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Abstract

We show for the first time that it is possible to reconcile in online learning in
zero-sum games two seemingly contradictory objectives: vanishing time-average
regret and non-vanishing step sizes. This phenomenon, that we coin “fast and
furious" learning in games, sets a new benchmark about what is possible both
in max-min optimization as well as in multi-agent systems. Our analysis does
not depend on introducing a carefully tailored dynamic. Instead we focus on the
most well studied online dynamic, gradient descent. Similarly, we focus on the
simplest textbook class of games, two-agent two-strategy zero-sum games, such as
Matching Pennies. Even for this simplest of benchmarks the best known bound for
total regret, prior to our work, was the trivial one of O(T'), which is immediately
applicable even to a non-learning agent. Based on a tight understanding of the
geometry of the non-equilibrating trajectories in the dual space we prove a regret
bound of ©(+/T') matching the well known optimal bound for adaptive step sizes
in the online setting. This guarantee holds for all fixed step-sizes without having
to know the time horizon in advance and adapt the fixed step-size accordingly.As
a corollary, we establish that even with fixed learning rates the time-average of
mixed strategies, utilities converge to their exact Nash equilibrium values. We also
provide experimental evidence suggesting the stronger regret bound holds for all
Zero-sum games.
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Figure 1: 5000 Iterations of Gradient Descent on Matching Pennies with = .15.
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1 Introduction

The performance of online learning algorithms such as online gradient descent in adversarial, adaptive
settings is a classic staple of optimization and game theory, e.g,|Cesa-Bianchi and Lugoisi| [2006],
Fudenberg and Levine|[[1998]],[Young| [2004]. Arguably, the most well known results in this space are
the following:

i) Sublinear regret of O(/T) is achievable in adversarial settings but only after employing a
carefully chosen sequence of shrinking step-sizes or if the time horizon is finite and known
in advance and the fixed learning rate is selected accordingly.

ii) Sublinear regret algorithms “converge" to Nash equilibria in zero-sum games.

Despite the well established nature of these results recent work has revealed some surprising insights
that come to challenge the traditional ways of thinking in this area. Specifically, in the case of
zero-sum games what is referred to as “convergence" to equilibrium, is the fact that when both agent
apply regret-minimizing algorithms, both the time-average of the mixed strategy profiles as well
as the utilities of the agents converge approximately to their Nash equilibrium values, where the
approximation error can become arbitrarily close to zero by choosing a sufficiently small step-size.
Naturally, this statement does not imply that the day-to-day behavior converges to equilibria. In fact,
the actual realized behavior is antithetical to convergence to equilibrium. [Bailey and Piliouras| [2018]]
showed that Nash equilibria are repelling in zero-sum games for all follow-the-regularized-leader
dynamics. As seen in Figure[I|the dynamics spiral outwards away from the equilibrium.

These novel insights about the geometry of learning dynamics in zero-sum games suggest a much
richer and not well understood landscape of coupled strategic behaviors. They also raise the tantalizing
possibility that we may be able to leverage this knowledge to prove tighter regret bounds in games.
In fact, a series of recent papers has focused on beating the “black-box" regret bounds using a
combination of tailored dynamics and adaptive step-sizes, e.g, [Daskalakis et al.|[201 1], Rakhlin and
Sridharan| [2013]], |Syrgkanis et al.|[2015]], [Foster et al.| [2016]] but so far no new bounds have been
proven for the classic setting of fixed learning rates. Interestingly, [Foster et al.| [2016] explicitly
examine the case of fixed learning rates 1 to show that learning achieves sublinear “approximate
regret" where the algorithm compares itself against (1 — ) times the performance of the best action
with hindsight. In contrast, our aim is to show sublinear regret for fixed n using the standard notion
of regret.

Intuitively, non-equilibration and more generally this emergent behavioral complexity seem like
harbingers of bad news in terms of system performance as well as of significant analytical obstacles.
This pessimism seems especially justified given recent results about the behavior of online dynamics
with fixed step-sizes in other small games (e.g. two-by-two coordination/congestion games), where
their behavior can be shown to become provably chaotic (Palaiopanos et al.[[2017], Chotibut et al.
[2018]]). Nevertheless, we show that we can leverage this geometric information to provide the first to
our knowledge sublinear regret guarantees for online gradient descent with fixed step-size in games.
Instability of Nash equilibria is not an obstacle, but in fact may be leveraged as a tool, for proving
low regret.

Our theoretical results. We study the dynamics of gradient descent with fixed step size in two-
strategy, two-player games. We leverage a deep understanding of the geometry of its orbits to
prove the first sublinear regret bounds despite the constant learning rate. We show that the player
strategies are repelled away from the Nash equilibrium. More specifically, regardless of the choice
of the initial condition there are only a finite number of iterations where both players select mixed
strategies (Theorem . We prove a worst-case regret bound of O(v/T') for arbitrarily learning
without prior knowledge of T' (Theorem [3)) matching the well known optimal bound for adaptive
learning rates. An immediate corollary of our results is that time-average of the mixed strategy
profiles as well as the utilities of the agents converge to their exact Nash equilibrium values (and
not to approximations thereof) (Corollary . Finally, we present a matching lower bound of Q(v/7)
(Theorem [3)) establishing that our regret analysis is tight.

To obtain the upper bound, we establish a tight understanding of the geometry of the trajectories in the
dual space, i.e., the trajectories of the payoff vectors. We show there exists a linear transformation of



the payoff vectors that rotate around the Nash equilibrium. Moreover, the distance between the Nash
equilibrium and these transformed utility vectors increases by a constant in each rotation (Lemma
[8). In addition, the time to complete a rotation is proportional to the distance between the Nash
equilibrium and the transformed payoff vectors (Lemma9). Together, these results imply a quadratic
relationship between the number of iterations and the number of rotations completed establishing the
O(ﬁ ) regret bound. We establish the lower bound by exactly tracking the strategies and regret for a
single game.

Our experimental results. Many of the proof techniques we develop extend to higher dimensions
suggesting sublinear regret in general zero-sum games. To test this, we conducted experiments to
measure regret in higher dimension. Our simulations for 5x5, 10x10, and 50x50 games suggest that
regret is sublinear and close to ©(1/T') for larger games. A summary of our simulations are given in
Table[T]and the fully details appear in Appendix I}

Table 1: Regression Summary for 10,000 Iterations of Gradient Descent in 30 Random Games

strategies | Regret1(T) ~b-T* p-value % of variability explained | |support of ™|
2 a € [0.4492,0.5248] | < .000001 93.53403 — 99.83818 2
5 a € 0.3662,0.5504] | < .000001 97.04427 - 99.91377 2-5
10 a € [0.4653,0.5563] | < .000001 98.79963 — 99.87485 3-7
50 a € [0.5260,0.5776] | < .000001 99.40158 — 99.86970 21-30

2 Preliminaries

A two-player game consists of two players {1, 2} where each player has n; strategies to select from.
Player i can either select a pure strategy j € [n;] or a mixed strategy z; € X; = {z; € RYj :

Zje[ni] xi; = 1}. A strategy is fully mixed if z; € RYj.

The most commonly studied class of games is zero-sum games. In a zero-sum game, there is a payoff
matrix A € R"1*"2 where player 1 receives utility x; - Azo and player 2 receives utility —z; - Az
resulting in the following optimization problem:

max min x; - Axo (Two-Player Zero-Sum Game)
T1E€EX] T2€X,

The solution to this saddle problem is the Nash equilibrium 2. If player 1 selects her Nash
equilibria V¥, then she guarantees her utility is 2 ¥ - Azy > V¥ . Azl independent of what
strategy player 2 selects. 3V F - AzxlYF is referred to as the value of the game.

2.1 Online Learning in Continuous Time

In many applications of game theory, players know neither the payoff matrix nor the Nash equilibria.
In such settings, players select their strategies adaptively. The most common way to do this in
continuous time is by using a follow-the-regularized-leader (FTRL) algorithm. Given a strongly
convex regularizer, a learning rate 7), and an initial payoff vector y;(0), players select their strategies
at time 7" according to

T
y1(T) = y1(0) + / Azo(t)dt (Player 1 Payoff Vector)
0
T
y2(T) = y2(0) — / ATz (t)dt (Player 2 Payoff Vector)
0
i (T) = arg max yi(T) -2y — ————= (Continuous FTRL)
X, ZOZZIje[ni] Iijzl 77



In this paper, we are primarily interested in the regularizer h;(z;) = ||z;||3/2 resulting in the Gradient
Descent algorithm:

112
x;(t) = arg max {yl (t) - a; — ||xl||2} (Continuous Gradient Descent)
220 () 215 =1 2n

Continuous time FTRL learning in games has an interesting number of properties including time-
average converge to the set of coarse correlated equilibria at a rate of O(1/7") in general games
(Mertikopoulos et al.|[2018]]) and thus to Nash equilibria in zero-sum games. These systems can also
exhibit interesting recurrent behavior e.g. periodicity (Piliouras and Schulman|[2018]], Nagarajan et al.
[2018]])), Poincaré recurrence (Mertikopoulos et al.| [2018]], [Piliouras and Shamma) [2014]], Piliouras
et al. [2014]) and limit cycles (Kleinberg et al.|[2011]]). These systems have formal connections to
Hamiltonian dynamics (i.e. energy preserving systems) (Bailey and Piliouras| [2019])). All of these
types of recurrent behavior are special cases of chain recurrence (Papadimitriou and Piliouras| [2018]],
Omidshafiei et al.|[2019]).

2.2 Online Learning in Discrete Time

In most settings, players update their strategies iteratively in discrete time steps. The most common
class of online learning algorithms is again the family of follow-the-regularized-leader algorithms.

T—1
yl =y) + Z Azl (Player 1 Payoff Vector)
t=1
yd =99 — Z ATzl (Player 2 Payoft Vector)
hi(z;
xf = arg max {yf -x; — (I)} (FTRL)
X, ZO:Z_].G[HI_] Iijil 77
112
zl = arg max {yf - [12:]]2 } (Gradient Descent)
T, EO:EJE[M] zij=1 277

where 7) corresponds to the learning rate. In Lemma 6] of Appendix [B] we show (FTRL)) is the first
order approximation of (Continuous FTRL).

These algorithms again have interesting properties in zero-sum games. The time-average strategy
converges to a O(n)-approximate Nash equilibrium (Cesa-Bianchi and Lugoisi| [2006]). On the
contrary, Bailey and Piliouras| [2018]|] show that the day-to-day behavior diverges away from interior
Nash equilibria. For notational simplicity we do not introduce different learning rates 7, 72 but all of
our proofs immediately carry over to this setting.

2.3 Regret in Online Learning

The most common way of analyzing an online learning algorithm is by examining its regret. The
regret at time/iteration 7" is the difference between the accumulated utility gained by the algorithm
and the total utility of the best fixed action with hindsight. Formally for player 1,

T T
Regrety(T) = max {/ xq - Aarg(t)dt} —/ x1(t) - Axa(t)dt (D)
z1€X | Jo 0
T
Regret,(T) = = max {le sz} — ;xi Azl (2)

for continuous and discrete time respectively.

In the case of (Continuous FTRL) it is possible to show rather strong regret guarantees. Specifically,
Mertikopoulos et al.|[2018] establish that Regret;(T) € O(1) even for non-zero-sum games. In
contrast, only guarantees Regret;(T) € O(n - T) for a fixed learning rate. In this paper, we
utilize the geometry of to show Regret;(T) € O(v/T) in 2x2 zero-sum games

(N1 =ng =




3 The Geometry of |(Gradient Descent|

Theorem 1. Let A be a 2x2 game that has a unique fully mixed Nash equilibrium where strategies
are updated according to (Gradient Descent). For any non-equilibrium initial strategies and any
fixed learning rate 1, there exists a B such that x* is on the boundary for all t > B.

Theorem [I] strengthens the result for (Gradient Descent) in 2x2 games from [Bailey and Piliouras
[2018]). Specifically, Bailey and Piliouras|[2018]] show that strategies come arbitrarily close to the
boundary infinitely often when updated with any version of (FTRL). This is accomplished by closely
studying the geometry of the player strategies. We strengthen this result for (Gradient Descent]) in
2x2 games by focusing on the geometry of the payoff vectors. The proof of Theorem [I] relies on

many of the tools developed in Section ] for Theorem [3|and is deferred to Appendix[G] The first step
to understanding the trajectories of the dynamics of (Gradient Descent)), is characterizing the solution

to (Gradient Descent). The exact solution of (Gradient Descent) is described by Lemma [2] below.
Lemma 2. The solution to ((Gradient Descent) is given by
. Jo forj ¢S,
N n (yfj — Dkes, ) + \sli| forjeS;’

where S; is found using Algorithm|[]

3)

t
Yik
S

Algorithm 1 Finding Optimal Set S;
1: procedure FIND S;

20 S [ng]
3: Search:
4: Select j € arg minkegi{yf;@}
¢
5: if n (yfj - Zkesi \%kl) + ﬁ <0
6: Si < Si\ {j}
7: goto Search
8: else
9: return S;

We defer the proof of Lemma 2]to Appendix [C|

3.1 Convex Conjugate of the Regularizer

Our analysis primarily takes place in the space of payoff vectors. The payoff vector y! is a formal
dual of the strategy x} obtained via

h* (yzt) = max {yf X — W} @

T 20:30 e, Tig=1 n

which is known as the convex conjugate or Fenchel Coupling of h; and is closely related to the
Bregman Divergence. Mertikopoulos et al.|[2018]] and |Bailey and Piliouras| [2019] show that the

“energy” r = .o, h¥(y!) is conserved in (Continuous FTRL). By Lemma@ (FTRL) is the first

order approximation of (Continuous FTRL). The energy {y : r < Z?:l hi(y;)} is convex, and
therefore the energy will be non-decreasing in (FTRL). Bailey and Piliouras| [2018] capitalized on
this non-decreasing energy to show that strategies come arbitrarily close to the boundary infinitely

often in (FTRLJ.

In a similar fashion, we precisely compute 2*(y!) to better understand the dynamics of
[Descent). We deviate slightly from traditional analysis of (FTRL) and embed the learning rate 7 into
the regularizer h;(z!). Formally, define h;(z!) = ||zt||3/(2n). Through the maximizing argument
(Kakade et al.|[2009]])), we have

. zt]]3
hi(yf)=yf-x§—7”2”2- (5)
n



From Lemma [2}
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3.2 Selecting the Right Dual Space in 2x2 Games

Since h;(z;) = ||z;]|3/(2n) is a strongly smooth function in the simplex, we expect for h(y;) to be

strongly convex (Kakade et al.|[2009]]) — at least when it’s corresponding dual variable x; is positive.
However, @ is not strongly convex for all y! € R™. This is because yf“ cannot appear anywhere

in R™. Rather, y! ™" is contained to a space X} dual to the domain {z; € RY, : S iy =1}

There are many non-intersecting dual spaces for the payoff vectors that yield strategies {z!}°;.
Mertikopoulos et al.| [2018]] informally define a dual space when they focus the analysis on the vector
Yi(t) — Yin, (t)1. Similarly, we define a dual space that will be convenient for showing our results in
2x2 zero-sum games. Consider the payoff matrix

a b
A:[C d} )

Without loss of generality, we may assume a > min{0, b, ¢}, d > min{0, b, ¢}, and A is singular,
ie., ad — bc = 0 (see Appendix@]for details). Denote Ayt as

Ayt =yt =yl ®)
= Az} &)
_ | (a=b)zh +b
- [ (c—d)zt, +d (10)

Therefore
[d—c,a—b] Ayt =ad —bc=0 (11)
since A is singular. When 3!, increases by a — b, y¢, increases by ¢ — d. Thus, the vector [a — b, ¢ —d]

describes the span of the dual space X}". Moreover, (FTRL) is invariant to constant shifts in the
payoff vector 3% and therefore we may assume [d — ¢,a — b] - y{ = 0. By induction,

[d—ca=bl-yr=[d—ca—t]- (' + Ay (12)
=[d—c,a—bl -yt =0 (13)
This conveniently allows us to express yiQ in terms of y{l,
Yio = Z;_C;yh (14)
Symmetrically,
Vo = e (1)

Combining these relationships with Lemma 2] yields

o

|
Qu
<
=
-

0 1f77 17a—b 7+%§0
ol =141 ity (1—c=d)u 41> (16)
1—e=4) % 4 1 otherwi
n ¢ ) i 4 & otherwise
0 ity (1—2=2) 2 4 1<
by =41 ity (1—-b=d) s 41> (17
n (1 — Z:‘i) yt% + % otherwise



The selection of this dual space also allows us to employ a convenient variable substitution to plot z*
and y' on the same graph.

¢
t_ o (p_c—d\yn 1
zl—n(l ab) 3 (18)
b—d\ vs 1
¢ 21
=n({l- =+ 19
Z3 =1 ( P c) 5 T3 19)
The strategy 2* can now be expressed as
0 ifz{<0
ohi =<1 ifzi>1 (20)
2t otherwise
Moreover, () can be rewritten as
OZ1OZ§ —Bio if 26 <0
hi(y1) = hi(21) = § aanzf = By if 2 > 1 e2))
11(28)2 + 12t — 81 otherwise
a2022 B0 if 25 <0
Wi (ys) = h3(5) = { a2 — B if 25 > 1 (22)

Y2 (Zé)z + 04225 — (B9 otherwise

where a9 < 0,51 > 0, and y; > 0. Both of these expressions are obviously strongly convex when
the corresnding player strategy is in (0, 1). The full details of these reduction can be found in

Appendix [E} With this notation, (z¢,,z}%,) is simply the projection of z* onto the unit square as
shown in Figure 2]
2 = Strategies 't 2
HI + Transformed Payoff Vector z* , X
=0} = =
I, = JW 2

(a) Iterations 1-95 (b) Iterations 95-140

Figure 2: Strategies and Transformed Payoff Vectors Rotating Clockwise and Outwards in Matching
Pennies with = .15 and (y9;,vY;) = (.2, —.3).

4 O(V/T) Regret in 2x2 Zero-Sum Games

Theorem 3. Let A be a 2x2 game that has a unique fully mixed Nash equilibrium. When x! is
updated according to (Gradient Descent)) with any fixed learning rate 1, Regret,(T) € O (\/T )

It is well known that if an algorithm admits sublinear regret in zero-sum games, then the time-average
play converges to a Nash equilibirum. Thus, Theorem [3|immediately results in the following corollary.

Corollary 4. Let A be a 2x2 game that has a unique fully mixed Nash equilibrium. When z*
is updated accardlng to (]Gradlent Descent) with any fixed learning rate n, the average strategy

T Zt 1 % converges to 2N as T — oc.

Proof of Theorem[3] The result is simple if 2! = a:N B Nelther player strategy will ever change.
Since player 1’s opponent is playing the fully mixed )Y, player 1’s utility is constant 1ndependent
of what strategy is selected and therefore the regret is always 0. Now consider 2 # V¥,



22 . ¢
1 = Strategies
& % « Transformed Payoff Vector z¢

R — = Energy r; increases by ©(1) per iteration.
—] — There are ©(1) iterations per rotation.
l\. z1  Energy r; does not change per iteration.

.ﬁ HH“ There are ©(r;) iterations per rotation.

Figure 3: Partitioning of Payoff Vectors for the Proof of Theorem

The main details of the proof are captured in Figure[3] Specifically in Appendix we establish
break points ¢y < t; < ... < tx = T + 1 and analyze the impact strategies 2%, i1 . gti+1—1
have on the regret. The strategies x%, z% 1, ..., 2%+1~1 are contained in adjacent red and green
sections as shown in Figure 3]

In Appendix | we show that there exists ©(1) iterations where ¢ # ‘™! for each partitioning,
{t;,t; +1,..,tjs1 — 1} Spemﬁcally, we show that 6( ) consecutive payoff vectors appear in a red
section of Flgure B} The remaining points all appear in a green section and the corresponding player
strategies are equivalent. This implies

tj+1—1
> (@it —al) - Axh = > (™ — i) - Az} (23)
t=t; telty by 1 — 1)t £}

€ > O(1) € O(1) (24)

t€lty tj1—1]:zi" #al

Denote r; = Z?:l h (sz ) as the total energy of the system in iteration ¢;. In Appendix [F.3] we
show this energy increases linearly in each partition, i.e., 7;41 — r; € ©(1). In Appendix [F.4] we
also show that the size of each partition is proportional to the energy in the system at the beginning of
that partition, i.e., tj11 — t; € O(r;). Combining these two, t; € O(;j?). Therefore T' € O(k?) and
ke® (\/T) where £ is the total number of partitions. Finally, it is well known (Cesa-Bianchi and
Lugoisi|[2006]) that the regret of player 1 in zero-sum games through 7" iterations is bounded by

T
Regret, (T )+ Z gty Al (25)
t=
to—1 k ti—1
<00+ (a8 — 2ty . Axb + Z Z i gty Aaxd (26)
t=0 i=1t=t;_1

k
com+> o eo (\/T) 27)
completing the proof of the theorem. O

Next, we provide a game and initial conditions that has regret ©(1/T') establishing that the bound in
Theorem 3]is tight.

Theorem 5. Consider the game Matching Pennies with fixed learning rate n = 1 and initial

conditions y{ = y3 = (1,0). Then player 1’s regret is ©(\/T) when strategies are updated with
(Gradient Descent).

The proof follows similarly to the proof of Theorem 3] by exactly computing the regret in every
iteration of (Gradient Descent). The full details appear in Appendix [H]



5 Higher Dimensions and Other Regularizers

Many of the techniques introduced in this paper extend both to higher dimensions for Gradient
Descent and to other variants of FTRL. Our proof consists mainly of three parts:

1. the “step-size” in the dual space is bounded; i.e., ||y} — y! || < b for some constant b.

2. a proof of divergence in the dual space where the divergence grows linearly when at least
one agent is not playing a pure strategy and negligibly when both agents are playing a pure
strategy.

3. aproof of recurrence where the “cycle” length (in the primal/strategy space) is bounded

The first two components immediately extend to higher dimensions using the current analysis. In
regards to the last step, recent advancements in understanding the geometry of learning dynamics in
larger games (e.g., Mertikopoulos et al.|[2018]], Bailey and Piliouras|[2019]]) suggest that, although
non-trivial, this last step can also be eventually rigorously established. However, new ideas are most
likely needed to for the last step. In Appendix [, we provide more evidence for sublinear regret in
higher dimensions including experiments suggesting that regret grows at approximately O(v/T’) even
when the number of strategies is large.

It is also likely that sublinear regret extends to other variants of FTRL using a similar analysis. In
two-by-two zero-sum games, both steps (1) and (3) trivially extend for other variants of FTRL. As
we discuss further in Appendix [I} the proof for (2) relies primarily on the strict convexity of the
regularizer h — a property shared by all variants of FTRL. For Gradient Descent, we make use of this
property by showing divergence increases as the strategies move from one pure strategy to another.

However, strategies will never reach the boundary for some variants of FTRL. For example, the
multiplicative weights update algorithm always selects fully-mixed strategies and (2) does not hold
exactly as written. Instead, for any e, after a finite number of iterations all strategies will appear
within e of the boundary. This proof follows identically to the proof for Gradient Descent in Appendix
[Gl Moreover, the first part of (2) extends to this settings; when one agent is more than e away from
the boundary, the divergence grows linearly. However, to prove that the divergence grows negligibly
when both players are within e of the boundary, we will have to carefully evolve € over time. This is
because for an algorithm like multiplicative weights, the convex conjugate h* is never linear; rather it
becomes arbitrarily close to a linear function as both agents come closer to playing a pure strategy.
Alternatively, (2) will more readily follow upon establishing a tighter understanding of the geometry
of learning dynamics.

For both higher dimensions and other variants of FTRL, this work provides evidence that regret grows
sublinearly when both agents are using fixed step-size. More importantly, it establishes an outline
on the proof that relies on further developments in understanding the trajectories of online learning
dynamics.

6 Conclusion

We present the first proof of sublinear regret for the most classic FTRL dynamic, online gradient
descent, in two-by-two zero-sum games. Our proof techniques leverage geometric information and
hinge upon the fact that FTRL dynamics, although are typically referred to as “converging" to Nash
equilibria in zero-sum games, diverge away from them. Our simulations further suggest that sublinear
regret bounds carry over to larger zero-sum games.
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