance marginal error as a function of iterations. We observe that Poisson-
Gibbs performs comparably with plain Gibbs and it outperforms DoubleMIN-Gibbs significantly
especially when �2 is not large enough. The performance of DoubleMIN-Gibbs is highly influenced
by the size of the second minibatch. We have to increase the second minibatch to 104 · L2 in order to
make it converge. This is because the variance of M-H correction will be very large when the second
minibatch is not large enough. On the other hand, Poisson-Gibbs does not require an additional M-H
correction which not only reduces the computational cost but also improves stability. In Figure 1b,
we show the performance of our method with different values of �. When we increase the minibatch
size, the convergence speed of Poisson-Gibbs approaches plain Gibbs, which validates our theory.
The number of factors being evaluated of Poisson-Gibbs varies each iteration, thus we report the
average number which are 7, 28 and 132 respectively for � = 0.1 · L2, 1 · L2 and 5 · L2.

The runtime comparisons with the same setup are reported in Figure 2a and 2b to demonstrate
the computational speed-up of Poisson-Gibbs empirically. We can see that the results align with
our theoretical analysis: Poisson-Gibbs is significantly faster than plain Gibbs samping and faster
than previous minibatched Gibbs sampling methods. Compared to plain Gibbs, Poisson-Gibbs
speeds up the computation by evaluating only a subset of factors in each iteration. Compared
to DoubleMIN-Gibbs, Poisson-Gibbs is faster because it removes the need of an additional M-H
correction step.

4.2 Continuous Spin Models

In this section, we study a more general setting of spin models where spins can take continuous values.
Continuous spin models are of interest in both the statistics and physics communities [11, 2, 4]. This
random graph model can also be used to describe complex networks such as social, information, and
biological networks [12]. We consider the energy of a configuration as the following:

U(x) =
nX

i=1

nX

j=1

� ·Aij · (x(i) · x(j) + 1)

where x(i) 2 [0, 1] and � = 1. Notice that the existing minibatched Gibbs sampling methods [3]
are not applicable on this task since they can be used only on discrete state spaces. We compare
PGITS, PGDA with: (1) Gibbs sampling with FITS (Gibbs-ITS); (2) Gibbs sampling with Double
Chebyshev approximation (Gibbs-DA); (3) Gibbs with rejection sampling (Gibbs-rejection); and
(4) Poisson-Gibbs with rejection sampling (PG-rejection). We use symmetric KL divergence to
quantitatively evaluate the convergence. On this model, L = 13.71 and we set � = L

2. The degree of
polynomial is m = 3 for PGITS and the first approximation in PGDA. The degree of polynomial is
k = 10 for the second approximation in PGDA. In rejection sampling, we set the proposal distribution
to be wg where g is the uniform distribution on [0, 1] and w is a constant tuned for best performance.
The ground truth stationary distribution is obtained by running Gibbs-ITS for 107 iterations.

On this task, the average number of evaluated factors per iteration of Poisson-Gibbs is 190. Figure 1c
shows the symmetric KL divergence as a function of iterations, with results averaged over three runs.
Observe that our methods achieve comparable performance to Gibbs sampling with only a fraction of
factors. For rejection sampling, the average steps needed for a sample to be accepted is greater than
300 which means that the cost is much larger than that of PGITS and PGDA. Given the same time
budget, it can only run for many fewer iterations (we run it for 104 iterations). On the other hand, the
two Chebyshebv approximation methods are much more efficient for both Poisson-Gibbs and plain
Gibbs. The advantage of FITS over rejection sampling has also been discussed in previous work [13].
Also notice that PGDA converges faster than PGITS given the same degree of polynomial. This
empirical result validates our theoretical results that suggest PGDA is more efficient than PGITS.

We also report the symmetric KL divergence as a function of runtime in Figure 2c. Similar to the
previous section, the two Poisson-Gibbs methods are faster than plain Gibbs sampling.
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(a) True (b) PGITS (c) PGDA (d) Gibbs-rejection

Figure 3: A visualization of the estimated density on a truncated Gaussian mixture model.

4.3 Truncated Gaussian Mixture

We further demonstrate PGITS and PGDA on a truncated Gaussian mixture model. We consider the
following Gaussian mixture with tied means as done in previous work [18, 9]:

x1 ⇠ N (0,�2
1), x2 ⇠ N (0,�2

2), yi ⇠
1

2
N (x1,�

2
y) +

1

2
N (x1 + x2,�

2
y).

We used the same parameters as in Welling and Teh [18]: �2
1 = 10, �2

2 = 1, �2
y = 2, x1 = 0 and

x2 = 1. This posterior has two modes at (x1, x2) = (0, 1) and (x1, x2) = (1,�1). We truncate the
posterior by bounding the variables x1 and x2 in [�6, 6]. The energy can be written as

U(x) = log p(x1) + log p(x2) +
NX

i=1

log p(yi|x1, x2)

which can be regarded as a factor graph with N factors. We add a positive constant to the energy
to ensure each factor is non-negative: this will not change the underlying distribution. As in Li and
Wong [9], we set N = 106. L = 1581.14 for this model and we set � = 500, m = 20 and k = 25.
We have also considered higher values of � and found that the results are very similar. We generate
106 samples for all methods. A uniform distribution in [�6, 6] is used as the proposal distribution in
Gibbs with rejection sampling. We try varying values for w but none of them results in reasonable
density estimate which may be due to the inefficiency of rejection sampling [13]. We report the
results when the average needed steps for a sample to be accepted is around 1000. The average
number of factors being evaluated per iteration of Poisson-Gibbs is 1802. Our results are reported in
Figure 3, where we observe visually that the density estimates of PGITS and PGDA are very accurate.
In contrast, rejection sampling completely failed to estimate the density given the budget.

5 Conclusion

We propose Poisson-minibatching Gibbs sampling to generate unbiased samples with theoretical
guarantees on the convergence rate. Our method provably converges to the desired stationary
distribution at a rate that is at most a constant factor slower than the full batch method, as measured
by the spectral gap. We provide guidance about how to set the hyperparameters of our method to
make the convergence speed arbitrarily close to the full batch method. On continuous state spaces,
we propose two variants of Poisson-Gibbs based on fast inverse transform sampling and provide
convergence analysis for both of them. We hope that our work will help inspire more exploration into
unbiased and guaranteed-fast stochastic MCMC methods.
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