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Abstract

Optimal transport (OT) theory defines a powerful set of tools to compare probability
distributions. OT suffers however from a few drawbacks, computational and
statistical, which have encouraged the proposal of several regularized variants of OT
in the recent literature, one of the most notable being the sliced formulation, which
exploits the closed-form formula between univariate distributions by projecting
high-dimensional measures onto random lines. We consider in this work a more
general family of ground metrics, namely tree metrics, which also yield fast closed-
form computations and negative definite, and of which the sliced-Wasserstein
distance is a particular case (the tree is a chain). We propose the tree-sliced
Wasserstein distance, computed by averaging the Wasserstein distance between
these measures using random tree metrics, built adaptively in either low or high-
dimensional spaces. Exploiting the negative definiteness of that distance, we also
propose a positive definite kernel, and test it against other baselines on a few
benchmark tasks.

1 Introduction

Many tasks in machine learning involve the comparison of two probability distributions, or histograms.
Several geometries in the statistics and machine learning literature are used for that purpose, such
as the Kullback-Leibler divergence, the Fisher information metric, the χ2 distance, or the Hellinger
distance, to name a few. Among them, the optimal transport (OT) geometry, also known as Wasserstein
[65], Monge-Kantorovich [34], or Earth Mover’s [54], has gained traction in the machine learning
community [26, 39, 43], statistics [18, 50], or computer graphics [41, 61].

The naive computation of OT between two discrete measures involves solving a network flow
problem whose computation scales typically cubically in the size of the measures [10]. There are
two notable lines of work to reduce the time complexity of OT. (i) The first direction exploits the
fact that simple ground costs can lead to faster computations. For instance, if one uses the binary
metric d(x, z) = 1x6=z between two points x, z, the OT distance is equivalent to the total variation
distance [64, p.7]. When measures are supported on the real line R and the cost c is a nonegative
convex function g applied to the difference z − x between two points, namely for x, z ∈ R, one has
c(x, z) = g(z − x), then the OT distance is equal to the integral of g evaluated on the difference
between the generalized quantile functions of these two probability distributions [57, §2]. Other
simplifications include thresholding the ground cost distance [51] or considering for a ground cost the
shortest-path metric on a graph [52, §6]. (ii) The second one is to use regularization to approximate
solutions of OT problems, notably entropy [14], which results in a problem that can be solved using
Sinkhorn iterations. Genevay et al. [26] extended this approach to the semi-discrete and continuous
OT problems using stochastic optimization. Different variants of Sinkhorn algorithm have been
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Figure 1: An illustration for a tree with root r where x1, x2 are at depth level 1, and x6, x7 are at
depth level 3. Path P(x3, x6) contains e3, e4, e6 (the green-dot path), Γ(x4) = {x4, x6, x7} (the
yellow-dot subtree), ve4 = x4, and ue4 = x1.

proposed recently [4, 17], and speed-ups are obtained when the ground cost is the quadratic Euclidean
distance [2, 3], or more generally the heat kernel on geometric domains [61]. The convergence of
Sinkhorn algorithm has been considered in [4, 25].

In this work, we follow the first direction to provide a fast computation for OT. To do so, we consider
tree metrics as ground costs for OT, which results in the so-called tree-Wasserstein (TW) distance
[15, 21, 46]. We consider two practical procedures to sample tree metrics based on spatial information
for both low-dimensional and high-dimensional spaces of supports. Using these random tree-metrics,
we propose tree-sliced-Wasserstein distances, obtained by averaging over several TW distances with
various ground tree metrics. The TW distance, as well as its average over several trees, can be shown
to be negative definite1. As a consequence, we propose a positive definite tree-(sliced-)Wasserstein
kernel that generalizes the sliced-Wasserstein kernel [11, 36].

The paper is organized as follows: we give reminders on OT and tree metrics in Section 2, introduce
TW distance and its properties in Section 3, describe tree-sliced-Wasserstein variants with practical
families of tree metrics, and proposed tree-(sliced)-Wasserstein kernel in Section 4, provide connec-
tions of TW with other work in Section 5, and follow with experimental results on many benchmark
datasets in word embedding-based document classification and topological data analysis in Section 6,
before concluding in Section 7. We have released code for these tools2.

2 Reminders on Optimal Transport and Tree Metrics

In this section, we briefly review definitions of optimal transport (OT) and tree metrics. Let Ω be a
measurable space endowed with a metric d. For any x ∈ Ω, we write δx the Dirac unit mass on x.

Optimal transport. Let µ, ν be two Borel probability distributions on Ω, R(µ, ν) be the set of
probability distributions π on the product space Ω×Ω such that π(A×Ω) = µ(A) and π(Ω×B) =
ν(B) for all Borel sets A, B. The 1-Wasserstein distance Wd [64, p.2] between µ, ν is defined as:

Wd(µ, ν) = inf

{∫
Ω×Ω

d(x, z)π(dx, dz) | π ∈ R(µ, ν)

}
. (1)

Let Fd be the set of Lipschitz functions w.r.t. d, i.e. functions f : Ω→ R such that |f(x)− f(z)| ≤
d(x, z),∀x, z ∈ Ω. The dual of (1) simplifies to the following problem OT [64, Theorem 1.3, p.19]
is:

Wd(µ, ν) = sup

{∫
Ω

f(x)µ(dx)−
∫

Ω

f(z)ν(dz) | f ∈ Fd

}
. (2)

Tree metrics. A metric d : Ω× Ω → R is called a tree metric on Ω if there exists a tree T with
non-negative edge lengths such that all elements of Ω are contained in its nodes and such that for
every x, z ∈ Ω, one has that d(x, z) equals to the length of the (unique) path between x and z [58,
§7, p.145–182]. We write the tree metric corresponding to that tree dT .

1In general, Wasserstein spaces are not Hilbertian [52, §8.3].
2https://github.com/lttam/TreeWasserstein.
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3 Tree-Wasserstein Distances: Optimal Transport with Tree Metrics

Lozupone and co-authors [44, 45] first noticed, when proposing the UniFrac method in the metage-
nomics community, that the Wasserstein distance between two measures supported on the nodes
of the same tree admits a closed form when the ground metric between the supports of the two
measures is a tree metric. That method was used to compare microbial communities by measuring
the phylogenetic distance between sets of taxa in a phylogenetic tree as the fraction of the branch
length of the tree that leads to descendants from either one environment or the other, but not both
[44]. In this section, we follow [15, 21, 46] to leverage the geometric structure of tree metrics, and
recall their main result.

Let T be a tree rooted at r with non-negative edge lengths, and dT be the tree metric on T . For nodes
x, z ∈ T , let P(x, z) be the (unique) path between x and z in T , λ is the unique Borel measure (i.e.
length measure) on T such that dT (x, z) = λ(P(x, z)). We also write Γ(x) for a set of nodes in the
subtree of T rooted at x, defined as Γ(x) = {z ∈ T | x ∈ P(r, z)}. For each edge e in T , let ve be
the deeper level node of edge e (farther to the root), ue is the other node, and we = dT (ue, ve) is the
non-negative length of that edge, illustrated in Figure 1. Then, TW not only has a closed form, but is
negative definite.
Proposition 1. Given two measures µ, ν supported on T , and setting the ground metric to be dT ,
then

WdT (µ, ν) =
∑
e∈T

we |µ(Γ(ve))− ν(Γ(ve))| . (3)

Proof. Following [21], for any f ∈ FdT such that f(r) = 0, there is an λ-a.e. unique Borel function
f : T → [−1, 1] such that f(x) =

∫
P(r,x)

f(z)λ(dz) =
∫
T 1z∈P(r,x)f(z)λ(dz). Intuitively, f(x)

models a flow along the (unique) path of the root r and node x where f(z) controls a probability
amount, received or provided by f(x) on dz. Note that 1z∈P(r,x) = 1x∈Γ(z), then we have:∫

T
f(x)µ(dx) =

∫
T

∫
T
1z∈P(r,x)f(z)λ(dz)µ(dx) =

∫
T
f(z)λ(dz)µ(Γ(z)).

Then, plugging this identity in Equation (2), we have:

WdT (µ, ν) = sup

{∫
T

(µ(Γ(z))− ν(Γ(z))) f(z)λ(dz)

}
=

∫
T
|µ(Γ(z))− ν(Γ(z))|λ(dz),

since the optimal function f∗ corresponds to f(z) = 1 if µ(Γ(z)) ≥ ν(Γ(z)), otherwise f(z) = −1.
Moreover, we have µ(Γ(r)) = ν(Γ(r)) = 1, and λ(P(ue, ve)) = dT (ue, ve) = we. Therefore,

WdT (µ, ν) =
∑
e∈T

we |µ(Γ(ve))− ν(Γ(ve))| ,

since the total mass flowing through edge e is equal to the total mass in subtree Γ(ve).

Proposition 2. The tree-Wasserstein distance WdT is negative definite.

Proof. Let m be the number of edges in tree T . From Equation (3), µ(Γ(ve)) with e ∈ T can be
considered as a feature map for probability distribution µ onto Rm

+ . Consequently, the TW distance
is equivalent to a weighted `1 distance between these representations, with non-negative weights we,
between these feature maps. Therefore, the tree-Wasserstein distance is negative definite3.

4 Tree-Sliced Wasserstein by Sampling Tree Metrics

Much as in sliced-Wasserstein (SW) distances, computing TW distances requires choosing or sam-
pling tree metrics. Unlike SW distances however, the space of possible tree metrics is far too large
in practical cases to expect that purely random trees can lead to meaningful results. We consider in
this section two adaptive methods to define tree metrics based on spatial information in both low
and high-dimensional cases, using partitioning or clustering. We further average the TW distances

3We follow here [9, p. 66–67], to define negative-definiteness, see review about kernels in the supplementary.
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corresponding to these ground tree metrics. This has the benefit of reducing quantization effects,
or cluster sensitivity problems in which data points may be partitioned or clustered to adjacent but
different hypercubes [32] or clusters respectively. We then define the tree-sliced Wasserstein kernel,
that is the direct generalization of those considered by [11, 36].
Definition 1. For two measures µ, ν supported on a set in which tree metrics {dTi | 1 ≤ i ≤ n} can
be defined, the tree-sliced-Wasserstein (TSW) distance is defined as:

TSW(µ, ν) =
1

n

n∑
i=1

WdTi
(µ, ν). (4)

Note that averaging of negative definite functions is trivially negative definite. Thus, following
Definition 1 and Proposition 2, the TSW distance is also negative definite. Positive definite kernels
can be therefore derived following [9, Theorem 3.2.2, p.74], and given t > 0, µ, ν on tree T , we
define the following tree-sliced-Wasserstein kernel,

kTSW(µ, ν) = exp(−tTSW(µ, ν)) . (5)

Very much like the Gaussian kernel, one can tune if needed the bandwidth parameter t according to
the learning task that is targeted, using e.g. cross validation.

Adaptive methods to define tree metrics for the space of support data. We consider sampling
mechanisms to select tree metrics to be used in Definition 1.

One possibility is to sample tree metrics following the general idea that these tree metrics should
approximate the original distance [7, 8, 13, 22, 30]. This was the original motivation for previous
work focusing on approximating the OT distance with the Euclidean ground metric (a.k.a. W2 metric)
into `1 metric for fast nearest neighbor search [16, 32]. Our goal is rather to sample tree metrics for
the space of supports, and use those random tree metrics as ground metrics. Much like 1-dimensional
projections do not offer interesting properties from a distortion perspective but remain useful for
sliced-Wasserstein (SW) distance, we believe that trees with large distortions can be useful. This
follows the recent realization that solving exactly the OT problem leads to overfitting [52, §8.4], and
therefore excessive efforts to approximate the ground metric using trees would be self-defeating since
it would lead to overfitting within the computation of the Wasserstein metric itself.

• Partition-based tree metrics. For low-dimensional spaces of supports, one can construct a
partition-based tree metric with a tree structure T as follows:

Algorithm 1 Partition_Tree_Metric(s, X, x̃s, h, HT )

Input: s: a side-` hypercube, X: a set of m data points of Rd in s, x̃s: a parent node, h: a current
depth level, and HT : the predefined deepest level of tree T .

1: if m > 0 then
2: if h > 0 then
3: Node x̃c ← a point center of s.
4: Length of edge (x̃s, x̃c)← distance (x̃s, x̃c).
5: else
6: Node x̃c ← x̃s.
7: end if
8: if m > 1 and h < HT then
9: Partition s into 2d side-(`/2) hypercubes.

10: for each side-(`/2) hypercube sc do
11: X̃c ← data points of X in sc.
12: Partition_Tree_Metric(sc, X̃c, x̃c, h + 1, HT ).
13: end for
14: end if
15: end if

Assume that data points are in a side-(β/2) hypercube of Rd. We then randomly expand it into a
hypercube s0 with side at most β. Inspired by a series of grids in [32], we set the center of s0 as the
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root of T , and use a following recursive procedure to partition s0. For each side-` hypercube s, there
are 3 partitioning cases: (i) if s does not contain any data points, we discard it, (ii) if s contains 1
data point, we use the center of s (or the data point) as a node in T , and (iii) if s contains more than 1
data point, we represent s by its center as a node x in T , and equally partition s into 2d side-(`/2)
hypercubes for potential child nodes of x. We then apply the recursive partition procedure for those
child hypercubes. One can use any metrics in Rd to obtain lengths for edges in T . Additionally, one
can use a predefined deepest level of T as a stopping condition for the procedure. We summarize
the recursive tree construction procedure in Algorithm 1. As desired, the random expansion of
the original hypercube into s0 creates a variety to partition data spaces. Note that Algorithm 1 for
constructing tree T is also known as the classical Quadtree algorithm [56] for 2-dimensional data
(and later extended for high-dimensional data in [6, 30, 31, 32]).

• Clustering-based tree metrics. As in Algorithm 1, the number of partitioned hypercubes grows
exponentially with respect to dimension d. To overcome this problem for high-dimensional spaces,
we directly leverage the distribution of support data points to adaptively partition data spaces via
clustering, inspired by the clustering-based approach for a space subdivision in Improved Fast Gauss
Transform [48, 66]. We derive a similar recursive procedure as in the partition-based tree metrics,
but apply the farthest-point clustering [27] to partition support data points, and replace centers of
hypercubes by cluster centroids as nodes in T . In practice, we fix the same number of clusters κ when
performing the farthest-point clustering (replace the partition in line 9 in Algorithm 1). κ is typically
chosen via cross-validation. In general, one can apply any favorite clustering methods. We use the
farthest-point clustering due to its fast computation. In particular, the complexity of the farthest-point
clustering into κ clusters for n data points is O(n log κ) using the algorithm in [23]. Using different
random initializations for the farthest-point clustering, we recover a simple sampling mechanism to
obtain random tree metrics.

5 Relations to Other Work

OT with ground ultrametrics. An ultrametric is also known as non-Archimedean metric, or
isosceles metric [59]. Ultrametrics strengthen the triangle inequality to a strong inequality (i.e., for
any x, y, z in an ultrametric space, d(x, z) ≤ max(d(x, y), d(y, z))). Note that binary metrics are
a special case of ultrametrics since binary metrics satisfy the strong inequality. Following [33, §1,
p.245–247], an ultrametric implies a tree structure which can be constructed by hierarchical clustering
schemes. Therefore, an ultrametric is a tree metric. Furthermore, we note that ultrametrics have
similar spirits with strong kernels and hierarchy-induced kernels which are key components to form
valid optimal assignment kernels for graph classification applications [37].

Connection with OT with Euclidean ground metric W2(·, ·). Let dHT be a partition-based tree
metric where H is the depth level of corresponding tree T , at which all support data points are
separated into different hypercubes (i.e., Algorithm 1 stops at depth level H). Edges in T are
computed by Euclidean distance. Let β be the side of the randomly expanded hypercube. Given
two d-dimensional point clouds µ̃, ν̃ with the same cardinality (i.e., discrete uniform measures), and
denote TW with dHT as WdH

T
. Then,

W2(µ̃, ν̃) ≤WdH
T

(µ̃, ν̃)/2 + β
√
d/2H .

The proof is given in the supplementary material. Moreover, we also investigate the empirical relation
between the TSW distance and the W2 distance in the supplementary material, in which empirical
results indicate that the TSW distance agrees more with W2 as the number of tree-slices used to
define the TSW distance is increased.

Connection with embedding W2 metric into `1 metric for fast nearest neighbor search. As
discussed earlier, our goal is neither to approximate OT distance using trees as in [7, 8, 13, 22, 30],
nor to embed W2 metric into `1 metric as in [16, 32], but rather to sample tree metrics to define
an extended variant of the sliced-Wasserstein distance. When using the Quadtree algorithm (as in
Algorithm 1) to sample tree metrics for the TSW distance, then the resulted TSW distance is in the
same spirit as the embedding approach in [32] where the authors embedded W2 metric into `1 metric
by using a series of grids.
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OT with tree metrics. There are a few work related to our considered class of OT with tree metrics
[35, 62]. In particular, Kloeckner [35] studied geometric properties of OT space for measures on an
ultrametric space, and Sommerfeld and Munk [62] focused on statistical inference for empirical OT
on finite spaces including tree metrics.

6 Experimental Results

In this section, we evaluated the proposed TSW kernel kTSW (Equation (5)) for comparing empirical
measures in word embedding-based document classification and topological data analysis.

6.1 Word Embedding-based Document Classification

Kusner et al. [39] proposed Word Mover’s distances for document classification. Each document is
regarded as an empirical measure where each word and its frequency are considered as a support and
a corresponding weight respectively. Kusner et al. [39] used word embedding such as word2vec to
map each word to a vector data point. Equivalently, Word Mover’s distances are OT metrics between
empirical measures (i.e., documents) where its ground cost is a metric on the word embedding space.

Setup. We evaluated kTSW on four datasets: TWITTER, RECIPE, CLASSIC and AMAZON, following
the approach of Word Mover’s distances [39], for document classification with SVM. Statistical
characteristics for those datasets are summarized in Figure 2b. We used the word2vec word embedding
[47], pre-trained on Google News4, containing about 3 million words/phrases. word2vec maps these
words/phrases into vectors in R300. Following [39], for all datasets, we removed all SMART stop
word [55], and further dropped words in documents if they are not available in the pre-trained
word2vec. We used two baseline kernels in the form of exp(−td) where d is a document distance
and t > 0, for two corresponding baseline document distances based on Word Mover’s: (i) OT with
Euclidean ground metric [39], and (ii) sliced-Wasserstein, denoted as kOT and kSW respectively.
For TSW distance in kTSW, we consider ns randomized clustering-based tree metrics, built with
a predefined deepest level HT of tree T as a stopping condition. We also regularized for kernel
kOT matrices due to its indefiniteness by adding a sufficiently large diagonal term as in [14]. For
SVM, we randomly split each dataset into 70%/30% for training and test with 100 repeats, choose
hyper-parameters through cross validation, choose 1/t from {1, q10, q20, q50} where qs is the s%
quantile of a subset of corresponding distances, observed on a training set, use one-vs-one strategy
with Libsvm [12] for multi-class classification, and choose SVM regularization from

{
10−2:1:2

}
. We

ran experiments with Intel Xeon CPU E7-8891v3 (2.80GHz), and 256GB RAM.

6.2 Topological Data Analysis (TDA)

TDA has recently gained interest within the machine learning community [11, 38, 42, 53]. TDA is a
powerful tool for statistical analysis on geometric structured data such as linked twist maps, or material
data. TDA employs algebraic topology methods, such as persistence homology, to extract robust
topological features (i.e., connected components, rings, cavities) and output 2-dimensional point
multisets, known as persistence diagrams (PD) [19]. Each 2-dimensional point in PD summarizes a
lifespan, corresponding to birth and death time as its coordinates, of a particular topological feature.

Setup. We evaluated kTSW for orbit recognition and object shape classification with support vector
machines (SVM), as well as change point detection for material data analysis with kernel Fisher
discriminant ratio (KFDR) [28]. Generally, we followed the same setting as in [42] for these
TDA experiments. We considered five baseline kernels for PD: (i) persistence scale space (kPSS) [53],
(ii) persistence weighted Gaussian (kPWG) [38], (iii) sliced-Wasserstein (kSW) [11], (iv) persistence
Fisher (kPF) [42], and (v) optimal transport5, defined as kOT = exp(−tdOT) for t > 0, and also further
regularized its kernel matrices by adding a sufficiently large diagonal term due to its indefiniteness as
in §6.1. For TSW distance in kTSW, we considered ns randomized partition-based tree metrics, built
with a predefined deepest level HT of tree T as a stopping condition.

4https://code.google.com/p/word2vec
5We used a fast OT implementation (e.g. on MPEG7 dataset, it took 7.98 seconds while the popular mex-file

with Rubner’s implementation required 28.72 seconds).
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Let Dgi = (x1, x2, . . . , xn) and Dgj = (z1, z2, . . . , zm) be two PD where xi |1≤i≤n, zj |1≤j≤m∈
R2, and Θ = {(a, a) | a ∈ R} be the diagonal set. Denote DgiΘ = {ΠΘ(x) | x ∈ Dgi}
where ΠΘ(x) is a projection of x on Θ. As in SW distance between Dgi and Dgj [11], we use
transportation plans between (Dgi ∪ DgjΘ) and (Dgj ∪ DgiΘ) for TW (in Equation (4) of TSW)
and OT distances. We typically used a cross validation to choose hyper-parameters, and followed
corresponding authors of those baseline kernels to form sets of candidates. For kTSW and kOT, we
chose 1/t from {1, q10, q20, q50}. Similar as in §6.1, we used one-vs-one strategy with Libsvm
for multi-class classification,

{
10−2:1:2

}
as a set of regularization candidates, and a random split

70%/30% for training and test with 100 repeats for SVM, and DIPHA toolbox6 to extract PD.

Orbit recognition. Adams et al. [1, §6.4.1] proposed a synthesized dataset for link twist map, a
discrete dynamical system to model flows in DNA microarrays [29]. There are 5 classes of orbits. As
in [42], we generated 1000 orbits for each class where each orbit contains 1000 points. We considered
1-dimensional topological features for PD, extracted with Vietoris-Rips complex filtration [19].

Object shape classification. We evaluated object shape classification on a 10-class subset of
MPEG7 dataset [40], containing 20 samples for each class as in [42]. For simplicity, we used the
same procedure as in [42] to extract 1-dimensional topological features for PD with Vietoris-Rips
complex filtration7 [19].

Change point detection for material data analysis. We considered granular packing system [24]
and SiO2 [49] datasets for change point detection problem with KFDR as a statistical score. As in
[38, 42], we extracted 2-dimensional topological features for PD in granular packing system dataset,
1-dimensional topological features for PD in SiO2 dataset, both with ball model filtration, and set
10−3 for the regularization parameter in KFDR. KFDR graphs for these datasets are shown in Figure
2c. For granular tracking system dataset, all kernel approaches obtain the change point as the 23rd

index, which support an observation result (corresponding id = 23) in [5] . For SiO2 dataset, results
of all kernel methods are within a supported range (35 ≤ id ≤ 50), obtained by a traditional physical
approach [20]. The KFDR results of kTSW compare favorably with those of other baseline kernels.
As shown in Figure 2b, kTSW is faster than other baseline kernels. We note that we omit the baseline
kernel kOT for this application since computation of OT distance is out of memory.

6.3 Results of SVM, Time Consumption and Discussion

The results of SVM and time consumption for kernel matrices in TDA, and word embedding based
document classification are illustrated in Figure 2a and Figure 2b respectively. The performances
of kTSW compare favorably with other baseline kernels. Moreover, the computational time of kTSW
is much less than that of kOT. Especially, in CLASSIC dataset, it took less than 3 hours for kTSW
while more than 8 days for kOT. Note that kTSW and kSW are positive definite while kOT is not. The
indefiniteness of kOT may affect its performances in some applications, e.g. kOT performs worse in
TDA applications, but works well for documents with word embedding applications. The fact that SW
only considers 1-dimensional projections may limit its ability to capture high-dimensional structure
in data distributions [60]. TSW distance remedies this problem by using clustering-based tree metrics
which directly leverage distributions of support data points. Furthermore, we also illustrate a trade-off
of performances and computational time for different parameters in tree-sliced-Wasserstein distances
for kTSW on TWITTER dataset in Figure 2d. For tree-sliced-Wasserstein TSW for kTSW, performances
are usually improved with more slices (ns), but they come with a trade-off of more computational
time. In these applications, we observed that a good trade-off for ns of tree-sliced-Wasserstein is
about 10 slices. Many further results can be seen in the supplementary.

7 Conclusion

In this work, we proposed positive definite tree-(sliced)-Wasserstein kernel on OT geometry by
considering a particular class of ground metrics, namely tree metrics. Much like the univariate
Wasserstein distance, the tree-(sliced)-Wasserstein distance has a closed form, and is also negative

6https://github.com/DIPHA/dipha
7Turner et al. [63] proposed a more complicated and advanced filtration for this task.
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Figure 2: Experimental results for document classification and TDA. In (a), for a trade-off between
time consumption and performances, results of TDA are reported for kTSW with (ns =6, HT =6),
and (ns = 12, HT = 5) in MPEG7 and Orbit datasets respectively. For document classification,
results are reported for kSW with (ns =20), and for kTSW with (ns =10, HT =6, κ=4). In (b), the
numbers in the parenthesis: for TDA in the first row, are the number of PD and the maximum number
of points in PD respectively; for document classification in the second row, are the number of classes,
the number of documents, and the maximum number of unique words for each document respectively.
In (c), for kTSW, TSW distances are computed with (ns =12, HT =6).
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definite. We also provide two sampling schemes to generate tree metrics for both high-dimensional
and low-dimensional spaces. Leveraging random tree-metrics, we have proposed a new generalization
of sliced-Wasserstein metrics that has more flexibility and degrees of freedom, by choosing a tree
rather than a line, especially in high-dimensional spaces. The questions of sampling efficiently tree
metrics from data points for tree-sliced-Wasserstein distance, as well as using them for more involved
parametric inference are left for future work.
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