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Abstract

State-of-the-art efficient model-based Reinforcement Learning (RL) algorithms typ-
ically act by iteratively solving empirical models, i.e., by performing full-planning
on Markov Decision Processes (MDPs) built by the gathered experience. In this
paper, we focus on model-based RL in the finite-state finite-horizon undiscounted
MBDP setting and establish that exploring with greedy policies — act by I-step plan-
ning — can achieve tight minimax performance in terms of regret, O(v HSAT).
Thus, full-planning in model-based RL can be avoided altogether without any per-
formance degradation, and, by doing so, the computational complexity decreases
by a factor of S. The results are based on a novel analysis of real-time dynamic
programming, then extended to model-based RL. Specifically, we generalize ex-
isting algorithms that perform full-planning to act by 1-step planning. For these
generalizations, we prove regret bounds with the same rate as their full-planning
counterparts.

1 Introduction

Reinforcement learning (RL) [Sutton and Barto, [2018]] is a field of machine learning that tackles the
problem of learning how to act in an unknown dynamic environment. An agent interacts with the
environment, and receives feedback on its actions in the form of a state-dependent reward signal.
Using this experience, the agent’s goal is then to find a policy that maximizes the long-term reward.

There are two main approaches for learning such a policy: model-based and model-free. The model-
based approach estimates the system’s model and uses it to assess the long-term effects of actions via
full-planning (e.g.,Jaksch et al.|2010). Model-based RL algorithms usually enjoy good performance
guarantees in terms of the regret — the difference between the sum of rewards gained by playing
an optimal policy and the sum of rewards that the agent accumulates [Jaksch et al.,[2010, Bartlett
and Tewaril 2009]. Nevertheless, model-based algorithms suffer from high space and computation
complexity. The former is caused by the need for storing a model. The latter is due to the frequent
full-planning, which requires a full solution of the estimated model. Alternatively, model-free RL
algorithms directly estimate quantities that take into account the long-term effect of an action, thus,
avoiding model estimation and planning operations altogether [Jin et al.l 2018]]. These algorithms
usually enjoy better computational and space complexity, but seem to have worse performance
guarantees.

In many applications, the high computational complexity of model-based RL makes them infeasible.
Thus, practical model-based approaches alleviate this computational burden by using short-term
planning e.g., Dyna [Sutton, [1991], instead of full-planning. To the best of our knowledge, there are
no regret guarantees for such algorithms, even in the tabular setting. This raises the following question:
Can a model-based approach coupled with short-term planning enjoy the favorable performance of
model-based RL?
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] Algorithm [ Regret | Time Complexity [ Space Complexity |

UCRLaqaksch etal}po10] O(VH?2S?AT) O(NSAH) O(HS + NSA)
UCBVT {azar etal po17) O(VHSAT + VH?T) ONSAH) O(HS + NSA)
EULER. [zancttc and Brunskill 2010) O(VHSAT) ONSAH) O(HS + NSA)
UCRL2-GP O(VH2S2AT) YN AH) O(HS + NSA)
EULER-GP O(VHSAT) O(NAH) O(HS +NSA)
Q-v2 frin et atffro18) O(VH3SAT O(AH) O(HSA)
Lower bounds Q (\/ SAH T) - -

Table 1: Comparison of our bounds with several state-of-the-art bounds for RL in tabular finite-
horizon MDPs. The time complexity of the algorithms is per episode; .S and A are the sizes of the
state and action sets, respectively; H is the horizon of the MDP; T is the total number of samples that
the algorithm gathers; AV < S is the maximum number of non-zero transition probabilities across the
entire state-action pairs. The algorithms proposed in this paper are highlighted in gray.

In this work, we show that model-based algorithms that use 1-step planning can achieve the same
performance as algorithms that perform full-planning, thus, answering affirmatively to the above
question. To this end, we study Real-Time Dynamic-Programming (RTDP) [Barto et al.l [1995]]
that finds the optimal policy of a known model by acting greedily based on 1-step planning, and
establish new and sharper finite sample guarantees. We demonstrate how the new analysis of RTDP
can be incorporated into two model-based RL algorithms, and prove that the regret of the resulting
algorithms remains unchanged, while their computational complexity drastically decreases. As Table
[T shows, this reduces the computational complexity of model-based RL methods by a factor of S.

The contributions of our paper are as follows: we first prove regret bounds for RTDP when the
model is known. To do so, we establish concentration results on Decreasing Bounded Processes,
which are of independent interest. We then show that the regret bound translates into a Uniform
Probably Approximately Correct (PAC) [Dann et al.l 2017] bound for RTDP that greatly improves
existing PAC results [Strehl et al., 2006]. Next, we move to the learning problem, where the model
is unknown. Based on the analysis developed for RTDP we adapt UCRL2 [Jaksch et al.,[2010] and
EULER [Zanette and Brunskill,2019], both act by full-planning, to UCRL2 with Greedy Policies
(UCRL2-GP) and EULER with Greedy Policies (EULER-GP); model-based algorithms that act by
1-step planning. The adapted versions are shown to preserve the performance guarantees, while
improve in terms of computational complexity.

2 Notations and Definitions

We consider finite-horizon MDPs with time-independent dynamics [Bertsekas and Tsitsiklis|, [1996].
A finite-horizon MDP is defined by the tuple M = (S, A, R, p, H), where S and A are the state and
action spaces with cardinalities S and A, respectively. The immediate reward for taking an action a
at state s is a random variable R(s, a) € [0, 1] with expectation ER(s, a) = r(s, a). The transition
probability is p(s’ | s, a), the probability of transitioning to state s’ upon taking action a at state s.
Furthermore, N := max o, |{s’ : p(s’ | 5,a) > 0}| is the maximum number of non-zero transition
probabilities across the entire state-action pairs. If this number is unknown to the designer of the
algorithm in advanced, then we set A/ = S. The initial state in each episode is arbitrarily chosen and
H € Nis the horizon, i.e., the number of time-steps in each episode. We define [N] := {1,..., N},
for all N € N, and throughout the paper use ¢ € [H] and k € [K] to denote time-step inside an
episode and the index of an episode, respectively.

A deterministic policy 7 : S x [H] — A is a mapping from states and time-step indices to actions.
We denote by a; := 7(sq, t), the action taken at time ¢ at state s; according to a policy 7. The quality

2Similarly to previous work in the finite horizon setting, we state the regret in terms of the horizon H. The
regret in the infinite horizon setting is DS+ AT, where D is the diameter of the MDP.



of a policy 7 from state s at time ¢ is measured by its value function, which is defined as

H
V7(s):=E Zr(stf,ﬂ(st/,t’)) | s = s,
t'=t
where the expectation is over the environment’s randomness. An optimal policy maximizes this
value for all states s and time-steps ¢, and the corresponding optimal value is denoted by V,*(s) :=
max, V;"(s), for all t € [H]. The optimal value satisfies the optimal Bellman equation, i.e.,

Vi(s)=T" t’jH(s) = m(?x{r(s,a) +p(- | s,a)TVt’jrl}, (1)

We consider an agent that repeatedly interacts with an MDP in a sequence of episodes [K|. The perfor-
mance of the agent is measured by its regret, defined as Regret(K) := Zszl (Vir(st) — V™ (sh)).
Throughout this work, the policy 7, is computed by a 1-step planning operation with respect to the
value function estimated by the algorithm at the end of episode k& — 1, denoted by V*~1. We also
call such policy a greedy policy. Moreover, s¥ and af stand, respectively, for the state and the action
taken at the t'" time-step of the k*" episode.

Next, we define the filtration F, that includes all events (states, actions, and rewards) until the end
of the k'" episode, as well as the initial state of the episode k + 1. We denote by T = K H, the
total number of time-steps (samples). Moreover, we denote by ny(s, a), the number of times that
the agent has visited state-action pair (s, a), and by X, the empirical average of a random variable
X. Both quantities are based on experience gathered until the end of the k‘" episode and are F
measurable. We also define the probability to visit the state-action pair (s, a) at the k*" episode at
time-step ¢ by wy,(s,a) = Pr(sf = s,af = a | s, 7). We note that 7, is ;1 measurable, and
thus, w (s, a) = Pr(sf = s,af = a | Fi_1). Also denote wy(s,a) = 1L wu(s, a).

We use @(X ) to refer to a quantity that depends on X up to poly-log expression of a quantity at most
polynomial in S, A, T, K, H, and %. Similarly, < represents < up to numerical constants or poly-log

factors. We define || X ||2 , := +/E,X?2, where p is a probability distribution over the domain of X,
and use X VY := max{X,Y}. Lastly, P(S) is the set of probability distributions over the state

space S.

3 Real-Time Dynamic Programming

Algorithm 1 Real-Time Dynamic Programming

Initialize: Vs € S, Vt € [H], V(s) = H — (t — 1).
fork=1,2,...do
Initialize s¥
fort=1,...,H do
a? € argIHaXaT(sfa a) +p( | Sfaa)T‘zﬁ_ll
VE(sE) = r(sfoaf) +p(- | s af) TV
Act with af and observe s} ;.
end for
end for

RTDP [Barto et al., |1995] is a well-known algorithm that solves an MDP when a model of the
environment is given. Unlike, e.g., Value Iteration (VI) [Bertsekas and Tsitsiklis, |1996] that solves an
MDP by offline calculations, RTDP solves an MDP in a real-time manner. As mentioned in Barto
et al.|[1995]], RTDP can be interpreted as an asynchronous VI adjusted to a real-time algorithm.

Algorithm [T] contains the pseudocode of RTDP for finite-horizon MDPs. The value function is
initialized with an optimistic value, i.e., an upper bound of the optimal value. At each time-step ¢ and
episode k, the agent acts from the current state s greedily with respect to the current value at the

next time step, Vtﬁ_ll. It then updates the value of s¥ according to the optimal Bellman operator. We

denote by V/, the value function, and as we show in the following, it always upper bounds V' *. Note
that since the action at a fixed state is chosen according to V*=1 then 7 is Fj_1 measurable.



Since RTDP is an online algorithm, i.e., it updates its value estimates through interactions with the
environment, it is natural to measure its performance in terms of the regret. The rest of this section is
devoted to supplying expected and high-probability bounds on the regret of RTDP, which will also
lead to PAC bounds for this algorithm. In Section E], based on the observations from this section, we
will establish minimax regret bounds for 1-step greedy model-based RL.

We start by stating two basic properties of RTDP in the following lemma: the value is always
optimistic and decreases in k (see proof in Appendix [B). Although the first property is known [Barto
et al.| [1993], to the best of our knowledge, the second one has not been proven in previous work.

Lemma 1. For all s, t, and k, it holds that (i) V;*(s) < Vi¥(s) and (ii) VF(s) < V;F71(s).

"l:he following lemma, that we believe is new, relates the difference between the optimistic value
V~1(s) and the real value V™ (s¥) to the expected cumulative update of the value function at the
end of the k" episode (see proof in Appendix @)

Lemma 2 (Value Update for Exact Model). The expected cumulative value update of RTDP at the
Eth episode satisfies

H
VI (sh) = Vi (1) = Y EIVEH(sE) = VI (sE) | Fial.
t=1

The result relates the difference of the optimistic value V*~! and the value of the greedy policy
V7 to the expected update along the trajectory, created by following 7. Thus, for example, if the
optimistic value is overestimated, then the value update throughout this episode is expected to be
large.

3.1 Regret and PAC Analysis

Using LemmalI] we observe that the sequence of values is decreasing and bounded from below. Thus,
intuitively, the decrements of the values cannot be indefinitely large. Importantly, Lemma [2| states
that when the expected decrements of the values are small, then V™ (s%) is close to V*~1(s¥), and
thus, to V*, since VF=1(sF) > V*(sF) > V] (s¥).

Building on this reasoning, we are led to establish a general result on a decreasing process. This
result will allow us to formally justify the aforementioned reasoning and derive regret bounds for
RTDP. The proof utilizes self-normalized concentration bounds [de la Pena et al., |2007], applied on
martingales, and can be found in Appendix [A]

Definition 1 (Decreasing Bounded Process). We call a random process { Xy, Fi.})~, where
{Fk}p>o is afiltration and { X} } .~ is adapted to this filtration, a Decreasing Bounded Process, if
it satisfies the following properties:

1. {Xk}kzo decreases, i.e., X1 < X a.s. .
2. Xo=C > 0,andforallk, X; > 0a.s. .

Theorem 3 (Regret Bound of a Decreasing Bounded Process). Let { Xy, Fi.};~ o be a Decreasing
Bounded Process and Ry = ZkK:l Xk—1 — E[Xy | Fr—1] be its K-round regret. Then,

2
Pr{EIK >0: R > 0(1 + 2\/111(2/5)) } <6
Specifically, it holds that Pr{3K > 0: Rg > 9C1n(3/6)} <.

We are now ready to prove the central result of this section, the expected and high-probability regret
bounds on RTDP (see full proof in Appendix [B).

Theorem 4 (Regret Bounds for RTDP). The following regret bounds hold for RTDP:
1. E[Regret(K)] < SH>.
2. Forany 6 > 0, with probability 1 — &, for all K > 0, Regret(K) < 9SH?In(3SH/J).



Proof Sketch. We give a sketch of the proof of the second claim. Applying Lemmas[T]and then 2]

K K B
Regret(K) := Y Vi (s§) — Vi (sh) < Y VF 1 (sh) — v (sh)
k=1 k=1
K — —
<Y N EWVFN(sE) = ViF(sF) | Fial. )
k=1 t=1

‘We then establish (see Lemma that RHS of (@) is, in fact, a sum of SH Decreasing Bounded
Processes, i.e.,

H K
=3 D) VENs) — B[V (s) | Fral 3)

t=1 se$§ k=1

Since for any fixed s, t, {Vk } k>0 is a decreasing process by Lemma|l| we can use Theoreml
for a fixed s, ¢, and conclude the proof by applying the union bound on all 'SH terms in (3).

Theorem [ exhibits a regret bound that does not depend on 7' = K H. While it is expected that RTDP,
that has access to the exact model, would achieve better performance than an RL algorithm with no
such access, a regret bound independent of 7' is a noteworthy result. Indeed, it leads to the following
Uniform PAC (see Dann et al.|2017| for the definition) and (0, §) PAC guarantees for RTDP (see
proofs in Appendix ' To the best of our knowledge, both are the first PAC guarantees for RTDPE]
Corollary 5 (RTDP is Uniform PAC). Let § > 0 and N, be the number of episodes in which RTDP
outputs a policy with Vi (s¥) — V™ (s%) > e. Then,

2
9SH 1n(3SH/5)} s

€

Pr{EIe>O:N€Z

Corollary 6 (RTDP is (0,0) PAC). Let 6 > 0 and N be the number of episodes in which
RTDP outputs a non optimal policy. Define the (unknown) gap of the MDP, A(M) =
ming Ming.y= () 2ve(s) Vi (s) = Vi7(s) > 0. Then,

2
. { v 95H 1n(3SH/5)} s

AM)
4 Exploration in Model-based RL: Greedy Policy Achieves Minimax Regret

We start this section by formulating a general optimistic RL scheme that acts by 1-step planning (see
Algorithm[2). Then, we establish Lemma([7] which generalizes Lemmal[2|to the case where a non-exact
model is used for the value updates. Using this lemma, we offer a novel regret decomposition for
algorithms which follow Algorithm[2] Based on the decomposition, we analyze generalizations of
UCRL2 [Jaksch et al.,[2010]] (for finite horizon MDPs) and EULER [Zanette and Brunskill, 2019],
that use greedy policies instead of solving an MDP (full planning) at the beginning of each episode.
Surprisingly, we find that both generalized algorithms do not suffer from performance degradation, up
to numerical constants and logarithmic factors. Thus, we conclude that there exists an RL algorithm
that achieves the minimax regret bound, while acting according to greedy policies.

Consider the general RL scheme that explores by greedy policies as depicted in Algorithm 2] The
value V is initialized optimistically and the algorithm interacts with the unknown environment in
an episodic manner. At each time-step ¢, a greedy policy from the current state, s¥, is calculated
optimistically based on the empirical model (#x_1, pr—1, nr—1) and the current value at the next
time-step Vt’ffll. This is done in a subroutine called ‘ModelBaseOptimisticQ’ﬂWe further assume

the optimistic @-function has the form Q(sf,a) = Fy_1 (s, a) + pr_1(- | s¥,a)"V;*7" and refer to

3Existing PAC results on RTDP analyze variations of RTDP in which e is an input parameter of the algorithm.

*We also allow the subroutine to use O(S) internal memory for auxiliary calculations, which does not change
the overall space complexity.



Algorithm 2 Model-based RL with Greedy Policies

1: Initialize: Vs € S, Vt € [H], VP(s) = H — (t — 1).
2: fork=1,2,...do
3:  Initialize s¥
fort=1,...,Hdo
Va, Q(sF,a) = ModelBaseOptimisticQ (#y—1, Pr—1, k-1, V;'7")
af € argmax, Q(sF, a)
VE(st) = min{ V7 (s}), Q(sf, af) }
Act with af and observe s} ;.
9: end for
10:  Update 71, px, n with all experience gathered in episode.
11: end for

® RN AE

(Tx—1, Pr—1) as the optimistic model. The agent interacts with the environment based on the greedy
policy with respect to () and uses the gathered experience to update the empirical model at the end of
the episode.

By construction of the update rule (see Line [7), the value is a decreasing function of k, for all
(s,t) € S x [H]. Thus, property (i) in Lemma|I[holds for Algorithm[2] Furthermore, the algorithms
analyzed in this section will also be optimistic with high probability, i.e., property (i) in Lemfnaﬂ]
also holds. Finally, since the value update uses the empirical quantities 751, pr—1, ng—1 and Vt]jr_ll
from the previous episode, policy 7y, is still Fj_; measurable.

The following lemma generalizes Lemma[2]to the case where, unlike in RTDP, the update rule does
not use the exact model (see proof in Appendix [C).

Lemma 7 (Value Update for Optimistic Model). The expected cumulative value update of Algorithm
in the k'" episode is bounded by

Vk 1(51) V™ ( 51 V;sk 1 St ‘Zﬁk(sf) ‘ ]:k—l}

\\Mm

H
+ ZE[(fkfl - T)(S?’a?) + (ﬁk*l - )( | Stvat )TVtI-CHl | ]:k?*l] .

t=1

In the rest of the section, we consider two instantiations of the subroutine ‘ModelBaseOptimisticQ’
in Algorithm 2 We use the bonus terms of UCRL2 and of EULER to acquire an optimistic (-
function, Q). These two options then lead to UCRL2 with Greedy Policies (UCRL2-GP) and EULER
with Greedy Policies (EULER-GP) algorithms.

4.1 UCRL2 with Greedy Policies for Finite-Horizon MDPs

Algorithm 3 UCRL2 with Greedy Policies (UCRL2-GP)

8SAT
21n =25

1: f}cfl(sf,a) = TAkfl(S?,a) + W

k , ’ . k 4S5 In 12S§AT
2: Cl(sga) = Y PP € P(S) : [P'() = P (- | st 0) | <\ = oravt
3 Pe-1(- | sf,a) = argmaxprecr(sh.a) P/ | s, 0)T VA

4: Q(va a) = - I(Sta a) + pr-1(: |St7 )Tvtlj-ll
5: Return Q(s}, a)

We form the optimistic local model based on the confidence set of UCRL2 [Jaksch et al.| |2010].
This amounts to use Algorithm [3]as the subroutine ‘ModelBaseOptimisticQ’ in Algorithm[2} The
maximization problem on Line[3|of Algorithm [3|is common, when using bonus based on an optimistic
model [Jaksch et al.l 2010], and it can be solved efficiently in O (J\/ ) operations (e.g., Strehl and
Littman|[2008; Section 3.1.5). A full version of the algorithm can be found in Appendix [D]



Thus, Algorithm [3| performs AV AH operations per episode. This saves the need to perform Extended
Value Iteration [Jaksch et al.,[2010]), that costs NS AH operations per episode (an extra factor of .S).
Despite the significant improvement in terms of computational complexity, the regret of UCRL2-GP
is similar to the one of UCRL2 [Jaksch et al.,2010] as the following theorem formalizes (see proof in
Appendix D).

Theorem 8 (Regret Bound of UCRL2-GP). For any time T' < K H, with probability at least 1 — 6,

the regret of UCRL2-GP is bounded by O (HS\/ AT + H? \/§SA).

Proof Sketch. Using the optimism of the value function (see Section[D.Z) and by applying Lemma[7]
we bound the regret as follows:

K K
Regret(K) = Y V" (sf) = V™ (s}) < > V() — V™ (s))
k=1 k=1
K H B
<Y ON EVETN(sE) = ViE(sE) | Frea]
k=1 t=1

K H
+ Y E[(Fk-1 = r)(sthaf) + (B = p)(- | sf,a) VI | Faed] . @

Thus, the regret is upper bounded by two terms. As in Theorem [ by applying Lemma [TT] (Ap-
pendix @), thNe first term in is a sum of S H Decreasing Bounded Processes, and can thus be
bounded by O (SH 2). The presence of the second term in @) is common in recent regret analyses
(e.g.,|Dann et al.|2017). Using standard techniques [Jaksch et al.,|2010, |Dann et al.,|2017, |Zanette
and Brunskilll 2019]], this term can be bounded (up to additive constant factors) with high probability

by S HVS UL L E ||/ ary | P | < O(HSVAT), O

Ng—-1(S¢

4.2 EULER with Greedy Policies

In this section, we use bonus terms as in EULER [Zanette and Brunskill, [2019]]. Similar to the
previous section, this amounts to replacing the subroutine ‘ModelBaseOptimisticQ’ in Algorithm 2]
with a subroutine based on the bonus terms from [Zanette and Brunskill, [2019]. AlgorithmE] in
Appendix [E] contains the pseudocode of the algorithm. The bonus terms in EULER are based on the
empirical Bernstein inequality and tracking both an upper bound V; and a lower-bound V, on V,*.
Using these, EULER achieves both minimax optimal and problem dependent regret bounds.

EULER |[Zanette and Brunskill, 2019]] performs O(N SAH ) computations per episode (same as the
VI algorithm), while EULER-GP requires only O(N AH). Despite this advantage in computational
complexity, EULER-GP exhibits similar minimax regret bounds to EULER (see proof in Appendix|[E),
much like the equivalent performance of UCRL2 and UCRL2-GP proved in Section .1}

Theorem 9 (Regret Bound of EULER-GP). Let G be an upper bound on the total reward
collected within an episode. Define Q* := max, q(VarR(s,a) + Vary wp(.|s,a)Vit1(s)) and
Heg = min{(@*, 92/H}. With probability 1 — ¢, for any time T < K H jointly on all episodes

k € [K], the regret of EULER-GP is bounded by @(«/HCHSAT +V/SSAH?*(VS + \/ﬁ)) Thus,
it is also bounded by @(\/ HSAT +V/SSAH*(VS + \/ﬁ))

Note that Theorem [9]exhibits similar problem-dependent regret-bounds as in Theorem 1 of [Zanette
and Brunskill, 2019]]. Thus, the same corollaries derived in [Zanette and Brunskill, 2019]] for EULER
can also be applied to EULER-GP.

5 Experiments

In this section, we present an empirical evaluation of both UCRL2 and EULER, and compare their
performance to the proposed variants, which use greedy policy updates, UCRL2-GP and EULER-GP,



Chain environment - N=25 2d chain environment - N=5 (5x5 grid)

7x10*

5x10*
6x10*

5x10* 4x10*

3x10*

w s
X X
AR
L

2x10*

2x10°
— UCRL2 . — UCRL2
— UCRL2-GP 10 — UCRL2-GP
— EULER — EULER
0 —— EULER-GP 0 —— EULER-GP

0 2x10° 4x10° 6x10° 8x10° 10° 0 2x10° 4x10° 6x10° 8x10° 10°
#Episode #Episode

Average Cumulative Regret
Average Cumulative Regret

-
b3

(a) Chain environment with N = 25 states (b) 2D chain environment with 5 x 5 grid

Figure 1: A comparison UCRL2 and EULER with their greedy counterpart. Results are averaged
over 5 random seeds and are shown alongside error bars (3=3std).

respectively. We evaluated the algorithms on two environments. (i) Chain environment [Osband
and Van Royl, [2017]]: In this MDP, there are N states, which are connected in a chain. The agent
starts at the left side of the chain and can move either to the left or try moving to the right, which
succeeds w.p. 1 — 1/N, and results with movement to the left otherwise. The agent goal is to reach
the right side of the chain and try moving to the right, which results with a reward r ~ N(1,1).
Moving backwards from the initials state also results with 7 ~ N (0, 1), and otherwise, the reward is
r = 0. Furthermore, the horizon is set to I = IV, so that the agent must always move to the right
to have a chance to receive a reward. (ii) 2D chain: A generalization of the chain environment, in
which the agent starts at the upper-left corner of a N x N grid and aims to reach the lower-right
corner and move towards this corner, in = 2N — 1 steps. Similarly to the chain environment, there
is a probability 1/H to move backwards (up or left), and the agent must always move toward the
corner to observe a reward r ~ A/(1, 1). Moving into the starting corner results with  ~ N(0, 1),
and otherwise = 0. This environment is more challenging for greedy updates, since there are many
possible trajectories that lead to reward.

The simulation results can be found in Figure [T} and clearly indicate that using greedy planning
leads to negligible degradation in the performance. Thus, the simulations verify our claim that
greedy policy updates greatly improve the efficiency of the algorithm while maintaining the same
performance.

6 Related Work

Real-Time Dynamic Programming: RTDP [Barto et al., [1995]] has been extensively used and has
many variants that exhibit superior empirical performance (e.g., [Bonet and Geffner, 2003, McMahan
et al., 2005} [Smith and Simmons, 2006]). For discounted MDPs, [Strehl et al.|[2006] proved (e, 0)-PAC

bounds of O (S A/e2(1 — 7)4), for a modified version of RTDP in which the value updates occur

only if the decrease in value is larger than (1 — 7). Le., their algorithm explicitly use e to mark
states with accurate value estimate. We prove that RTDP converges in a rate of O (S H?/ e) without
knowing e. Indeed, |Strehl et al.| [2006] posed whether the original RTDP is PAC as an open problem.
Furthermore, no regret bound for RTDP has been reported in the literature.

Regret bounds for RL: The most renowned algorithms with regret guarantees for undiscounted
infinite-horizon MDPs are UCRL2 [Jaksch et al., 2010|] and REGAL [Bartlett and Tewaril, 2009]],
which have been extended throughout the years (e.g., by |Fruit et al.[[2018| [Taleb1 and Maillard
2018)). Recently, there is an increasing interest in regret bounds for MDPs with finite horizon H and
stationary dynamics. In this scenario, UCRL2 enjoys a regret bound of order H S+ AT'. |Azar et al.
[2017]] proposed UCB VI, with improved regret bound of order v/ H S AT, which is also asymptotically
tight [Osband and Van Roy, 2016]]. [Dann et al.|[2018]] presented ORLC that achieves tight regret
bounds and (nearly) tight PAC guarantees for non-stationary MDPs. Finally, [Zanette and Brunskill
[2019] proposed EULER, an algorithm that enjoys tight minimax regret bounds and has additional



problem-dependent bounds that encapsulate the MDP’s complexity. All of these algorithms are
model-based and require full-planning. Model-free RL was analyzed by [Jin et al., 2018]]. There,
the authors exhibit regret bounds that are worse by a factor of H relatively to the lower-bound. To
the best of our knowledge, there are no model-based algorithms with regret guarantees that avoid
full-planning. It is worth noting that while all the above algorithms, and the ones in this work, rely on
the Optimism in the Face of Uncertainty principle [Lai and Robbins|, [1985]], Thompson Sampling
model-based RL algorithms exist [Osband et al.l 2013| |Gopalan and Mannor}, 2015} |/Agrawal and Jia,
2017, |Osband and Van Royl, 2017]. There, a model is sampled from a distribution over models, on
which full-planning takes place.

Greedy policies in model-based RL: By adjusting RTDP to the case where the model is unknown,
Strehl et al.| [2012] formulated model-based RL algorithms that act using a greedy policy. They

proved a O (S 2A/e(1 — 'y)G) sample complexity bound for discounted MDPs. To the best of our
knowledge, there are no regret bounds for model-based RL algorithms that act by greedy policies.

Practical model-based RL: Due to the high computational complexity of planning in model-based
RL, most of the practical algorithms are model-free (e.g., Mnih et al|2015). Algorithms that do use a
model usually only take advantage of local information. For example, Dyna [Sutton,|1991| Peng et al.|
2018] selects state-action pairs, either randomly or via prioritized sweeping [Moore and Atkesonl
1993| [Van Seijen and Sutton, [2013]], and updates them according to a local model. Other papers use
the local model to plan for a short horizon from the current state [Tamar et al., 2016, |[Hafner et al.|
2018]|. The performance of such algorithms depends heavily on the planning horizon, that in turn
dramatically increases the computational complexity.

7 Conclusions and Future Work

In this work, we established that tabular model-based RL algorithms can explore by 1-step planning
instead of full-planning, without suffering from performance degradation. Specifically, exploring
with model-based greedy policies can be minimax optimal in terms of regret. Differently put, the
variance caused by exploring with greedy policies is smaller than the variance caused by learning
a sufficiently good model. Indeed, the extra term which appears due to the greedy exploration is
O(SH 2) (e.g., the first term in @]}); a constant term, smaller than the existing constant terms of
UCRL2 and EULER.

This work raises and highlights some interesting research questions. The obvious ones are extensions
to average and discounted MDPs, as well as to Thompson sampling based RL algorithms. Although
these scenarios are harder or different in terms of analysis, we believe this work introduces the
relevant approach to tackle this question. Another interesting question is the applicability of the
results in large-scale problems, when tabular representation is infeasible and approximation must be
used. There, algorithms that act using lookahead policies, instead of 1-step planning, are expected
to yield better performance, as they are less sensitive to value approximation errors (e.g., Bertsekas
and Tsitsiklis|1996, Jiang et al.|2018| |[Efroni et al.|2018bla). Even then, full-planning, as opposed to
using a short-horizon planning, might be unnecessary. Lastly, establishing whether the model-based
approach is or is not provably better than the model-free approach, as the current state of the literature
suggests, is yet an important and unsolved open problem.
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