
Reviewer #1 (R1): �[...]tree-sliced Wasserstein distance outperforms the original optimal transport distance[...] We1

used the tree-sliced Wasserstein (TSW) and OT distances within an RBF kernel, k = exp(−td). The TSW kernel is2

p.d. while the OT kernel kOT is not. The indefiniteness of kOT may affect its performances in some applications: kOT3

performs worse in TDA applications in §6.1, but works well for documents with word embedding applications in §6.2.4

�[...]include (in the supplement, at least) the full proof [of Proposition 1]? Agreed, we will follow your suggestion.5

Reviewer #2: �[...]Prop. 1 and 2 are not original[...] �R1: proof of negative definiteness of the proposed OT[...] We6

do state that the proof of Prop. 1 is not original in `.39–41. Although Prop. 2 follows from Prop. 1, it follows the idea7

underlying sliced W kernels (or Gaussian processes as you mention), and this result remains new to our knowledge.8
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Figure 1: A frequency of near-neighbor rank on the
W2 space for the nearest neighbor w.r.t. TSW.

�[...]bound on the Wasserstein distance[...]interesting re-9

sult[...]numeric analysis comparing the limit of the hypercube10

tree-sliced metric to the Wasserstein metric and the sliced Wasser-11

stein metric.�R1: An upper bound on the Euclidean OT[...] The12

hypercube tree-sliced metric is our suggestion to build practical13

tree metrics for TSW when used on low-dimensional data spaces14

(e.g. TDA in §6.1). We insist that we do not try to mimic the15

Euclidean OT (W2) or the sliced-Wasserstein (SW), but rather16

propose a variant of OT distance. As stated in `.173–179, and17

`.158–161 in §5, SW is a special case of TSW. Following your18

point, we have carried out the following experiment: for a query19

point q, let p be its nearest neighbor w.r.t. TSW. Figure 1 illus-20

trates that p is very likely among the top 5 (on MPEG7), and21

top 10 (on Orbit) near neighbors on the W2 space (results are22

averaged over 1000 runs of random split 90%/10% for training23

and test). When the number of tree-slices in TSW increases, the24

W2 near-neighbor rank of p is improved. These empirical results25

suggest that TSW may agree with some aspects of W2.26

�[...]experiment where the metric is used in a more conventional27

OT problem such as color transfer or generative modeling. In the experiments, we used RBF kernels (k = exp(−td)28

for a given metric d) with SVM which usually improves on k-NN results. We will add k-NN results. We are now29

considering color transfer and barycenter applications. Gradients of TSW w.r.t. supports and weights of empirical30

measures can be recovered pending some choices in how interpolations are defined.�a single multi paneled figure [...]31

word embedding experiment[...]presented before the TDA Many thanks for your suggestions. We will incorporate them.32

Reviewer #3: �What is most troubling is that the paper seems to be completely unaware any literature of embedding33

points into a distribution over metrics, and claims some standard and well-known techniques and novelties[...] We34

understand your point and will do everything to correct this misunderstanding. This was caused by a lack of care in35

the presentation of §4. This was not the message we wanted to convey. We will rewrite this section following your36

comments. As you have gathered from our algorithms, approximating an arbitrary metric using trees is not a key goal in37

our submission, our goal is stated in `.41–44 in §.1. Much like 1D projections do not offer interesting properties from a38

distortion perspective but remain useful for SW, we do believe that trees with large distortion can still remain useful.39

This is because metric approximations are used within another computation (Wasserstein) and therefore we do not gain40

from overfitting too much our trees so that they match the true metric, as long as they provide guidance on the optimal41

assignment. We will insist more on the importance of sampling tree metrics randomly, both for low-dimensional in §6.142

and high-dimensional §6.2 regimes. �Definite-negativity is mentioned and highlighted[...] explain why is it important43

to you. Is this to ensure that the kernel is positive-definite? Negative definiteness of a distance means essentially that44

the space is flat and that positive definite kernels can be easily derived from them, following Berg et al.’s theorem.45

This is why kernel methods kick in from §.6 (or Gaussian processes as per Reviewer #2’s suggestion). We will clarify46

this motivation following your comment. �[...]which kernel did you actually use in the experiments – exp(-TW) or47

exp(-TSW)?[...]kernel is called kTW and not kTSW?[...]TSW is also negative-definite, simply because the average of48

l1-metrics is an l1-metric – right?) In the experiments, we used the kernel exp(−tdTSW) as stated in `.225–227 for §6.1,49

and `.289–292 for §6.2. We will define kTSW, and rename kTW to kTSW in the experiments following your suggestion.50

Indeed, averaging of negative definite functions is trivially negative definite. Hence, dTSW is negative definite. We will51

clarify it in the updated version. �[...]set the number of clusters in each level?[...]connection to fast Gauss transform52

[...]more related than any other clustering method[...]use farthest-point clustering[...]downstream motivation and does53

it effect the results? We fixed the same number of clusters κ when performing the farthest-point clustering (replace54

step 9 in Algorithm 1) at different height levels. κ is typically chosen via cross-validation. Moreover, we also illustrate55

the effect of κ in applications in Figure 5 (and Figures 5–7 in the supplement). In general, one can apply any favorite56

clustering methods. We used the farthest-point clustering due to its fast computation, i.e. O(n log κ) as stated in57

`.148–149 to construct practical tree metrics for applications with high-dimensional data space, e.g. documents with58

word embedding applications in §6.2.59


