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Abstract

This paper focuses on the privacy risks of disclosing the community structure
in an online social network. By exploiting the community affiliations of user
accounts, an attacker may infer sensitive user attributes. This raises the problem of
community structure deception (CSD), which asks for ways to minimally modify
the network so that a given community structure maximally hides itself from
community detection algorithms. We investigate CSD through an information-
theoretic lens. To this end, we propose a community-based structural entropy to
express the amount of information revealed by a community structure. This notion
allows us to devise residual entropy minimization (REM) as an efficient procedure
to solve CSD. Experimental results over 9 real-world networks and 6 community
detection algorithms show that REM is very effective in obfuscating the community
structure as compared to other benchmark methods.

1 Introduction

Social networking sites facilitate effective communication through the means of Web feeds, discussion
groups, timelines and more. Such a platform is characterized by a structure that consists of user
accounts and their links. Discovering hidden patterns in this network structure is a compelling
application of graph data mining algorithms. In particular, community detection stands out as one of
the most important graph mining methods [[11} 16} 23} 126]. Communities emerge as people naturally
bond with those within the same working environment, family, or those who share similar tastes,
interests and political viewpoints. By exploiting users’ community affiliations, an attacker may infer
certain personal — and sometimes sensitive — features of the users in a social network. For example,
when the attacker has some background information asserting that several members of a community
all work for the same organization. It is easy in this case to infer that other members of the same
community also have ties with the organization. [29] showed that information about the community
memberships of a user (i.e., the groups of a social network to which a user belongs) is sufficient to
uniquely identify this person, or, at least, to significantly reduce the set of possible candidates. In
[25]], communities are used to re-identify multiple addresses belonging to a same user in Bitcoin
trading networks. Therefore, there is a need to hide the community affiliations in order to preserve
the privacy of online users.

This paper addresses the privacy risks due to community detection. Our goal is to minimally modify
the network structure so that the community affiliations maximally hide themselves from community
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detection algorithms. Despite growing interests on the privacy issues of social networks, very few
works exist that target for community-level anonymization over a social network. Developing effective
means for this problem faces numerous challenges: The first is the lack of a formal and universally-
agreeable definition of communities. It is thus difficult to propose notions such as k-anonymity that
are based on counting substructures and are independent from the community detection algorithms
[32]. The second is the diversity of techniques used for community detection. An attacker may use
many methods to identify communities in a network which makes it impossible to pinpoint a single
objective metric that guides the deception of communities. The third is the desire to obfuscate not
just a single community, but rather multiple communities or even all communities in the network. As
opposed to existing work e.g. [28}[10] which focus on the deception of a single targeted community,
we are interested in nullifying the community detection algorithms so that they are ineffective to
identify any original communities in the obfuscated network.

This paper studies the community structure deception problem (CSD) that seeks a way to obfuscate
a given community structure of a network through adding a fixed number of edges. (1) To solve
this problem, we propose an information-theoretic perspective to this problem. This involves
defining community-based structural entropy that captures the amount of information revealed by the
community structure of a social network. (2) We propose a method to effectively nullify community
detection algorithms based on the principle of residual entropy minimization (REM). REM clearly
outperforms other schemes with the same goal which include a benchmark based on modularity
minimization. (3) Our work derives new insights regarding structural entropy of a graph. These
insights enable highly efficient implementation of our algorithm. (4) We experimentally validate the
performance of our algorithm over 9 real-world networks and 6 community detection algorithms.

Related work. [2] showed that simply removing user identity is not sufficient to protect their
privacy in an online social network. [31] systematically examined privacy threats in the online
space. Efforts have been made to mitigate such risks on an individual level, i.e., identity leak
(18, 13 211 133] 30l [7, [19], user attribute leak [5]], social link disclosure [18| [13 21} [33} 15]], etc.
Common structural obfuscation techniques include adding/removing edges, adding random noise,
and contracting edges/nodes.

Community structure represents a way to partition vertices of a complex network into dense subgraphs
that are sparsely connected among each other [11]. Many community detection algorithms exist, e.g.,
Louvain method that utilizes modularity is commonly used [3]. Recent years, several works that
address the problem of hiding a given community in a network have emerged. E.g. [20] aimed to
hide a community by adding edges. They only considered a modularity-based community detection
algorithm. [28|[10] studied this problem by rewiring edges.

Quantifying structural information is an important challenge in information theory. [24] proposed
the first entropy measure for graphs. This is followed by several other notions such as parametric
graph entropy [8], Gibbs entropy [1]], Shannon entropy and Von Neumann entropy [4]. All of these
measures are simply the Shannon entropy applied to different types of distributions. Based on the
idea of random walks, the entropy defined in [26] determines the average number of bits per step by
using the ergodic node visit frequencies on a network. After that, [[17] defined the structure entropy
of a graph as the minimum numbers of bits to encode the vertex that is accessible from a step of
random walk. In this paper, we follow these ideas and utilize similar notions for community structure
deception.

2 Problem Formulation

We model a social network as an undirected connected graph G = (V, E'), where V is a set of
vertices which represent user accounts and F is a set of edges of the form {u, v} CV (u # v) which
represent social ties. The volume of any U C V is the sum of the degrees d, of all v € U. The
community structure of G refers to a partition P of V. More formally, P is an equivalence relation
over the set of vertices V' whose equivalence classes are called communities. If i and j in the same
community, we write (i, j) € . We assume that the input to our problem consists of a social network
G and a community structure ‘P to be obfuscated. This community structure P is characterized by
high internal density and low external density. For convenience, we sometimes abuse the notation
representing P also as the collection of its equivalence classes { X7, Xo,..., X} where L € N
and each X is a community; v; denotes the volume of X; and g; denotes the number of edges with



exactly one end point in X;. The following hypothesis lays down the fundamental assumption of the
community deception problem:

Hypothesis 1 (Community deception hypothesis). The disclosure of the community structure P of a
graph G = (V, E) leads to privacy leak and should be avoided.

Given G = (V, E), a community detector .7 is a procedure that reveals an equivalence relation .7 (G)
over V' to resemble the ground truth community structure . Hypothesis|[I]asserts the necessity of
distorting the network data GG, so that no community detector .% will truthfully report the original
community structure P. In this paper, we focus on network distortions as a result of adding a number
of “dummy edges” between unconnected vertices in the network.

Definition 1. For G=(V, E) and a set E’, an edge expansion is a graph GG E' :=(V, EUE’)E]

Given G = (V, F) and a community structure P on G, a community structure deceptor produces an
edge expansion G’ of G so that any community detection algorithm .% is nullified on G’. The precise
definition relies on what it means for the algorithm .# to be “nullified on G’”. Several narratives
exist for this phrase. Suppose P’ is the community structure .7 (G') output by .%. The first narrative
asserts that P’ is dissimilar with 7. The second asserts that very little information is revealed about
P from P’. The third states that .% is ineffective in answering same-community queries.

Narrative 1: Partition similarity. One may apply a standard set-based metric, Jaccard index, to
compare P and P’: Set J(P,P’) := |PNP'|/|P U P’| (treating P and P’ as relations); We adopt
J(P,P") for its simplicity and correlation with other measures, e.g., transfer distance of P & P’ [9].
A good community structure deceptor should return P’ with small J(P, P’).

Narrative 2: Mutual information. Normalized mutual information (NMI) measures the amount of
common information between two random variables. Take community structures P = {X1,...,X,}
and P’ = {X{,..., X;}. Define

p p q / /
Xl Xl | Xi N X} |Xij\/|V|
— log H(P|P")
2y Ve HPIP) = =3 2 = XI]/IV]
Mutual information is then defined as I(P,P’) := H(P)—H(P|P’). NMI is thus D(P,P’) =

I(P,P')
(A P) HP] [14]. D satisfies both the normalization and the metric properties, and utilizes the

range [0, 1] well [27]]. A community structure deceptor should return P’ with small D(P, P’).
Narrative 3: Query accuracy. One may imagine that the community detection algorithm .#

facilitates an adversary who aims to perform same-community queries about user accounts. This
query returns true for any distinct ¢, j € V' if (¢, ) € P’ and false otherwise. The recall of this query

is
{G,4) e Pli#4,(i4) € P}
{(@i,5) € P i # 5} '
A procedure that returns true for any pair of vertices (¢, j) with probability 1/2 has an expected recall
of 50%. Hence .% can be considered nullified when R(P,P’) < 50%.

The community structure deception (CSD) problem is defined as demanding a community structure
deceptor for a given network G with its community structure P. Furthermore, the deceptor should
add a bounded budget £ € N of edges to GG in the hope to get the best deception effect. One initial
idea to solve CSD is to fix a community detector . and S € {J, D, R}, and to solve the problem

minimize S(P, . (G ® E')) subjectto |E’'| < k.

R(P,P') =

There are several reasons why this would not be a good approach: (1) The functions J, D and R all
depend on the output of the algorithm .% ; however the CSD problem demands the obfuscation of the
community structure P regardless of how communities are detected. (2) Choosing any one of J, D
and R leads only to optimizing a single criterion. (3) Solving the optimization problem may require
examining all k-tuples of potential edges which leads to prohibitive time cost.

A more reasonable approach is to identify a uniform criterion which is independent of how communi-
ties are detected. One natural candidate for such a metric is modularity. Modularity of P measures

2If E’ is {e}, we abuse the notation writing G' & e for G @ {e}.



the difference between the density of its communities and the expected density of a null model [22]:

Vi —Gi Vi 2
2|E| 2|E|
Modularity maximization has been a widely-used principle for community detection. In general, a

large max Mp(G) implies the existence of a prominent community structure in G. To obfuscate the
community structure, it thus makes sense — at least in principle — to minimize the modularity Mp(G).

Mp(G) =)

i=1

. (D

Definition 2. A modularity minimizing (MOM) deceptor is an algorithm that outputs an edge e such
that the modularity Mp(G @ e) is minimized.

In actual fact, however, MOM deceptor is not a good choice for CSD : Firstly, it is not hard to prove
that, the MOM deceptor will always try to create edges between two communities X;, X; in P with
the largest combined volume v; 4 v;. Therefore k edges created by iterations of MOM will most
likely affect only two communities, and the obfuscated network will not hide P effectively. Secondly,
modularity’s significance primarily lies in identifying the most prominent community structure, i.e.,
the one that maximizes modularity. The MOM deceptor, on the other hand, concerns with modularity
of a given partition P which may not be modularity maximizing. Thirdly, modularity sometimes fails
for its purpose since a random graph — a structure that does not exhibit a clear community structure —
may also have partitions with large modularity [12]. These limitations calls for a new method for
CSD.

3 REM: Residual Entropy-based CSD

To derive a solution for CSD that is independent of the community detector, it makes sense to inquire
the information content of a community structure P in G. Imagine G as a network where vertices
are able to pass messages through edges. The delivery of a message from a sender u to a receiver v,
where {u,v} € E, is named a call. Intuitively, a call is one directed flow of message. Therefore an
undirected edge {u, v} allows messages to be passed in both directions. Now imagine, to explore G,
an exogenous process continuously collects such calls uniformly at random. This differs from the
random walk in [26] where the receiver of a call is the sender of the next call. Hence, at any moment,
the probability that v is a call’s receiver is d,, /(2| E'|). We are interested in an encoding of vertices of
the network based on this probability distribution [17].

Definition 3. Structural entropy H(G) captures the average number of bits needed to encode
the receivers of the calls in a lossless way: H(G) equals Shannon’s entropy of the distribution
(di/2|E]) ey i

HG) =3 1o, O (2)
= 2E| %2 2E[

=1

H(G) merely expresses the average information of a call in G without assuming any community
structure. Now assume the presence of P = {X;, X»,..., X }. The structural information of a
community X; consists of two levels: (a) looking from a vertex level, the information of any vertex
1 € X as a receiver of messages, and (b) looking from a community level, the information of the
entire community X as a receiver of messages. These two levels of meanings can be reflected in
through the equation — log, ﬁ = —log, 5—] — log, ﬁ The first term above is the average
numbers of bits necessary to describe ¢ in X; and the second term is the average numbers of bits
to describe the community X;. We once again assume an exogenous process that continuously
collects calls between vertices in G u.a.r., but with the following difference: Since we are given
the community structure P = {X;, Xo,..., X}, we can omit the community level codeword if
the sender u and receiver v belong to the same community. Thus, when encoding a vertex i € X,

just like above, we encode 4 at the vertex level as — log, f— and then encode X; at the community
J

level as —log, ﬁ For (a), the information for all vertices in X; as receivers is H(G | Xj) with

the probability ﬁ, where H(G |x,) == — > ;¢ X, % log, f—; For (b), the information for X as

a receiver is — log, 2”—]23| with the probability z\gfﬂ since in this case we only consider calls whose

senders are not in X ;. The expected information gives us the following structural entropy measure
[17]:
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Definition 4. The structural entropy of G relative to P is

L
._ i _ 9 e, Y

Note that H(G) = Hp(G) when P is either the trivial partition that puts all vertices in the same
community, or the partition where each community is a singleton. We thus view both 7 (G) and
Hp(G) as expressing states of the community structure. H(G) expresses the entropy of G in a basic
“reference partition”, and Hp reflects the effect of enforcing partition P on G. Their difference thus
measures the gained amount of certainty as the communities in P take shape.

Definition 5. The normalized residual entropy of P is
pp(G) = (H(G) = Hp(G))/H(G). O]

In principle, a smaller pp(G) means that P contains less information about G and thus is harder to
detect. To hide the communities in P, it thus makes sense to reduce the residual entropy through
modifying the network structure.

Definition 6. A residual entropy minimizing (REM) deceptor is an algorithm that outputs an edge e
such that the normalized residual entropy pp(G @ e€) is minimized.

A crude implementation of an REM deceptor examines each potential edge e that is missing from the
current graph and compares pp (G @ e). This implementation runs in Q(|V|?) time, rendering itself
inapplicable for large graphs. We instead present an O(L|V|)-implementation where L is the number
of communities X1, ..., X, in P. This is a much more efficient implementation assuming L < |V/|.

Take s,t €{1,...,L}. A non-edge is a pair {u,v} ¢ E with (u,v) € X x Xy; the volume of this
non-edge is d,, +d,,. Assume X, x X, contains a non-edge. Let d, ; be the smallest degree of any
vertex v € X ,UX, that is in a non-edge. Let /3, ; be the smallest volume of any non-edge {u, v} with
min{d,, d, } =0s+. A non-edge {u, v} is called critical if its volume d < S, ; and min{d,, d,} is
the smallest among all non-edges with volume d. Algorithm [I|presents our REM deceptor from the
following lemmas.

Algorithm 1: An efficient REM deceptor
Input: Graph G = (V, E), P = {X1, Xo,..., X1}
Output: A non-edge {u*,v*}
Initialize p* < 1;
fors< 1to Landt + sto L do
if X x X} contains no non-edge then
L continue;

for all critical non-edge {u,v} in Xs; x X; do
Set pu,» < (H(G @ {u,v}) — Hp(G & {u,v}))/H(G & {u,v});
if p, ., < p* then
L Set p* < puw, u* < u,and v* + v;

return {u*, v*};

Lemma 1. For non-edges {u,v},{z,y}, min{d,,d,} < min{d,,dy} and d,, +d, < dy + d,
implies that H(G & {u,v}) > H(G & {x,y}).

Proof. Define the function F: R — R by F(z) = &tDloes(etDzloss(®) we remark that the

2(E[+D)
W > 0, and is convex for z >0, as F"'(z) =

- m < 0. Moreover, the following hold:

Vu,v,w € V: H(G @ {u,v}) — H(G @ {u,w}) = F(dw) — F(dy), and thus
Vu,v,2,y € V: H(G & {u,v})—H(G @ {z,y})

= (H(G @ {u,v})—H(G @ {v,y})) +(H(G @ {v,y}) - H(G ® {z,y}))

= (F(dy) — F(dy)) + (F(dz) — F(du)) (5)

function F' is monotonic, as F'(z) =



Assume w.l.o.g. d, < dy, dy < d; and d, < dy. If dy, < dg, then by @) and monotonicity of F,
we have H(G & {u,v}) > H(G & {z, y}). Now suppose d, < d,,. Thend, < d, <d, < d,. By
Lagrange’s mean value theorem, there exist d, < ¢ < d,, and d,, < ¢ < d,, such that

F(dy)—F(dz) , , F(dy)—F(dy)
ZAw) AR R F _ 2 \Py) F \Pv)
— ©<F/(Q) =B, ©)
where the inequality is due to convexity of F'. Since d,, — d, < d,, — d,,, we have F'(d,,) — F'(d,) <
F(d,) — F(d,). The lemma then follows from (). O

Lemma 2. For any two communities X;, X; in P, any non-edges e1, ea whose endpoints link X;
and X, we have H(G @ e1) — Hp(G @ e1) = H(G @ e2) — Hp(G @ e2).

Proof. Define distributions Y ~ (2|E| o 2\E|> and Zw(Cl L, C;—l‘l, e C;—’LL, - CZ;L) where
ci,j=d; if i€ X;, and ¢; ; =0 otherwise. The entropy of the Jomt probability is

n

di d

By (7) and the chain rule (see e.g.[6]),

™~

H(Y,Z) = H(Z|Y)+H(Y)= ﬁ (Z|Y =j) + H(Y)
j=1

Vj Vj
Y= Y qog, M
(G 1x,) = 3y loe 2|E|]

|
h
—
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N
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The following can then be obtained from (3):

L
Vi
G) — 7] J 8
The lemma follows from (8) as G @ e; and G @ ez have the same values of v; and g;. O

A non-edge e is RE-minimizing if pp(G @ e) is the smallest among all non-edges. The next lemma
states that, to find an RE-minimizing non-edge, an REM deceptor only needs to consider critical
non-edges.

Lemma 3. There exists a critical non-edge {u,v} € X; x X; for some 1, j that is RE-minimizing.

Proof. Take an RE-minimizing non-edge e; = {z,y} and say z € X,y € X;. Suppose e; is not
critical. There are two cases: Firstly, if d,, + d,, > 5., let ea={u, v} be the critical non-edge with
(u,v) € X5 X Xy and min{d,, d,} =05+ < mm{dx,d }. By Lem.[I] H(G & e2) > H(G & ey).
Secondly, if d, +d,, < S5, then mln{du, dy} <min{d, d, } for some crltlcal non-edge ea = {u, v}
between X, and Xt with the same volume d,, +d,. In this case, we still have H(G@ez) > H(GDey).
In either case, Lem. [2|asserts that H(G & el) ’Hp(G ®e1) =H(GDes) — Hp(G® ez). Thus
by @), pr(G @ e2) < pp(G @ e1) and e is critical. O

Theorem 2. Alg.[l|implements REM deceptor in O(L|V'|).

Proof. The Alg.[l]goes over all s,¢€{1,..., L} and critical non-edges e = {u, v} in X, x X; to
find a critical non-edge {u, v} that minimizes pp (G @ ¢). By Lemma[3] {u, v} is RE-minimizing.

For communities X, and X, suppose a data structure is used that assigns to each node x € Xj
and the node z’ € X; where no edge exists between z and 2/, and 2’ is such a node with minimum
degree. To find the desired critical edge, the algorithm may scan over all such pairs (x, '), where
x € X. This takes O(]X,|). Similarly, the algorithm examines over all pairs (y,y’) where y € X,
and y' € X is defined analogously as z’. This takes O(|X;|). Hence, for X and X, the algorithm
takes O(|Xs + X¢|). Thus, for any X, the algorithm will take O(L| X;| + | X |+ --- + | Xz]) =
O(L|Xs| + |V|). The overall time takes O(L|X1| + --- + L|Xz| + L|V]) = O(L|V]). The



implementation of the required data structure would store for each node x € X, collections of nodes
Y4, Yitr1,..., Y, C X; where Y, contains all nodes y € X, such that {x, y} is a non-edge and y has
degree d, where d, g are least and greatest integers where Yy, Y, are non-empty. This makes sure that
the data structure can be built and updated in the required time complexity.

O

In real-world networks, the links between two communities are sparse and usually vertices with
the smallest degree in each community are not linked. In this case, any critical non-edge {u, v} in
X, x X, satisfies d,, = minge x, d and d, = minye x, dy,. The algorithm takes only O(L?) when
the vertices with the smallest degree in each community are given.

4 Experiments

Dataset. We evaluate the performance of our algorithm over 9 real-world networks from [http:
//konect .uni-koblenz.de/]. The networks are chosen from a range of domains, including human
contacts: jazz (Jaz); animal network: dolphin (Dol); communication network: email (Eml), pretty
good privacy (PGP); infrastructure network: powergrid (Pow); computer network: CAIDA (CAID);
and online networks: Facebook (Fbk), Brightkite (Bri), Livemocha (Liv). Due to the limitations
of the efficiency of some community detectors .%, we do not select a particularly large dataset. In
fact, our REM deceptor can handle large datasets according to the complexity analysis in Theorem [2]
To validate the efficiency of REM, we list the running time of applying Alg. [I| for one edge. This
is compared with a ‘crude’ implementation of REM deceptor which resembles Alg. [1} instead of
examining only the critical non-edges, goes over all non-edges in G to look for the RE-minimizing
ond’| See details in Table[l]

Table 1: Specifics of the datasets , the number of communities and running time.

Number of communities

Dataset V| |E| bW are Wmf Tou spi wal ‘crude’ (ms) REM (ms)
Dol 62 159 4 4 5 5 5 4 13.7 0.305
Jaz 198 2,741 12 4 7 4 4 11 74.2 0.296
Eml 1,133 5,451 11 16 70 10 13 49 3960 2.40
Fbk 2,888 2,981 8 8 11 8 11 6 26, 300 5.67
Pow 4,941 6,594 45 43 486 43 25 364 66, 300 8.67
PGP 10,680 24,316 - 189 1066 96 25 1574 5mins 29.8
CAI 26,475 53,381 - 44 1382 38 - 667 4hrs 28.6
Bri 58,228 214,078 - 1682 4813 687 - 6892 5.5hrs 1010
Liv 104,103 2,193,083 - 189 - 14 - - > lday 179

Community detectors. An adversary attacks by applying a community detector .. For this we use
six well-known algorithms [[11]: > Edge-Betweeness(btw) is a hierarchical decomposition process
where edges are removed in decreasing order of their edge betweenness scores and runs in O(|E|2|V|).
> Greedy(gre) is a greedy modularity maximization strategy and runs in O(|V|log? |V]). © In-
foMap(inf) detects communities that have the shortest description length for a random walk in O(|E}).
> Louvain(lou) is a multi-level modularity optimization algorithm which runs in O(|V]log |V|). >
SpinGlass(spi) finds communities by searching for the ground state of an infinite spin glass and runs
in O(|V|?). > WalkTrap(wal) detects communities using random walks and runs in O(|V|? log |V'|).
Table [T] shows the number of communities found by each algorithm. If the algorithm does not
terminate in 2 hours on a dataset, a ‘-’ is written in the table.

Community structure deceptors. We compare REM with two other CS deceptors, including MOM
and a benchmark RAN that adds randomly chosen non-edges. The experiments aim to: (1) check
if the normalized residual entropy correlates with the indices J, D, R (in Sec. ; (2) compare the
effectiveness of the deceptors in hiding community structures; (3) discuss the preservation of data’s
key indicators after applying REM. To this end, we ran the experiments in the worst-case scenario
that the initial community structure P is fully detected by community detector .%. We then apply
the deceptors MOM, REM and RAN to obfuscate the network G and apply .% on the obfuscated

3Trials are conducted on a Server Xeon(skylake) platnum 8163 cpu 2.5GHz (12 cores, non-parallel computing)
and /16GBs RAM
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network G @ E’. The indices {J, D, R} are calculated for P and the new structure P’, where
P'= % (G @ E’). Each value in the figures and tables is the average of 30 runs.
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Figure 1: The trend of .J, D and R with the community normalized residual entropy in our datasets.

Table 2: The .J, D and R indices based on different deceptors for 6 kinds of community detectors.

Edge-Betweeness Louvain
on Taccard®) NMID) Recall®) Data Jaccard®) NMI(D) Recall(R)

U8 TRAN T MOM | REM | RAN | MOM | REM | RAN | MOM | REM RAN | MOM [ REM [ RAN [ MOM | REM | RAN | MOM [ REM
S T e e e Dol | 062 | 055 | 041 [ 074 | 073 | 062 | 075 | 065 | 032
Jaz | 056 | 060 | 032 | 037 | 057 | 039 | 098 | 100 | 04l Jaz | 072 | 052 | 038 [ 074 [ 062 [ 051 [ 084 | 067 [ 0.54
E 090000602 0.0 009097099047 Eml | 037 | 042 | 030 | 054 | 067 | 048 | 052 | 072 | 045
Fbk | 043 | 058 | 031 | 051 | 089 | 041 | 058 | 099 | 060 Fbk | 043 | 043 | 029 | 050 [ 070 | 047 | 052 | 047 | 040
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Figure 2: Compare the deception effect of REM, MOM and RAN for dataset Eml.

Result set 1. Fig.[T|plots the the values of scores .J, D, R (for communities detected by Louvain) as
the normalized residual entropy increases. The three scores unanimously increase with pp, validating
our intuition that pp can be used to obfuscate P. Moreover, the correlations are almost linear for
Fbk, Pow and PGP.

Result set 2. We then examine the performance of the three deceptors over 9 data sets when adding
a budget k edges. Due to varying graph sizes, we set k= 20 for Dol; £ = 1000 for Jaz, Eml, Fbk,



Pow; k& = 2000 for PGP; k = 10000 for CAI, Bri; and k = 20000 for Liv. Table [2| compares the
J, D, R scores for different algorithms. Clearly, REM performs better than MOM and RAN in almost
all scenarios. For Louvain & SpinGlass, REM gives the unanimous best results across all datasets
and scores. The recall R for most cases are less than or close to 0.5 for REM which is not true
for the other two deceptors. On the other hand, with a small budget percentage k/|E| for larger
graphs, REM can achieve better community deception, which means that the advantage of REM
becomes more prominent for larger graphs. Fig.|2|shows the trend of J, D, R scores as the number of
added edges increases for 6 community detectors over the data set Eml. Among the three deceptors
{MOM, REM, RAN}, MOM has the worst performance. The only case that MOM performs better
is for the detector gre, which is based on a greedy modularity maximization strategy. Overall,
REM achieves the best anonymity in all the six detectors. In particular, under the three algorithms
{inf,lou,spi}, the .J, D, R scores consistently decrease. These results validate REM’s effectiveness in
hiding community structures.

Result set 3. Finally, we check the preservation of the data after applying REM. First, by imple-
menting the REM algorithm, we reduce the Jaccard index to below 0.5 for CSD. We then check the
changes of some key indicators, i.e., clustering coefficient (CC), mean shortest path length (MSPL),
and the percentage of nodes with the top-10% Pagerank and Betweenness after applying REM. As
shown in Table [3| these indicators has no significant change due to applying REM. In general, a
larger network leads to less change. Among them, for Fbk, 10%-PageRank and 10%-betweenness
change greatly. This is because the vertices in this data set tend to have very similar PageRank
and betweenness scores; Since Pow represents a large-scale power grid, it naturally has a large
mean shortest path length. This value will shift greatly when more links are created between the
communities.

Table 3: The changes of some key indicators after applying REM.

Data |E’]  Jaccard CcC MSPL 10%— Pagerank  10%— Betweenness
Dol 10 1—0.44 0.308 — 0.298 3.357 — 2.996 1—0.833 1—0.833
Jaz 250 1 —+048 0.520 — 0.498 2.230 — 2.070 1 — 0.895 1—0.842
Eml 100 1 —0.39 0.166 — 0.166 3.606 — 3.577 1—0.991 1 —0.982
Fbk 550 1 —0.48 0.0004 — 0.0004 3.867 — 3.539 1—0.243 1—0.118
Pow 200 1—0.49 0.103 — 0.101 18.99 — 13.70 1 — 0.953 1 —0.644
PGP 400 1—045 0.378 — 0.377 7.485 — 7.279 1—0.979 1 —0.930
CAI 1000 1—0.49 0.007 — 0.007 3.875 — 3.869 1— 0.983 1—0.977
Bri 1000 1 — 0.44 0.111 — 0.111 4.858 — 4.854 1 —0.993 1—0.971

5 Conclusions and Future Work

In this paper, we introduce the community structure deception (CSD) problem, utilize community
based structural entropy to the CSD problem, and propose a residual minimization (REM) algorithm.
We reduce search space to critical edges to optimize REM, which allows our community structure
deceptor to run very efficiently. Experiments show that our algorithm REM performs better than
RAN and MOM in almost all attack scenarios.

Some potential directions of future work include (1) extending the method to hide communities
in weighted and directed graphs; (2) investigating the problem of hiding overlapping community
structures; (3) hiding other structural properties, e.g., influential nodes, hierarchies, etc. and (4)
explore the connection between structural entropy and community detection.
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