
We thank all reviewers for their comments. Minor comments will be addressed in the final version.1

Reviewer 12

Clear description of the setting We want to emphasize first that our problem setting is a standard restless bandit3

setting with a few specific choices. P active
k and P passive

k are the transition matrices of the arm k when it is pulled or not,4

respectively. Xt is a K dimensional binary vector such that the kth component Xt,k represents the reward of the arm5

k. Since the learner only observes the rewards of pulled arms, only the N components Xt,At
will be available to the6

learner. These notions are defined in lines 49 - 58. We will make our description clearer in the final version.7

Messages of the experiments The first experiment empirically checks the Bayesian regret of our algorithm is indeed8

Õ(
√
T ). The second experiment shows the algorithm still works in the frequentist setting. Figure 3 (left) illustrates9

how the value function of the policy πl chosen in an episode converges to the baseline value for a variety of competitor10

mappings (the best fixed action, the myopic policy, and the Whittle index policy). Figure 3 (right) shows the posterior11

weights on the true parameters monotonically increase. We will describe the details of our experiments more carefully12

and make figures more readable.13

Reviewer 214

1. Motivating application of the episodic setting Yes, the assumption of periodic restart of the system is somewhat15

limiting, and the regret analysis in the infinite time horizon is an interesting open question. Analyzing the finite16

horizon case should be an intermediate step towards solving this question. Moreover, the episodic case itself has a few17

motivating applications. For example, in the dynamic channel access problem that we consider in our experiment, the18

channel provider might reset their system every night when network traffic is low for maintenance related reasons. After19

the reset, every channel should be available for use, which can be thought as the beginning of a new episode.20

2. Super-time-instant It is indeed possible to tackle the problem by considering each deterministic policy as an arm.21

However, this would result in very large (possibly infinite) K, the number of arms, and the existing bounds become22

vacuous as they depend (polynomially) on K. The bound in Dai et al. [2011] is meaningful since there are only two23

competing policies. This perspective still conveys interesting points, and we will add the comparison in the final version.24

3. More complete picture in intro We totally agree that existing results, including ours, are just limited in different25

aspects. We will clarify this point more clearly. Nevertheless, we want to point out that this is the first paper that26

analyzes Thompson sampling in multi-armed restless bandit problems.27

4. The optimal policy depends on L Yes, the optimal policy will depend on the episode length. It will change the28

baseline value in our regret definition in (2), but the same regret bound will still apply. It is one of our main contributions29

that the regret bound applies regardless of the choice of the benchmark.30

Reviewer 331

Finer analysis within each episode First of all, the point raised by the reviewer is completely true. The episode length32

L should remain small to make the regret bound meaningful. We mainly considered the case where L is fixed as a33

constant and the number of resets, m, increases arbitrarily so that the posterior distribution concentrates sufficiently34

around the truth. A fundamental reason why we did not do the finer analysis within the episode is because our algorithm35

fixes a policy πl and runs it throughout the episode l. If we get to do the finer analysis, then that means our algorithm36

changes the policy more often, which comes with an extra cost. For example, in the regret analysis by Ouyang et37

al. [“Learning Unknown Markov Decision Processes: A Thompson Sampling Approach,” NIPS 2017], who analyze38

Thompson sampling in non-episodic fully observable MDPs, the bound includes KT , the number of different policies39

that Thompson sampling runs up to time T .40

Tightness of the regret bound As pointed out in the remark right after Theorem 5, our result reproduces the regret41

bound of O(
√
KT log T ) in the stationary MAB problem, whose lower bound is shown to be Ω(

√
KT ). This suggests42

that our bound is optimal in K and T up to a logarithmic factor. When L = 1, the problem becomes a combinatorial43

bandit problem (of choosing a set of N active arms out of a total of K) in which case the best known regret bound is44

O(
√
KN3T logK) (e.g., see “Combinatorial bandits” by Cesa-Bianchi and Lugosi [2012]. Their bound is actually45

O(
√
KNT logK), but they normalize the loss to be in [0, 1], whereas our reward is in [0, N ]). Our bound agrees with46

their bound up to logarithmic terms. Finally, the optimal dependence on L remains open. We will add the discussion of47

tight dependence in the final version.48


