
We would like to begin by highlighting two contributions of the paper we feel remained unnoticed by R#2 and R#3. In1

the final version, we will better emphasize their value as it seems their importance was not properly conveyed.2

(i) Theorem 1 bounds with high probability the regret of a Decreasing Bounded Process (DBP) by a constant (with no3

dependence on the episode number K) under no assumptions except the structure of a bounded and decreasing process.4

Due to its generality it is a powerful tool and is indeed central in all our analysis. We believe it can be instrumental5

analyzing other RL and planning algorithms as well as possibly in general learning theory.6

(ii) The analysis of RTDP is important on its own. RTDP is a well known and practical algorithm. Previous analysis of7

RTDP required the algorithm designer to set a predefined level of accuracy ε. In the analysis of Section 3, we prove8

both regret bounds (which did not exist before) and better PAC bounds in comparison to previous analysis. On top of9

that, in the analyzed version we need not assume a predefined accuracy level ε as in previous works.10

Reviewer #1: We thank the reviewer for his/her favorable review. We will make sure that the final version of the paper11

takes into account the reviewer’s comments. Specifically:12

• Abstract/Line 124/Line 263 - will be corrected, thanks!13

• Comparison to UCRL2: In the literature on regret analysis of finite-horizon MDPs, it is common to present the14

regret bounds as a function of the horizon. Specifically, and to the best of our knowledge, all previous works present15

UCRL2’s regret bound as in the table (e.g., Azar et al. 2017, Jin et al. 2018). Nevertheless, we will add a remark on16

this issue to avoid confusion.17

• Line 212: True, the more general version of Algorithm 2 should allow some auxiliary calculations for the optimistic18

model – we will modify the final version to reflect this issue.19

Reviewer #2: We thank the reviewer for the comments. In the final version of the paper, we will take extra care to20

make the paper more accessible, as well as add experiments to better demonstrate the ideas (see response to R#3).21

• The result demonstrates a possibly intuitive argument: if you only access an approximate model, and thus do not22

know the exact outcomes of your actions, it is redundant to estimate long term outcomes with it. Instead, one can23

incorporate the long-term outcomes in an optimistic value function while keeping the same performance. That is to24

say, it is surprising that the regret bounds on the full-planning and RTDP approaches are exactly the same (up to25

numerical constants) and is a major contribution of this paper. We will emphasize this better in the introduction.26

• Optimism (Line 177) - We combine our approach with optimistic algorithms, i.e., algorithms that ensure with high27

probability that the Q-values are optimistic. Both UCRL2 and EULER do so by using upper confidence bounds on28

both rewards and transitions. The Q-values are optimistic in a high-probability sense, i.e., with high probability29

maxa Q̄(s, a) ≥ maxaQ
∗(s, a) for any s (Lemma 14, 22). Equivalently, the confidence intervals we use assure that30

the probability the Q-values are pessimistic is small. This is a common approach in both RL and bandits literature.31

• Lemma 1: The lemma referred by the reviewer is related to Value Iteration (VI) when the value is uniformly updated32

on all the states by the Bellman operator. RTDP, unlike VI, only updates visited states, and does not perform33

uniform updates as VI. While there are some similarities to the monotonicity of the Bellman operator, more careful34

arguments are required for this result to hold in case of RTDP.35

Reviewer #3: We thank the reviewer for the feedback. We will address the following question that was raised: ’How36

large are the constants in the complexity notations and how do they compare with their full-planning counterparts?’37

Our analysis decomposes the regret into two terms (e.g., Equation 14) (A) and (B):38

(A) This term is a DBP and does not exist in previous analysis. Nevertheless, it is an additive term which can be39

bounded by 9SH2 ln(3SH/δ), and thus negligible relatively to rest of the constants.40

(B) For EULER-GP, this term is almost identical to the regret analyzed in (Zanette et al.), there it is bounded by41

O
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. In our case, the analysis of the second term is a bit more involved and42

requires using (again) the result on DBP on top of using results from (Zanette et al.). The
√
T term is the exact same43

one as in (Zanette et al.), i.e., the omitted constant terms are similar. Our analysis results in additional additive terms44

which are independent of
√
T and smaller than O
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)
. Comparing the value of the multiplicative45

constant of this term is problematic as the results in (Zanette et al.) do not state the values of the multiplicative constants.46

To summarize, except for a negligible additive constants, there is almost no effect on the constants of the regret bounds.47

Experiments: we will add some experiments to compare the original and modified algorithms in the final version. We48

already performed some initial simulations which indicate that the performance with greedy policies is similar to the49

performance with full planning in some simple environments, but further experiments are required.50


