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Abstract

We consider training over-parameterized two-layer neural networks with Rectified
Linear Unit (ReLU) using gradient descent (GD) method. Inspired by a recent
line of work, we study the evolutions of network prediction errors across GD
iterations, which can be neatly described in a matrix form. When the network
is sufficiently over-parameterized, these matrices individually approximate an
integral operator which is determined by the feature vector distribution ⇢ only.
Consequently, GD method can be viewed as approximately applying the powers of
this integral operator on the underlying function f⇤ that generates the responses.
We show that if f⇤ admits a low-rank approximation with respect to the eigenspaces
of this integral operator, then the empirical risk decreases to this low-rank approxi-
mation error at a linear rate which is determined by f⇤ and ⇢ only, i.e., the rate is
independent of the sample size n. Furthermore, if f⇤ has zero low-rank approx-
imation error, then, as long as the width of the neural network is ⌦(n log n), the
empirical risk decreases to ⇥(1/

p
n). To the best of our knowledge, this is the first

result showing the sufficiency of nearly-linear network over-parameterization. We
provide an application of our general results to the setting where ⇢ is the uniform
distribution on the spheres and f⇤ is a polynomial. Throughout this paper, we
consider the scenario where the input dimension d is fixed.

1 Introduction

Neural networks have been successfully applied in many real-world machine learning applications.
However, a thorough understanding of the theory behind their practical success, even for two-layer
neural networks, is still lacking. For example, despite learning optimal neural networks is provably
NP-complete [BG17, BR89], in practice, even the neural networks found by the simple first-order
methods perform well [KSH12]. Additionally, in sharp contrast to traditional learning theory, over-
parameterized neural networks (more parameters than the size of the training dataset) are observed
to enjoy smaller training and even smaller generalization errors [ZBH+16]. In this paper, we focus
on training over-parameterized two-layer neural networks with Rectified Linear Unit (ReLU) using
gradient descent (GD) method. Our results can be extended to other activation functions that satisfy
some regularity conditions; see [GMMM19, Theorem 2] for an example. The techniques derived and
insights obtained in this paper might be applied to deep neural networks as well, for which similar
matrix representation exists [DZPS18].

Significant progress has been made in understanding the role of over-parameterization in training
neural networks with first-order methods [AZLL18, DZPS18, ADH+19, OS19, MMN18, LL18,
ZCZG18, DLL+18, AZLS18, CG19]; with proper random network initialization, (stochastic) GD
converges to a (nearly) global minimum provided that the width of the network m is polynomially
large in the size of the training dataset n. However, neural networks seem to interpolate the training
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data as soon as the number of parameters exceed the size of the training dataset by a constant
factor [ZBH+16, OS19]. To the best of our knowledge, a provable justification of why such mild
over-parametrization is sufficient for successful gradient-based training is still lacking. Moreover,
the convergence rates derived in many existing work approach 0 as n ! 1; see Section A in
Supplementary Material for details. In many applications the volumes of the datasets are huge –
the ImageNet dataset [DDS+09] has 14 million images. For those applications, a non-diminishing
(i.e., constant w. r. t. n) convergence rate is more desirable. In this paper, our goal is to characterize
a constant (w. r. t. n) convergence rate while improving the sufficiency guarantee of network over-
parameterization. Throughout this paper, we focus on the setting where the dimension of the feature
vector d is fixed, leaving the high dimensional region as one future direction.

Inspired by a recent line of work [DZPS18, ADH+19], we focus on characterizing the evolutions of
the neural network prediction errors under GD method. This focus is motivated by the fact that the
neural network representation/approximation of a given function might not be unique [KB18], and
this focus is also validated by experimental neuroscience [MG06, ASCC18].

Contributions It turns out that the evolution of the network prediction error can be neatly described
in a matrix form. When the network is sufficiently over-parameterized, the matrices involved
individually approximate an integral operator which is determined by the feature vector distribution ⇢
only. Consequently, GD method can be viewed as approximately applying the powers of this integral
operator on the underlying/target function f⇤ that generates the responses/labels. The advantages of
taking such a functional approximation perspective are three-fold:

• We showed in Theorem 2 and Corollary 1 that the existing rate characterizations in the
influential line of work [DZPS18, ADH+19, DLL+18] approach zero (i.e., ! 0) as n ! 1.
This is because the spectra of these matrices, as n diverges, concentrate on the spectrum of
the integral operator, in which the unique limit of the eigenvalues is zero.

• We show in Theorem 4 that the training convergence rate is determined by how f⇤ can be
decomposed into the eigenspaces of an integral operator. This observation is also validated
by a couple of empirical observations: (1) The spectrum of the MNIST data concentrates
on the first a few eigenspaces [LBB+98]; and (2) the training is slowed down if labels are
partially corrupted [ZBH+16, ADH+19].

• We show in Corollary 2 that if f⇤ can be decomposed into a finite number of eigenspaces of
the integral operator, then m = ⇥(n log n) is sufficient for the training error to converge to
⇥(1/

p
n) with a constant convergence rate. To the best of our knowledge, this is the first

result showing the sufficiency of nearly-linear network over-parameterization.

Notations For any n, m 2 N, let [n] := {1, · · · , n} and [m] := {1, · · · , m}. For any d 2 N,
denote the unit sphere as Sd�1

:=

�

x : x 2 Rd, & kxk = 1

 

, where k·k is the standard `
2

norm
when it is applied to a vector. We also use k·k for the spectral norm when it is applied to a matrix. The
Frobenius norm of a matrix is denoted by k·kF . Let L2

(Sd�1, ⇢) denote the space of functions with
finite norm, where the inner product h·, ·i⇢ and k · k2

⇢ are defined as hf, gi⇢ :=

R

Sd�1 f(x)g(x)d⇢(x)

and kfk2

⇢ :=

R

Sd�1 f2

(x)d⇢(x) < 1. We use standard Big-O notations, e.g., for any sequences
{ar} and {br}, we say ar = O(br) or ar . br if there is an absolute constant c > 0 such that ar

br
 c,

we say ar = ⌦(br) or ar & br if br = O(ar) and we say ar = !(br) if limr!1 |ar/br| = 1.

2 Problem Setup and Preliminaries

Statistical learning We are given a training dataset {(xi, yi) : 1  i  n} which consists of n
tuples (xi, yi), where xi’s are feature vectors that are identically and independently generated from a
common but unknown distribution ⇢ on Rd, and yi = f⇤

(xi). We consider the problem of learning
the unknown function f⇤ with respect to the square loss. We refer to f⇤ as a target function. For
simplicity, we assume xi 2 Sd�1 and yi 2 [�1, 1]. In this paper, we restrict ourselves to the family
of ⇢ that is absolutely continuous with respect to Lebesgue measure. We are interested in finding
a neural network to approximate f⇤. In particular, we focus on two-layer fully-connected neural
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networks with ReLU activation, i.e.,

fW ,a(x) =

1p
m

m
X

j=1

aj [hx, wji]
+

, 8 x 2 Sd�1, (1)

where m is the number of hidden neurons and is assumed to be even, W = (w
1

, · · · , wm) 2 Rd⇥m

are the weight vectors in the first layer, a = (a
1

, · · · , am) with aj 2 {�1, 1} are the weights in the
second layer, and [·]

+

:= max {·, 0} is the ReLU activation function.

Many authors assume f⇤ is also a neural network [MMN18, AZLL18, SS96, LY17, Tia16]. Despite
this popularity, a target function f⇤ is not necessarily a neural network. One advantage of working
with f⇤ directly is, as can be seen later, certain properties of f⇤ are closely related to whether f⇤ can
be learned quickly by GD method or not. Throughout this paper, for simplicity, we do not consider
the scaling in d and treat d as a constant.

Empirical risk minimization via gradient descent For each k = 1, · · · , m/2: Initialize
w

2k�1

⇠ N (0, I), and a
2k�1

= 1 with probability 1

2

, and a
2k�1

= �1 with probability 1

2

. Initialize
w

2k = w
2k�1

and a
2k = �a

2k�1

. All randomnesses in this initialization are independent, and are
independent of the dataset. This initialization is chosen to guarantee zero output at initialization.
Similar initialization is adopted in [CB18, Section 3] and [WGL+19]. 1 We fix the second layer a
and optimize the first layer W through GD on the empirical risk w. r. t. square loss 2:

Ln(W ) :=

1

2n

n
X

i=1

h

(yi � fW (xi))
2

i

. (2)

For notational convenience, we drop the subscript a in fW ,a. The weight matrix W is update as

W t+1

= W t � ⌘
@Ln(W t

)

@W t
, (3)

where ⌘ > 0 is stepsize/learning rate, and W t is the weight matrix at the end of iteration t with W 0

denoting the initial weight matrix. For ease of exposition, let

byi(t) := fW t
(xi) =

1p
m

m
X

j=1

aj

⇥⌦

wt
j , xi

↵⇤

+

, 8 i = 1, · · · , n. (4)

Notably, byi(0) = 0 for i = 1, · · · , n. It can be easily deduced from (3) that wj is updated as

wt+1

j = wt
j +

⌘aj

n
p

m

n
X

i=1

(yi � byi(t)) xi1{hwt
j ,xii>0}. (5)

Matrix representation Let y 2 Rn be the vector that stacks the responses of {(xi, yi)}n
i=1

. Let
by(t) be the vector that stacks byi(t) for i = 1, · · · , n at iteration t. Additionally, let A := {j : aj = 1}
and B := {j : aj = �1} . The evolution of (y � by(t)) can be neatly described in a matrix form.
Define matrices H+,fH+, and H�,fH� in Rn ⇥ Rn as: For t � 0, and i, i0 2 [n],

H+

ii0(t + 1) =

1

nm
hxi, xi0i

X

j2A
1{hwt

j ,xi0i>0}1{hwt
j ,xii>0}, (6)

fH+

ii0(t + 1) =

1

nm
hxi, xi0i

X

j2A
1{hwt

j ,xi0i>0}1{hwt+1
j ,xii>0}, (7)

and H�
ii0(t + 1), fH�

ii0(t + 1) are defined similarly by replacing the summation over all the hidden
neurons in A in (6) and (7) by the summation over B. It is easy to see that both H+ and H� are

1Our analysis might be adapted to other initialization schemes, such as He initialization, with m = ⌦(n2).
Nevertheless, the more stringent requirement on m might only be an artifact of our analysis.

2The simplification assumption that the second layer is fixed is also adopted in [DZPS18, ADH+19]. Similar
frozen assumption is adopted in [ZCZG18, AZLS18]. We do agree this assumption might restrict the applicability
of our results. Nevertheless, even this setting is not well-understood despite the recent intensive efforts.
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positive semi-definite. The only difference between H+

ii0(t + 1) (or H�
ii0(t + 1)) and fH+

ii0(t + 1) (or
fH�

ii0(t+1)) is that 1{hwt
j ,xii>0} is used in the former, whereas 1{hwt+1

j ,xii>0} is adopted in the latter.
When a neural network is sufficiently over-parameterized (in particular, m = ⌦(poly(n))), the sign
changes of the hidden neurons are sparse; see [AZLL18, Lemma 5.4] and [ADH+19, Lemma C.2]
for details. The sparsity in sign changes suggests that both fH+

(t) ⇡ H+

(t) and fH�
(t) ⇡ H�

(t)
are approximately PSD.
Theorem 1. For any iteration t � 0 and any stepsize ⌘ > 0, it is true that
⇣

I � ⌘
⇣

fH+

(t + 1) + H�
(t + 1)

⌘⌘

(y � by(t))

 (y � by(t + 1))


⇣

I � ⌘
⇣

H+

(t + 1) +

fH�
(t + 1)

⌘⌘

(y � by(t)) ,

where the inequalities are entry-wise.

Theorem 1 says that when the sign changes are sparse, the dynamics of (y � by(t)) are governed by a
sequence of PSD matrices. Similar observation is made in [DZPS18, ADH+19].

3 Main Results

We first show (in Section 3.1) that the existing convergence rates that are derived based on minimum
eigenvalues approach 0 as the sample size n grows. Then, towards a non-diminishing convergence
rate, we characterize (in Section 3.2) how the target function f⇤ affects the convergence rate.

3.1 Convergence rates based on minimum eigenvalues

Let H := H+

(1) + H�
(1). It has been shown in [DZPS18] that when the neural networks are

sufficiently over-parameterized m = ⌦(n6

), the convergence of ky � by(t)k and the associated
convergence rates with high probability can be upper bounded as 3

ky � by(t)k  (1 � ⌘�
min

(H))

t ky � by(0)k = exp

✓

�t log

1

1 � ⌘�
min

(H)

◆

kyk , (8)

where �
min

(H) is the smallest eigenvalue of H . Equality (8) holds because of by(0) = 0. In this
paper, we refer to log

1

1�⌘�min(H)

as convergence rate. The convergence rate here is quite appealing
at first glance as it is independent of the target function f⇤. Essentially (8) says that no matter how
the training data is generated, via GD, we can always find an over-parameterized neural network that
perfectly fits/memorizes all the training data tuples exponentially fast! Though the spectrum of the
random matrix H can be proved to concentrate as n grows, we observe that �

min

(H) converges to 0
as n diverges, formally shown in Theorem 2.
Theorem 2. For any data distribution ⇢, there exists a sequence of non-negative real numbers
�

1

� �
2

� . . . (independent of n) satisfying limi!1 �i = 0 such that, with probability 1 � �,

sup

i
|�i � e�i| 

r

log(4n2/�)

m
+

r

8 log(4/�)

n
. (9)

where e�
1

� · · · � e�n are the spectrum of H . In addition, if m = !(log n), we have

�
min

(H)

P�! 0, as n ! 1, (10)

where P�! denotes convergence in probability.

A numerical illustration of the decay of �
min

(H) in n is presented in Fig. 1a. Theorem 2 is proved in
Appendix D. By Theorem 2, the convergence rate in (8) approaches zero as n ! 1.
Corollary 1. For any ⌘ = O(1), it is true that log

1

1�⌘�min(H)

! 0 as n ! 1.

3 Though a refined analysis of that in [DZPS18] is given by [ADH+19, Theorem 4.1], the analysis crucially
relies on the convergence rate in (8).
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(a) The minimum eigenvalues of one realization of H
under different n and d, with network width m = 2n.

(b) The spectrum of K with d = 10, n = 500 concen-
trates around that of LK.

Figure 1: The spectra of H , K, and LK when ⇢ is the uniform distribution over Sd�1.

In Corollary 1, we restrict our attention to ⌘ = O(1). This is because the general analysis of GD
[Nes18] adopted by [ADH+19, DZPS18] requires that (1 � ⌘�

max

(H)) > 0, and by the spectrum
concentration given in Theorem 2, the largest eigenvalue of H concentrates on some strictly positive
value as n diverges, i.e., �

max

(H) = ⇥(1). Thus, if ⌘ = !(1), then (1 � ⌘�
max

(H)) < 0 for any
sufficiently large n, violating the condition assumed in [ADH+19, DZPS18].

Theorem 2 essentially follows from two observations. Let K = E [H], where the expectation is
taken with respect to the randomness in the network initialization. It is easy to see that by standard
concentration argument, for a given dataset, the spectrum of K and H are close with high probability.
In addition, the spectrum of K, as n increases, concentrates on the spectrum of the following integral
operator LK on L2

(Sd�1, ⇢),

(LKf)(x) :=

Z

Sd�1

K(x, s)f(s)d⇢, (11)

with the kernel function:

K(x, s) :=

hx, si
2⇡

(⇡ � arccos hx, si) 8 x, s 2 Sd�1, (12)

which is bounded over Sd�1 ⇥ Sd�1. In fact, �
1

� �
2

� · · · in Theorem 2 are the eigenvalues
of LK. As supx,s2Sd�1 K(x, s)  1

2

, it is true that �i  1 for all i � 1. Notably, by definition,
Kii0 = E [Hii0 ] =

1

nK(xi, xi0) is the empirical kernel matrix on the feature vectors of the given
dataset {(xi, yi) : 1  i  n}. A numerical illustration of the spectrum concentration of K is given
in Fig. 1b; see, also, [XLS17].

Though a generalization bound is given in [ADH+19, Theorem 5.1 and Corollary 5.2], it is unclear
how this bound scales in n. In fact, if we do not care about the structure of the target function f⇤ and
allow yp

n
to be arbitrary, this generalization bound might not decrease to zero as n ! 1. A detailed

argument and a numerical illustration can be found in Appendix B.

3.2 Constant convergence rates

Recall that f⇤ denotes the underlying function that generates output labels/responses (i.e., y’s) given
input features (i.e., x’s). For example, f⇤ could be a constant function or a linear function. Clearly,
the difficulty in learning f⇤ via training neural networks should crucially depend on the properties
of f⇤ itself. We observe that the training convergence rate might be determined by how f⇤ can
be decomposed into the eigenspaces of the integral operator defined in (11). This observation is
also validated by a couple of existing empirical observations: (1) The spectrum of the MNIST data
[LBB+98] concentrates on the first a few eigenspaces; and (2) the training is slowed down if labels
are partially corrupted [ZBH+16, ADH+19]. Compared with [ADH+19], we use spectral projection
concentration to show how the random eigenvalues and the random projections in [ADH+19, Eq.(8)
in Theorem 4.1] are controlled by f⇤ and ⇢.

We first present a sufficient condition for the convergence of ky � by(t)k.
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Theorem 3 (Sufficiency). Let 0 < ⌘ < 1. Suppose there exist c
0

2 (0, 1) and c
1

> 0 such that
�

�

�

�

1p
n

(I � ⌘K)

t
y

�

�

�

�

 (1 � ⌘c
0

)

t
+ c

1

, 8 t. (13)

For any � 2 (0, 1

4

) and given T > 0, if

m � 32

c2

1

 

✓

1

c
0

+ 2⌘Tc
1

◆

4

+ 4 log

4n

�

✓

1

c
0

+ 2⌘Tc
1

◆

2

!

, (14)

then with probability at least 1 � �, the following holds for all t  T :
�

�

�

�

1p
n

(y � by(t))

�

�

�

�

 (1 � ⌘c
0

)

t
+ 2c

1

. (15)

Theorem 3 is proved in Appendix E. Theorem 3 says that if
�

�

�

1p
n

(I � ⌘K)

t
y
�

�

�

converges to c
1

exponentially fast, then
�

�

�

1p
n

(y � by(t))
�

�

�

converges to 2c
1

with the same convergence rate guarantee
provided that the neural network is sufficiently parametrized. Recall that yi 2 [�1, 1] for each i 2 [n].
Roughly speaking, in our setup, yi = ⇥(1) and kyk =

p

Pn
i=1

y2

i = ⇥(

p
n). Thus we have the 1p

n

scaling in (13) and (14) for normalization purpose.

Similar results were shown in [DZPS18, ADH+19] with ⌘ =

�min(K)

n , c
0

= n�
min

(K) and c
1

= 0.
But the obtained convergence rate log

1

1��2
min(K)

! 0 as n ! 1. In contrast, as can be seen later
(in Corollary 2), if f⇤ lies in the span of a small number of eigenspaces of the integral operator
in (11), then we can choose ⌘ = ⇥(1), choose c

0

to be a value that is determined by the target
function f⇤ and the distribution ⇢ only, and choose c

1

= ⇥(

1p
n
). Thus, the resulting convergence

rate log

1

1�⌘c0
does not approach 0 as n ! 1. The additive term c

1

= ⇥(1/
p

n) arises from the
fact that only finitely many data tuples are available. Both the proof of Theorem 3 and the proofs
in [DZPS18, ADH+19, AZLL18] are based on the observation that when the network is sufficiently
over-parameterized, the sign changes (activation pattern changes) of the hidden neurons are sparse.
Different from [DZPS18, ADH+19], our proof does not use �

min

(K); see Appendix E for details.

It remains to show, with high probability, (13) in Theorem 3 holds with properly chosen c
0

and c
1

.
By the spectral theorem [DS63, Theorem 4, Chapter X.3] and [RBV10], LK has a spectrum with
distinct eigenvalues µ

1

> µ
2

> · · · 4 such that

LK =

X

i�1

µiPµi , with Pµi :=

1

2⇡i

Z

�µi

(�I � LK)

�1

d�,

where Pµi : L2

(Sd�1, ⇢) ! L2

(Sd�1, ⇢) is the orthogonal projection operator onto the eigenspace
associated with eigenvalue µi; here (1) i is the imaginary unit, and (2) the integral can be taken over
any closed simple rectifiable curve (with positive direction) �µi containing µi only and no other
distinct eigenvalue. In other words, Pµif is the function obtained by projecting function f onto the
eigenspaces of the integral operator LK associated with µi.

Given an ` 2 N, let m` be the sum of the multiplicities of the first ` nonzero top eigenvalues of LK.
That is, m

1

is the multiplicity of µ
1

and (m
2

� m
1

) is the multiplicity of µ
2

. By definition,

�m` = µ` 6= µ`+1

= �m`+1

, 8 `.

Theorem 4. For any ` � 1 such that µi > 0, for i  `, let

✏(f⇤, `) := sup

x2Sd�1

�

�

�

�

�

�

f⇤
(x) � (

X

1i`

Pµif
⇤
)(x)

�

�

�

�

�

�

be the approximation error of the span of the eigenspaces associated with the first ` dis-
tinct eigenvalues. Then given � 2 (0, 1

4

) and T > 0, if n >
256 log

2
�

(�m`
��m`+1)

2 and

4 The sequence of distinct eigenvalues can possibly be of finite length. In addition, the sequences of µi’s and
�i’s (in Theorem 2) are different, the latter of which consists of repetitions.
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m � 32

c21

✓

⇣

1

c0
+ 2⌘Tc

1

⌘

4

+ 4 log

4n
�

⇣

1

c0
+ 2⌘Tc

1

⌘

2

◆

with c
0

=

3

4

�` and c
1

= ✏(f⇤, `), then

with probability � (1 � 3�), for all t  T :

�

�

�

�

1p
n

(y � by(t))

�

�

�

�


✓

1 � 3

4

⌘�m`

◆t

+

16

p
2

q

log

2

�

(�m` � �m`+1

)

p
n

+ 2

p
2✏(f⇤, `).

Since �m` is determined by f⇤ and ⇢ only, with ⌘ = 1, the convergence rate log

1

1� 3
4�m`

is constant
w. r. t. n.
Remark 1 (Early stopping). In Theorems 3 and 4, the derived lower bounds of m grow in
T . To control m, we need to terminate the GD training at some “reasonable” T . Fortunately,
T is typically small. To see this, note that ⌘, c

0

, and c
1

are independent of t. By (13) and
(15) we know

�

�

�

1p
n

(y � by(t))
�

�

�

decreases to ⇥(c
1

) in (log

1

c1
/ log

1

1�⌘c0
) iterations provided that

(log

1

c1
/ log

1

1�⌘c0
)  T . Thus, to guarantee

�

�

�

1p
n

(y � by(t))
�

�

�

= O(c
1

), it is enough to ter-

minate GD at iteration T = ⇥(log

1

c1
/ log

1

1�⌘c0
). Similar to us, early stopping is adopted in

[AZLL18, LSO19], and is commonly adopted in practice.
Corollary 2 (zero–approximation error). Suppose there exists ` such that µi > 0, for i  `, and
✏(f⇤, `) = 0. Then let ⌘ = 1 and T =

log n
� log(1� 3

4�m`
)

. For a given � 2 (0, 1

4

), if n >
256 log

2
�

(�m`
��m`+1)

2

and m & (n log n)

⇣

1

�4
m`

+

log

4 n log

2 1
�

(�m`
��m`+1)

2n2�4
m`

⌘

, then with probability � (1 � 3�), for all t  T :

�

�

�

�

1p
n

(y � by(t))

�

�

�

�

 (1 � 3�m`

4

)

t
+

16

p

2 log 2/�p
n (�m` � �m`+1

)

.

Corollary 2 says that for fixed f⇤ and fixed distribution ⇢, nearly-linear network over-parameterization
m = ⇥(n log n) is enough for GD method to converge exponentially fast as long as 1

� = O(poly(n)).
Corollary 2 follow immediately from Theorem 4 by specifying the relevant parameters such as ⌘ and
T . To the best of our knowledge, this is the first result showing sufficiency of nearly-linear network
over-parameterization. Note that (�m` ��m`+1

) > 0 is the eigengap between the `–th and (`+1)–th
largest distinct eigenvalues of the integral operator, and is irrelevant to n. Thus, for fixed f⇤ and ⇢,
c
1

= ⇥

⇣

q

log

1

� /n
⌘

.

4 Application to Uniform Distribution and Polynomials

We illustrate our general results by applying them to the setting where the target functions are
polynomials and the feature vectors are uniformly distributed on the sphere Sd�1.

Up to now, we implicitly incorporate the bias bj in wj by augmenting the original wj ; correspondingly,
the data feature vector is also augmented. In this section, as we are dealing with distribution on the
original feature vector, we explicitly separate out the bias from wj . In particular, let b0

j ⇠ N (0, 1).
For ease of exposition, with a little abuse of notation, we use d to denote the dimension of the wj

and x before the above mentioned augmentation. With bias, (1) can be rewritten as fW ,b(x) =

1p
m

Pm
j=1

aj [hx, wji + bj ]
+

,where b = (b
1

, · · · , bm) are the bias of the hidden neurons, and the
kernel function in (12) becomes

K(x, s) =

hx, si + 1

2⇡

✓

⇡ � arccos

✓

1

2

(hx, si + 1)

◆◆

8 x, s 2 Sd�1. (16)

From Theorem 4 we know the convergence rate is determined by the eigendecomposition of the
target function f⇤ w. r. t. the eigenspaces of LK. When ⇢ is the uniform distribution on Sd�1, the
eigenspaces of LK are the spaces of homogeneous harmonic polynomials, denoted by H` for ` � 0.
Specifically, LK =

P

`�0

�`P`, where P` (for ` � 0) is the orthogonal projector onto H` and

�` =

↵`
d�2
2

`+ d�2
2

> 0 is the associated eigenvalue – ↵` is the coefficient of K(x, s) in the expansion into
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(a) Plot of �` with ` under different d. Here, the �` is
monotonically decreasing in `.

(b) Training with f⇤ being randomly generated linear
or quadratic functions with n = 1000, m = 2000.

Figure 2: Application to uniform distribution and polynomials.

Gegenbauer polynomials. Note that H` and H`0 are orthogonal when ` 6= `0. See appendix G for
relevant backgrounds on harmonic analysis on spheres.

Explicit expression of eigenvalues �` > 0 is available; see Fig. 2a for an illustration of �`. In
fact, there is a line of work on efficient computation of the coefficients of Gegenbauer polynomials
expansion [CI12].

If the target function f⇤ is a standard polynomial of degree `⇤, by [Wan, Theorem 7.4], we know f⇤
can be perfectly projected onto the direct sum of the spaces of homogeneous harmonic polynomials
up to degree `⇤. The following corollary follows immediately from Corollary 2.

Corollary 3. Suppose f⇤ is a degree `⇤ polynomial, and the feature vector xi’s are i.i.d. generated
from the uniform distribution over Sd�1. Let ⌘ = 1, and T = ⇥(log n). For a given � 2 (0, 1

4

), if
n = ⇥

�

log

1

�

�

and m = ⇥(n log n log

2

1

� ), then with probability at least 1 � �, for all t  T :

�

�

�

�

1p
n

(y � by(t))

�

�

�

�


✓

1 � 3c
0

4

◆t

+ ⇥(

r

log 1/�

n
), where c

0

= min {�`⇤ , �`⇤+1

} .

For ease of exposition, in the above corollary, ⇥(·) hides dependence on quantities such as eigengaps
– as they do not depend on n, m, and �. Corollary 3 and �` in Fig. 2a together suggest that the
convergence rate decays with both the dimension d and the polynomial degree `. This is validated in
Fig. 2a. It might be unfair to compare the absolute values of training errors since f⇤ are different.
Nevertheless, the convergence rates can be read from slope in logarithmic scale. We see that the
convergence slows down as d increases, and learning a quadratic function is slower than learning a
linear function.

Next we present the explicit expression of �`. For ease of exposition, let h(u) := K(x, s) where
u = hx, si. By [CI12, Eq. (2.1) and Theorem 2], we know

�` =

d � 2

2

1
X

k=0

h`+2k

2

`+2kk!

�

d�2

2

�

`+k+1

, (17)

where h` := h(`)
(0) is the `–th order derivative of h at zero, and the Pochhammer symbol (a)k is

defined recursively as (a)

0

= 1, (a)k = (a + k � 1)(a)k�1

for k 2 N. By a simple induction, it can
be shown that h

0

= h(0)

(0) = 1/3, and for k � 1,

hk =

1

2

1{k=1} � 1

⇡2

k

⇣

k (arccos 0.5)

(k�1)

+ 0.5 (arccos 0.5)

(k)

⌘

, (18)

where the computation of the higher-order derivative of arccos is standard. It follows from (17) and
(18) that �` > 0, and �

2` > �
2(`+1)

and �
2`+1

> �
2`+3

for all ` � 0. However, an analytic order
among �` is unclear, and we would like to explore this in the future.
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