
We thank the reviewers for their positive feedback, indicating that our method is novel, theoretically justified and leads1

to improved results (all); acknowledging the solid contribution of this work (R1), its usefulness for future research and2

practitioners (R2) and high significance to the study of adversarial learning (R3). Next, we address individual concerns.3

R1 [Despite decreasing FIDs, it’s hard to pinpoint a noticeable increase in visual quality]: A lower FID can be attributed4

to not only increased visual quality but also the improved sample diversity. By looking at generated images in Fig. 35

and Fig. S4 in the sup. mat., we observed that PA mostly increases the variation of samples. This is expected as PA6

being a regularizer doesn’t modify the GAN architecture, as in PG-GAN (Karras’18) or BigGAN (Brock’19), to directly7

improve the visual quality. For further evaluation, we measured the MS-SSIM of 10k synthetic CELEBA-HQ samples.8

PA reduces it from 0.283 to 0.266, where the MS-SSIM of 10k real samples is 0.263 and PG-GAN reported 0.283.9

Thus we believe that the quality of our generated samples is comparable to the ones of SoTA models, such as PG-GAN.10

R1 [A solid contribution, but does not appear to bring dramatic new capability]: We believe PA introduces a novel11

mechanism to balance the two-player game in GAN training and partially alleviates the need of fine hyper-parameter12

tuning (such as D and G learning rates in Tab. S4 in the sup. mat. or number of training iterations in Fig. 1 below),13

which is, as known by the practitioners, often the key in achieving good quality and diversity of synthetic GAN samples.14

To showcase this effect of PA, in Fig. 1 we present a toy example on MNIST. Note that PA effectively regularizes the15

training and enables continuous learning, maintaining a good sample diversity (FID stays ∼ 2.5 across iterations).16

Without PA, the training rapidly becomes unstable, leading to mode dropping (digit 1 occurs more frequently).17

R1 [Reservation regarding datasets, comparison with PG-GAN]: For our experiments we selected "a wide range of18

important datasets" (R2), which serve as default benchmarks in image synthesis literature. Despite their different19

resolutions (28 ∼ 128) and numbers of classes (1, 10 and 200), PA leads to consistent improvement over SoTA models.20

For instance, with the SoTA SA GAN across CIFAR10 (322), T-Imagenet (642) and CELEBA-HQ (1282), PA improves21

FID by 2.7, 2.9 and 2.4, respectively. Thus, we believe the similar trend would occur for high resolution image22

generation. Unfortunately, due to high computational load, we were not able to finish high resolution experiments on23

time. At the smaller resolution 64 of CELEBA, PA improves the SA GAN FID of 4.11 to 3.35, being on a par with24

COCO-GAN (Lin’19), FID of 3.57, that outperforms PG-GAN at the resolution 128, i.e., FID 5.74 vs. 7.30.25

R1 [How variable are the results based on which layer the dropout applied to]: We report these results in Tab. 1 and Tab.26

S2, S3 in the supp. material. Adding PA is beneficial independent of the dropout settings (keep rate and applied layer),27

it helps to reduce the FID sensitivity to the dropout hyperparameter choice.28

Table 1: PA with Dropout on CIFAR10 with SN DCGAN.
Dropout input(N) featN/2 featN/4 featN/8

PA(featN/8) 7 3 7 3 7 3 7 3

Keep

rate

0.9 26.4 22.6 25.1 21.9 23.4 21.2 24.6 21.6

0.7 28.0 22.9 25.6 21.3 22.1 20.6 24.4 22.5

0.5 27.1 23.1 25.9 22.3 23.1 21.2 24.0 22.1

∆PA 4.5 3.7 1.9 2.3

R2 [Motivation of adding Gaussian noise]: We agree that29

the initial motivation of adding noise in [1, 29] was to30

ensure a joint support of the data and model distributions,31

which results in a harder task for discriminator. We will32

clarify this point in the related work.33

R2 [Good to be more clear that the numbers reported34

do not use any label conditioning]: We thank R2 for the35

suggestion. Our trained models indeed do not use any label information, while in the case of SS-GAN [6] plus PA36

combination achieving the FID score of 14.9 on CIFAR10, comparable to the supervised case with large scale BigGAN37

[4] training. We will make this point clear in Sec.4.38 Table 2: PA with different regularizations on CIFAR10.
Method PA GAN Lab. sm. GP GPzero-cent Dropout SS ∆PA

SN DCGAN

7 26.0 25.8 26.7 26.5 22.1 − -
input 22.2 23.1 21.8 22.3 21.9 − 3.0
feat 22.6 22.3 22.7 23.0 20.6 − 3.0

SA GAN

7 18.8 − 17.8 17.8 16.2 15.7 -
input 16.1 − 15.8 16.1 15.5 14.7 1.3
feat 16.3 − 16.1 15.9 15.6 14.9 1.5

R3 [Input space augmentation with other regularization39

techniques]: We provide the requested results in Tab. 2.40

PA is consistently beneficial when combining with other41

regularization techniques, independent of augmentation42

space. Additional FID gain can come along with fine43

selection of the augmentation space. We will add the numbers to the paper.44

R3 [Clarity of Fig.1,2]: We thank R3 for the detailed comments and will integrate the suggested changes into the paper.45

R3 [The claim that D performs a binary classification seems disputable]: We agree that, strictly speaking, D(x) aims to46

learn the probability of x being real/fake rather than to perform classification. However, D(x) can also be regarded as47

the sigmoid response of classification with cross entropy loss. We will adjust our claim in Sec. 3.1 to avoid confusion.48
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Figure 1: PA enables continuous learning and prevents mode collapsing to a subset of classes (e.g., digit 1).


