A Convex Relaxation Barrier to Tight Robustness
Verification of Neural Networks

Hadi Salman* Greg Yang Huan Zhang
Microsoft Research Al Microsoft Research Al UCLA
hadi.salman@microsoft.com gregyang@microsoft.com huan@huan-zhang.com

Cho-Jui Hsieh Pengchuan Zhang
UCLA Microsoft Research Al
chohsieh@cs.ucla.edu penzhan@microsoft.com
Abstract

Verification of neural networks enables us to gauge their robustness against ad-
versarial attacks. Verification algorithms fall into two categories: exact verifiers
that run in exponential time and relaxed verifiers that are efficient but incom-
plete. In this paper, we unify all existing LP-relaxed verifiers, to the best of
our knowledge, under a general convex relaxation framework. This framework
works for neural networks with diverse architectures and nonlinearities and covers
both primal and dual views of neural network verification. Next, we perform
large-scale experiments, amounting to more than 22 CPU-years, to obtain exact
solution to the convex-relaxed problem that is optimal within our framework for
ReLU networks. We find the exact solution does not significantly improve upon
the gap between PGD and existing relaxed verifiers for various networks trained
normally or robustly on MNIST and CIFAR datasets. Our results suggest there
is an inherent barrier to tight verification for the large class of methods captured
by our framework. We discuss possible causes of this barrier and potential fu-
ture directions for bypassing it. Our code and trained models are available at
http://github.com/Hadisalman/robust-verify-benchmark’.

1 Introduction

A classification neural network f : R" — RX (where f;(z) should be thought of as the ith logit) is
considered adversarially robust with respect to an input x and its neighborhood S;,, () if

min fi=(z) — fi(a’) >0, where ¢* = argmax f;(z). (1)

' €Sin (x),iFAt* j

Many recent works have proposed robustness verification methods by lower-bounding eq. (1); the
positivity of this lower bound proves the robustness w.r.t. S;,, (). A dominant approach thus far has
tried to relax eq. (1) into a convex optimization problem, from either the primal view [Zhang et al.,
2018, Gehr et al., 2018, Singh et al., 2018, Weng et al., 2018] or the dual view [Wong and Kolter,
2018, Dvijotham et al., 2018b, Wang et al., 2018b]. In our first main contribution, we propose a
layer-wise convex relaxation framework that unifies these works and reveals the relationships between
them (Fig. 1). We further show that the performance of methods within this framework is subject to a
theoretical limit: the performance of the optimal layer-wise convex relaxation.

This then begs the question: is the road to fast and accurate robustness verification paved by just faster
and more accurate layer-wise convex relaxation that approaches the theoretical limit? In our second
main contribution, we answer this question in the negative. We perform extensive experiments

*Work done as part of the Microsoft Al Residency Program.
?Please see http://arxiv.org/abs/1902.08722 for the full and most recent version of this paper.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

http://github.com/Hadisalman/robust-verify-benchmark
https://www.microsoft.com/en-us/research/academic-program/microsoft-ai-residency-program/
http://arxiv.org/abs/1902.08722

- - ~N
Primal View // Linear Outer Bounds \ Legend
e ~ |) | Weaker / more relaxed
Abstract Transformers \ Neurify |
| (Wang et al., 2018) :
Similar strength
DeepZ !
eep I |
|
|

Dual View
] al., 2018) |
DeepPoly | | I l LP-Relaxed Dual
Singh et al., 2019 | (Wong & Kolter, 2018)
Singhetal. 2019 N crown /
l) (Zhang & Weng et N P

[

|

|

| |

| (Singhetal.,2018) ‘!

[| ' Fast-Lin
: I | (Weng & Zhang et
|

|

|

|

\

o~ o <
N\ <

i al., 2018) | £ jn s

N / g g
@ A _t R] e g
=3
S Optimal Convex Relaxation Corollary 4.3 | Lagrangian Dual
w “Problem (C)” With Eq. (6) & (7) ~ ¢=ssm==) (Dyijotham et al., 2018

pe|=do Qin etal., 2019)

Pe - ' F— '

S Con el ion 0 téD

. Barri Al
o ‘ : /= -

Neural Network Verification
“Problem (0)”

Po12 P

¥
Po

Figure 1: Relationship between existing relaxed algorithms and our framework. See Appendix D for
detailed discussions of each unlabeled arrow from the “Primal view” side.

with deep ReLU networks to compute the optimal layer-wise convex relaxation and compare with
the LP-relaxed dual formulation from Wong and Kolter [2018], the PGD attack from Madry et al.
[2017], and the mixed integer linear programming (MILP) exact verifier from Tjeng et al. [2019].
Over different models, sizes, training methods, and datasets (MNIST and CIFAR-10), we find that (i)
in terms of lower bounding the minimum l, adversarial distortion®, the optimal layer-wise convex
relaxation only slightly improves the lower bound found by Wong and Kolter [2018], especially when
compared with the upper bound provided by the PGD attack, which is consistently 1.5 to 5 times
larger; (ii) in terms of upper bounding the robust error, the optimal layer-wise convex relaxation does
not significantly close the gap between the PGD lower bound (or MILP exact answer) and the upper
bound from Wong and Kolter [2018]. Therefore, there seems to be an inherent barrier blocking our
progress on this road of layer-wise convex relaxation, and we hope this work provokes much thought
in the community on how to bypass it.

2 Preliminaries and Related Work

Exact verifiers and NP-completeness. For ReLU networks (piece-wise linear networks in general),
exact verifiers solve the robustness verification problem (1) by typically employing MILP solvers
[Cheng et al., 2017, Lomuscio and Maganti, 2017, Dutta et al., 2018, Fischetti and Jo, 2017, Tjeng
et al., 2019, Xiao et al., 2019] or Satisfiability Modulo Theories (SMT) solvers [Scheibler et al.,
2015, Katz et al., 2017, Carlini et al., 2017, Ehlers, 2017]. However, due to the NP-completeness for
solving such a problem [Katz et al., 2017, Weng et al., 2018], it can be really challenging to scale
these to large networks. It can take Reluplex [Katz et al., 2017] several hours to find the minimum
distortion of an example for a ReLU network with 5 inputs, 5 outputs, and 300 neurons. A recent
work by Tjeng et al. [2019] uses MILP to exactly verify medium-size networks, but the verification
time is very sensitive to how a network is trained; for example, it is fast for networks trained using
the LP-relaxed dual formulation of Wong and Kolter [2018], but much slower for normally trained
networks. A concurrent work by Xiao et al. [2019] trains networks with the objective of speeding up
the MILP verification problem, but this compromises on the performance of the network.

Relaxed and efficient verifiers. These verifiers solve a relaxed, but more computationally efficient,
version of (1), and have been proposed from different perspectives. From the primal view, one can
relax the nonlinearity in (1) into linear inequality constraints. This perspective has been previously
explored as in the framework of “abstract transformers™ [Singh et al., 2018, 2019a,b, Gehr et al.,

3The radius of the largest I ball in which no adversarial examples can be found.

2018, Mirman et al., 2018], via linear outer bounds of activation functions [Zhang et al., 2018, Weng
et al., 2018, Wang et al., 2018a,b], or via interval bound propagation [Gowal et al., 2018, Mirman
et al., 2018]. From the dual view, one can study the dual of the relaxed problem [Wong and Kolter,
2018, Wong et al., 2018] or study the dual of the original nonconvex verification problem [Dvijotham
et al., 2018b,a, Qin et al., 2019]. In this paper, we unify both views in a common convex relaxation
framework for NN verification, clarifying their relationships (as summarized in Fig. 1).

Raghunathan et al. [2018b] formulates the verification of ReLU networks as a quadratic programming
problem and then relaxes and solves this problem with a semidefinite programming (SDP) solver.
While our framework does not cover this SDP relaxation, it is not clear to us how to extend the
SDP relaxed verifier to general nonlinearities, for example max-pooling, which can be done in our
framework on the other hand. Other verifiers have been proposed to certify via an intermediary
step of bounding the local Lipschitz constant [Hein and Andriushchenko, 2017, Weng et al., 2018,
Raghunathan et al., 2018a, Zhang et al., 2019], and others have used randomized smoothing to certify
with high-probability [Lecuyer et al., 2018, Li et al., 2018, Cohen et al., 2019, Salman et al., 2019].
These are outside the scope of our framework.

Combining exact and relaxed verifiers, hybrid methods have shown some effectiveness [Bunel et al.,
2018, Singh et al., 2019b]. In fact, many exact verifiers also use relaxation as a subroutine to speed
things up, and hence can be viewed as hybrid methods as well. In this paper, we are not concerned
with such techniques but only focus on relaxed verifiers.

3 Convex Relaxation from the Primal View

Problem setting. In this paper, we assume that the neighborhood S, (x"°™) is a convex set. An
example of this is S;, (2"°™) = {z : ||z — 2"™|| < €}, which is the constraint on z in the £
adversarial attack model. We also assume that f(x) is an L-layer feedforward NN. For notational
simplicity, we denote {0,1,..., L — 1} by [L] and {2(®) 21 . . 2(=D1 by 2L We define f(x)
as,

2D = cOWOLO L pO) e [L], and f(z) = 2L = WL 4B (2)

where z(€ R”“), 20 e]R”(zl) L0 =g € R”(O) is the input, w0 e R”(zl)xn(l) and b € R”g)

. . . . Q) (+1) . .
are the weight matrix and bias vector of the I linear layer, and o(®) : R 5 R isa (nonlinear)

activation function like (leaky-)ReLU, the sigmoid family (including sigmoid, arctan, hyperbolic
tangent, etc), and the pooling family (MaxPool, AvgPool, etc). Our results can be easily extended to
networks with convolutional layers and skip connections as well, similar to what is done in Wong
et al. [2018], as these can be seen as special forms of (2).

Consider the following optimization problem O(c, co, L, 2", zIF1):

min A + o
(¢L+1] 2[L1)eD
st 20— W00 10 1 & (1), ©)
2D = 00y 1 e (1),
where the optimization domain D is the set of activations and preactivations
{2© 2 2B 20 M) A (E=DY satisfying the bounds 2z < 20 <z Vi € [L], i.e.,

D= {(x[L-i-l]’Z[L]) c 20 ¢ Sin (2™™), 20 <0<z 1 ¢ [L]}. (3)

Ifc! = WEHE,Z - ng), co = bSE) — 1), 211 = —o0, and ZI) = oo, then (O) is equivalent to
problem (1). However, when we have better information about valid bounds z[!! and zW of 2l we
can significantly narrow down the optimization domain and, as will be detailed shortly, achieve tighter
solutions when we relax the nonlinearities. We denote the minimal value of O(c, ¢, L, 2 (L], E[L]) by
p*(¢c,co, L, Pt), or just p¢, when no confusion arises.

Obtaining lower and upper bounds (z!“!, zI*]) by solving sub-problems. This can be done by
recursively solving (O) with specific choices of ¢ and ¢, which is a common technique used in many

tanh
tanh

tanh

step
relu 1o / step 10—
o, / Ser Ao

Figure 2: Optimal convex relaxations for common nonlinearities. For tanh, the relaxation contains
two linear segments and parts of the tanh function. For ReLU and the step function, the optimal
relaxations are written as 3 and 4 linear constraints, respectively. For z = max(z, y), the light orange
shadow indicates the pre-activation bounds for x and y, and the optimal convex relaxation is lower
bounded by the max function itself.

works [Wong and Kolter, 2018, Dvijotham et al., 2018b]. For example, one can obtain gy), a lower
bound of z](é), by solving O(Wée:)—r, b;z) 0,218, ZM); this shows that one can estimate z(!) and z()
inductively in [. However, we may have millions of sub-problems to solve because practical networks
can have millions of neurons. Therefore, it is crucial to have efficient algorithms to solve (O).

Convex relaxation in the primal space. Due to the nonlinear activation functions o("), the feasible
set of (O) is nonconvex, which leads to the NP-completeness of the neural network verification
problem [Katz et al., 2017, Weng et al., 2018]. One natural idea is to do convex relaxation of its
feasible set. Specifically, one can relax the nonconvex equality constraint z(+1) = ¢ (2(D) to
convex inequality constraints, i.e.,

min A A IO v AOPHONT b(l),g(l)(z(l)) < 20D < E(l)(z(”),w € [L], ©)

(zlL+1] z[L]))eD

where ¢(V)(z) (7" (2)) is convex (concave) and satisfies (V) (z) < 0 (2) <71 (2) for 2 < 2 <
z(. We denote the feasible set of (C) by Sc¢ and its minimum by pj;. Naturally, we have that Se is
convex and p; < pp,. For example, Ehlers [2017] proposed the following relaxations for the ReLU
function o gery(2) = max(0, z) and MaxPool oy p(2) = maxy zx:

QReLU(Z) = ma‘X(Ov Z)v EReLU(Z) = Zig (Z - é)y 4
aup(2) = max 2, > zk:(zk —Z) +m]?x2k, omp(z) = zk:(zk +2z) — Max Zy. &)}

The optimal layer-wise convex relaxation. As a special case, we consider the optimal layer-wise
convex relaxation, where

Topi(2) is the greatest convex function majored by o,

(6)

Topt(2) is the smallest concave function majoring o

A precise definition can be found in (12) in Appendix B. In Fig. 2, we show the optimal convex
relaxation for several common activation functions. It is easy to see that (4) is the optimal convex
relaxation for ReLL.U, but (5) is not optimal for the MaxPool function. Under mild assumptions
(non-interactivity as defined in definition B.2), the optimal convex relaxation of a nonlinear layer
r = 0(2), i.e., its convex hull, is simply o, (2) < z < Topx(2) (see proposition B.3). We denote the
corresponding optimal relaxed problem as Cop, With its objective papl.

We emphasize that by optimal, we mean the optimal convex relaxation of the single nonlinear

constraint (D) = (1) (z(l)) (see Proposition (B.3)) instead of the optimal convex relaxation of the
nonconvex feasible set of the original problem (O). As such, techniques as in [Anderson et al., 2018,
Raghunathan et al., 2018b] are outside our framework; see appendix C for more discussions.

Greedily solving the primal with linear bounds. As another special case, when there are exactly
one linear upper bound and one linear lower bound for each nonlinear layer in (C) as follows:

700y =g®,0 150 GOO) = (OO0 4D, 7
the objective p can be greedily bounded in a layer-by-layer manner. We can derive one linear
upper and one linear lower bound of 2% := ¢z + ¢ with respect to z(“—1), using the fact that

4

() = Tol=D(z(E=1)) 4 ¢ and that ¢(F~ 1) (2(E~1) is linearly upper and lower bounded by
7LD (z(=D) and (P~ (2(£=1). Because a linear combination of linear bounds (coefficients
are related to the entries in c) can be relaxed to a single linear bound, we can apply this technique
again and replace z(Z~1) with its upper and lower bounds with respect to z(Z~2), obtaining the bound
for 2(F) with respect to 2(F~=2). Applying this repeatedly eventually leads to linear lower and upper
bounds of z(%) with respect to the input z(*) € S;,, (z"™).

This perspective covers Fast-Lin [Weng et al., 2018], DeepZ [Singh et al., 2018] and Neurify [Wang
et al., 2018b], where the proposed linear lower bound has the same slope as the upper bound, i.e.,
a¥ =@ The resulting shape is referred to as a zonotope in Gehr et al. [2018] and Singh et al.
[2018]. In CROWN [Zhang et al., 2018] and DeepPoly [Singh et al., 2019a], this restriction is lifted
and they can achieve better verification results than Fast-Lin and DeepZ. Fig. 1 summarizes the
relationships between these algorithms. Importantly, each of these works has its own merits on
solving the verification problem; our focus here is to give a unified view on how they perform convex
relaxation of the original verification problem (QO) in our framework. See Appendix D for more
discussions and other related algorithms.

4 Convex Relaxation from the Dual View

We now tackle the verification problem from the dual view and connect it to the primal view.

Strong duality for the convex relaxed problem. Asin Wong and Kolter [2018], we introduce the
dual variables for (C) and write its Lagrangian dual as

L—-1
(L] (2] Y2 ; T .(L) OT O _ w0 _ 0

ge(u, AT, AT = (m[L+$L?L])eD co et ;M (= W)
L—1 -1 ®)

_ ZA(Z)T(QE(HU —Q(D(Z(l))) + Z)\<)T(x(Hl) —E(D(z(l))).

1=0 1=0
By weak duality [Boyd and Vandenberghe, 2004],
dr = (] L] X[L] <

C — max gC(/J’ [FAY 9) = pCa (9)

ul AE >0, 3 >0

but in fact we can show strong duality under mild conditions as well (note that the following result
cannot be obtained by trivially applying Slater’s condition; see appendix E and fig. 4).

Theorem 4.1 (p; = d). Assume that both o® and Y have a finite Lipschitz constant in the
domain [z, f(l)] for eachl € [L]. Then strong duality holds between (C) and (9).

The optimal layer-wise dual relaxation. Theorem 4.1 shows that taking the dual of the layer-wise
convex relaxed problem (C) cannot do better than the original relaxation. To obtain a tighter dual
problem, one could directly study the Lagrangian dual of the original (O),

L—-1 L—-1
go (M, A1) = mine 2P 4 o + ; pOT O Z WO 0 0y 4 lz; ADT (G0HD _ 0,0y,
B B (10)
where the min is taken over { (z!*+1] 2[11) € D}. This was first proposed in Dvijotham et al. [2018b].
Note, again, by weak duality,

do = max, g0l N < ot an

and d, would seem to be strictly better than d;. Unfortunately, they turn out to be equivalent:

Theorem 4.2 (d, = dapl). Assume that the nonlinear layer o") is non-interactive (definition B.2)

and the optimal layer-wise relaxation g,(,ﬁ,), and E(()ﬁ,), are defined in (6). Then the lower bound da,”

provided by the dual of the optimal layer-wise convex-relaxed problem (9) and d, provided by the
dual of the original problem (11) are the same.

The complete proof is in Appendix F *. Theorem 4.2 combined with the strong duality result of
Theorem 4.1 implies that the primal relaxation (C) and the two kinds of dual relaxations, (9) and (11),
are all blocked by the same barrier. As concrete examples:

Corollary 4.3 (papl = d,). Suppose that the nonlinear activation functions oW foralll € [L] are
(for example) among the following: ReLU, step, ELU, sigmoid, tanh, polynomials and max pooling
with disjoint windows. Assume that @(,ﬁ,), and E(()j,), are defined in (6), respectively. Then we have that
the lower bound péﬁm provided by the primal optimal layer-wise relaxation (C) and d, provided by

the dual relaxation (11) are the same.

Greedily solving the dual with linear bounds. When the relaxed bounds ¢ and & are linear as
defined in (7), the dual objective (9) can be lower bounded as below:

L—-1
v =ds > ; <b(l)T ()\(z)>+ —pOT (/\(l)), _ b(l)T'u(l)> Tep— sup (W(O)TH(O)>T$’

T ES;ip (z"M)
where the dual variables (u!%1, A[]) are determined by a backward propagation

AL = o 0 = g0 (Am) +a® (w) ;A —WOT 0 e 1],
+

We provide the derivation of this algorithm in Appendix G. It turns out that this algorithm can exactly
recover the algorithm proposed in Wong and Kolter [2018], where

D0y = a®0 FOEWOY = 20 0 _),

= 00

and 0 < ¥ < 1 represents the slope of the lower bound. When o) = %, the greedy

algorithm also recovers Fast-Lin [Weng et al., 2018], which explains the arrow from Wong and Kolter
[2018] to Weng et al. [2018] in Fig. 1. When a(¥) is chosen adaptively as in CROWN [Zhang et al.,
2018], the greedy algorithm then recovers CROWN, which explains the arrow from Wong and Kolter
[2018] to Zhang et al. [2018] in Fig. 1. See Appendix D for more discussions on the relationship
between the primal and dual greedy solvers.

S Optimal LP-relaxed Verification

In the previous sections, we presented a framework that subsumes all existing layer-wise convex-
relaxed verification algorithms except that of Raghunathan et al. [2018b]. For ReLU networks,
being piece-wise linear, these correspond exactly to the set of all existing LP-relaxed algorithms, as
discussed above. We showed the existence of a barrier, pj;, that limits all such algorithms. Is this just
theoretical babbling or is this barrier actually problematic in practice?

In the next section, we perform extensive experiments on deep ReLU networks, evaluating the tightest
convex relaxation afforded by our framework (denoted LP-ALL) against a greedy dual algorithm
(Algorithm 1 of Wong and Kolter [2018], denoted LP-GREEDY) as well as another algorithm LP-
LAST, intermediate in speed and accuracy between them. Both LP-GREEDY and LP-LAST solve the
bounds zX, zlH] by setting the dual variables heuristically (see previous section), but LP-GREEDY
solves the adversarial loss in the same manner while LP-LAST solves this final LP exactly. We also
compare them with the opposite bounds provided by PGD attack [Madry et al., 2017], as well as
exact results from MILP [Tjeng et al., 2019] °.

For the rest of the main text, we are only concerned with ReLLU networks, so (C) subject to (4) is in
fact an LP.

*Theorem 2 in Dvijotham et al. [2018b] is a special case of our Theorem 4.2, when applied to ReLU networks.
Our proof makes use of the Fenchel-Moreau theorem to deal with general nonlinearities, which is different from
that in Dvijotham et al. [2018b].

5Note that in practice (as in [Tjeng et al., 2019]), MILP has a time budget, and usually not every sample can
be verified within that budget, so that in the end we still obtain only lower and upper bounds given by samples
verified to be robust or nonrobust

5.1 LP-ALL Implementation Details

In order to exactly solve the tightest LP-relaxed verification problem of a ReLU network, two steps
are required: (A) obtaining the tightest pre-activation upper and lower bounds of all the neurons in
the NN, excluding those in the last layer, then (B) solving the LP-relaxed verification problem exactly
for the last layer of the NN.

Step A: Obtaining Pre-activation Bounds. This can be done by solving sub-problems of the
orginial relaxed problem (C) subject to (4). Given a NN with L layers, for each layer Iy € [Lg], we

obtain a lower (resp. upper) bound g;h) (resp. Egl(’)) of 24", for all neurons § € [n)]. We do this

J
by setting
L+ 1y, ¢!« ngo) (resp. ¢! —ng’)), co +— bg-l“) (resp. cg < —b§-l°))

in (C) and computing the exact optimum. However, we need to solve an LP for each neuron, and

practical networks can have millions of them. We utilize the fact that in each layer [y, computing the

bounds Eg-l(’) and gg-l") for each j € [n{!)] can proceed independently in parallel. Indeed, we design a

scheduler to do so on a cluster with 1000 CPU-nodes. See Appendix J for details.

Step B: Solving the LP-relaxed Problem for the Last Layer. After obtaining the pre-activation
bounds on all neurons in the network using step (A), we solve the LP in (C) subject to (4) for all

j € [no)]\{;"™} obtained by setting
L+ Lo, CT < Wﬁf:n?‘? - WiLO), Co b;f;g]) - b]('LU)

again in (C) and computing the exact minimum. Here, 7"°™ is the true label of the data point "™ at
which we are verifying the network. We can certify the network is robust around x"°™ iff the solutions
of all such LPs are positive, i.e. we cannot make the true class logit lower than any other logits.
Again, note that these LPs are also independent of each other, so we can solve them in parallel.

Given any "™, LP-ALL follows steps (A) then (B) to produce a certificate whether the network is
robust around a given datapoint or not. LP-LAST on the other hand solves only step (B), and instead
of doing (A), it finds the preactivation bounds greedily as in Algorithm 1 of Wong and Kolter [2018].

6 Experiments

We conduct two experiments to assess the tightness of LP-ALL: 1) finding certified upper bounds
on the robust error of several NN classifiers, 2) finding certified lower bounds on the minimum
adversarial distortion € using different algorithms. All experiments are conducted on MNIST and/or
CIFAR-10 datasets.

Architectures. We conduct experiments on a range of ReL.U-activated feedforward networks.
MLP-A and MLP-B refer to multilayer perceptrons: MLP-A has 1 hidden layer with 500 neurons,
and MLP-B has 2 hidden layers with 100 neurons each. CNN-SMALL, CNN-WIDE-K, and CNN-
DEEP-K are the ConvNet architectures used in Wong et al. [2018]. Full details are in Appendix I.1.

Training Modes. We conduct experiments on networks trained with a regular cross-entropy (CE)
loss function and networks trained to be robust. These networks are identified by a prefix correspond-
ing to the method used to train them: LPD when the LP-relaxed dual formulation of Wong and Kolter
[2018] is used for robust training, ADV when adversarial examples generated using PGD are used for
robust training, as in Madry et al. [2017], and NOR when the network is normally trained using the
CE loss function. Training details are in Appendix 1.2.

Experimental Setup. We run experiments on a cluster with 1000 CPU-nodes. The total run time
amounts to more than 22 CPU-years. Appendix J provides additional details about the computational
resources and the scheduling scheme used, and Appendix K provides statistics of the verification
time in these experiments.

Table 1: Certified bounds on the robust error on the test set of MNIST for normally and robustly
trained networks. The prefix of each network corresponds to the training method used: ADV for PGD
training [Madry et al., 2017], NOR for normal CE loss training, and LPD when the LP-relaxed dual
formulation of Wong and Kolter [2018] is used for robust training.

TEST LOWER BOUND UPPER BOUND
NETWORK ‘ ERROR pGgp MILP MILP LP
-ALL LP-GREEDY
ADV-MLP-B 0.03 1.53% 4.17% 4.18% 5.78% 10.04% 13.40%
ADV-MLP-B 0.05 1.62% 6.06% 6.11% 11.38% 23.29% 33.09%
ADV-MLP-B 0.1 3.33% 15.86% 16.25% 34.37% 61.59% 71.34%
ADV-MLP-A 0.1 4.18% 11.51% 14.36% 30.81% 60.14% 67.50%
Nor-MLP-B 0.02 2.05% 10.06% 10.16% 13.48% 26.41% 35.11%
Nor-MLP-B 0.03 2.05% 20.37% 20.43% 48.67% 65.70% 75.85%
Nor-MLP-B 0.05 2.05% 53.37% 53.37% 94.04% 97.95% 99.39%
LPD-MLP-B 0.1 4.09% 13.39% 14.45% 14.45% 17.24% 18.32%
LPD-MLP-B 0.2 15.72% 33.85% 36.33% 36.33% 37.50% 41.67%
LPD-MLP-B 0.3 39.22% 57.29% 59.85% 59.85% 60.17% 66.85%
LPD-MLP-B 04 6797% 81.85% 83.17% 83.17% 83.62% 87.89%

6.1 Certified Bounds on the Robust Error

Table 1 presents the clean test errors and (upper and lower) bounds on the true robust errors for a
range of classifiers trained with different procedures on MNIST. For both ADV- and LPD-trained
networks, the € in Table 1 denotes the [,,-norm bound used for training and robust testing; for
NoRmally-trained networks, € is only used for the latter.

Lower bounds on the robust error are calculated by finding adversarial examples for inputs that are
not robust. This is done by using PGD, a strong first-order attack, or using MILP [Tjeng et al., 2019].
Upper bounds on the robust error are calculated by providing certificates of robustness for input that
is robust. This is done using MILP, the dual formulation (LP-GREEDY) presented by Wong and
Kolter [2018], or our LP-ALL algorithm.

For the MILP results, we use the code accompanying the paper by Tjeng et al. [2019]. We run the
code in parallel on a cluster with 1000 CPU-nodes, and set the MILP solver’s time limit to 3600
seconds. Note that this time limit is reached for ADV and NOR, and therefore the upper and lower
bounds are separated by a gap that is especially large for some of the NORmally trained networks.
On the other hand, for LPD-trained networks, the MILP solver finishes within the time limit, and
thus the upper and lower bounds match.

Results. For all NorRmally and ADV-trained networks, we see that the certified upper bounds using
LP-GREEDY and LP-ALL are very loose when we compare the gap between them to the lower
bounds found by PGD and MILP. As a sanity check, note that LP-ALL gives a tighter bound than
LP-GREEDY in each case, as one would expect. Yet this improvement is not significant enough to
close the gap with the lower bounds.

This sanity check also passes for LPD-trained networks, where the LP-GREEDY-certified robust
error upper bound is, as expected, much closer to the true error (given by MILP here) than for other
networks. For € = 0.1, the improvement of LP-ALL-certified upper bound over LP-GREEDY is at
most modest, and the PGD lower bound is tighter to the true error. For large €, the improvement is
much more significant in relative terms, but the absolute improvement is only 4 — 7%. In this large €
regime, however, both the clean and robust errors are quite large, so the tightness of LP-ALL is less
useful.

6.2 Certified Bounds on the Minimum Adversarial Distortion ¢

We are interested in searching for the minimum adversarial distortion €, which is the radius of the
largest [, ball in which no adversarial examples can be crafted. An upper bound on ¢ is calculated
using PGD, and lower bounds are calculated using LP-GREEDY, LP-LAST, or our LP-ALL, all via
binary search. Since solving LP-ALL is expensive, we find the e-bounds only for ten samples of the
MNIST and CIFAR-10 datasets. In this experiment, both ADV- and LPD-networks are trained with
an [, maximum allowed perturbation of 0.1 and 8/255 on MNIST and CIFAR-10, respectively. See
Appendix L.1 for details. Fig. 3 and 8 in the Appendix show the median percentage gap (defined in

[cNN-sMALL —
CNN-WIDE-1 e
CNN-WIDE-2 —
CNN-WIDE-4 —
CNN-WIDE-8 e
CNN-DEEP-1 ———
CNN-DEEP-2 i
MLP-[9]-500 —
MLP-[9]-100 —
LMLP-[2]-200 § ————— ==l

[cNN-sMALL p—
CNN-WIDE-1
CNN-WIDE-2 §
CNN-WIDE-4 §

NORMAL

E CNN-WIDE-8 | -

<C |CNN-DEEP-1 § -—
CNN-DEEP-2
MLP-[9]-500 i
MLP-[9]-100 =
LR e ———
[CNN-SMALL =
CNN-WIDE-1 —_

A | CNN-WIDE- 2 — LP-GREEDY

& |enn-wiDE-4 = I LP-LasT

| EEEEEE——————
S
CNN-DEEP-1 e E—— LP-ALL
P 191100 e ——
WGaEElY — —— ——cI
- 0 10 20 30 40 50 60 70 80 920
Median percentage gap (%)

€PGD _ ;g €PGD

d =5
ELP-X €LP-x

Figure 3: The median percentage gap between the convex-relaxed algorithms (LP-ALL, LP-LAST,
and LP-GREEDY) and PGD estimates of the minimum adversarial distortion € on ten samples of
MNIST. The error bars correspond to 95% confidence intervals. We highlight the 1.5x and 5x gaps
between the e value estimated by PGD, and those estimated by the LP-relaxed algorithms. For more
details, please refer to Table 2 in Appendix L.2.

Appendix L.2) between the convex-relaxed algorithms and PGD bounds of € for MNIST and CIFAR,
respectively. Details are reported in Tables 2 and 3 in Appendix L.2.

On MNIST, the results show that for all networks trained NORmally or via ADV, the certified lower
bounds on € are 1.5 to 5 times smaller than the upper bound found by PGD; for LPD trained networks,
below 1.5 times smaller. On CIFAR-10, the bounds are between 1.5 and 2 times smaller across all
models. The smaller gap for LPD is of course as expected following similar observations in prior
work [Wong and Kolter, 2018, Tjeng et al., 2019]. Furthermore, the improvement of LP-ALL and
LP-LAST over LP-GREEDY is not significant enough to close the gap with the PGD upper bound.
Note that similar results hold as well for randomly initialized networks (no training). To avoid clutter,
we report these in Appendix M.

7 Conclusions and Discussions

In this work, we first presented a layer-wise convex relaxation framework that unifies all previous
LP-relaxed verifiers, in both primal and dual spaces. Then we performed extensive experiments to
show that even the optimal convex relaxation for ReLU networks in this framework cannot obtain
tight bounds on the robust error in all cases we consider here. Thus any method will face a convex
relaxation barrier as soon as it can be described by our framework. We look at how to bypass this
barrier in Appendix A.

Note that different applications have different requirements for the tightness of the verification, so
our barrier could be a problem for some but not for others. In so far as the ultimate goal of robustness
verification is to construct a training method to lower certified error, this barrier is not necessarily
problematic — some such method could still produce networks for which convex relaxation as
described by our framework produces accurate robust error bounds. An example is the recent work
of Gowal et al. [2018] which shows that interval bound propagation, which often leads to loose
certification bounds, can still be used for verified training, and is able to achieve state-of-the-art
verified accuracy when carefully tuned. However, without a doubt, in all cases, tighter estimates
should lead to better results, and we reveal a definitive ceiling on most current methods.

References

Ross Anderson, Joey Huchette, Christian Tjandraatmadja, and Juan Pablo Vielma. Strong convex
relaxations and mixed-integer programming formulations for trained neural networks. arXiv
preprint arXiv:1811.01988, 2018.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Rudy R Bunel, Ilker Turkaslan, Philip Torr, Pushmeet Kohli, and Pawan K Mudigonda. A unified
view of piecewise linear neural network verification. In Advances in Neural Information Processing
Systems, pages 4795-4804, 2018.

Nicholas Carlini, Guy Katz, Clark Barrett, and David L Dill. Provably minimally-distorted adversarial
examples. arXiv preprint arXiv:1709.10207, 2017.

Chih-Hong Cheng, Georg Niihrenberg, and Harald Ruess. Maximum resilience of artificial neural
networks. In International Symposium on Automated Technology for Verification and Analysis,
pages 251-268. Springer, 2017.

Jeremy M Cohen, Elan Rosenfeld, and J Zico Kolter. Certified adversarial robustness via randomized
smoothing. arXiv preprint arXiv:1902.02918, 2019.

Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language for convex
optimization. Journal of Machine Learning Research, 17(83):1-5, 2016.

A. Domabhidi, E. Chu, and S. Boyd. ECOS: An SOCP solver for embedded systems. In European
Control Conference (ECC), pages 3071-3076, 2013.

Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. Output range analysis
for deep feedforward neural networks. In NASA Formal Methods Symposium, pages 121-138.
Springer, 2018.

Krishnamurthy Dvijotham, Sven Gowal, Robert Stanforth, Relja Arandjelovic, Brendan O’Donoghue,
Jonathan Uesato, and Pushmeet Kohli. Training verified learners with learned verifiers. arXiv
preprint arXiv:1805.10265, 2018a.

Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal, Timothy Mann, and Pushmeet Kohli. A
dual approach to scalable verification of deep networks. UAI, 2018b.

Ruediger Ehlers. Formal verification of piece-wise linear feed-forward neural networks. In In-
ternational Symposium on Automated Technology for Verification and Analysis, pages 269-286.
Springer, 2017.

Matteo Fischetti and Jason Jo. Deep neural networks as 0-1 mixed integer linear programs: A
feasibility study. arXiv preprint arXiv:1712.06174,2017.

Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Martin
Vechev. Al 2: Safety and robustness certification of neural networks with abstract interpretation.
In 2018 IEEE Symposium on Security and Privacy (SP), 2018.

Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin, Jonathan
Uesato, Timothy Mann, and Pushmeet Kohli. On the effectiveness of interval bound propagation
for training verifiably robust models. arXiv preprint arXiv:1810.12715, 2018.

Matthias Hein and Maksym Andriushchenko. Formal guarantees on the robustness of a classifier
against adversarial manipulation. In Advances in Neural Information Processing Systems (NIPS),
pages 22662276, 2017.

Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex: An efficient
smt solver for verifying deep neural networks. In International Conference on Computer Aided
Verification, pages 97—117. Springer, 2017.

Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and Suman Jana. Certified
robustness to adversarial examples with differential privacy. arXiv preprint arXiv:1802.03471,
2018.

10

Bai Li, Changyou Chen, Wenlin Wang, and Lawrence Carin. Second-order adversarial attack and
certifiable robustness. arXiv preprint arXiv:1809.03113, 2018.

Alessio Lomuscio and Lalit Maganti. An approach to reachability analysis for feed-forward relu
neural networks. arXiv preprint arXiv:1706.07351, 2017.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Matthew Mirman, Timon Gehr, and Martin Vechev. Differentiable abstract interpretation for provably
robust neural networks. In International Conference on Machine Learning, pages 3575-3583,
2018.

Chongli Qin, Krishnamurthy Dj Dvijotham, Brendan O’Donoghue, Rudy Bunel, Robert Stanforth,
Sven Gowal, Jonathan Uesato, Grzegorz Swirszcz, and Pushmeet Kohli. Verification of non-linear
specifications for neural networks. ICLR, 2019.

Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Certified defenses against adversar-
ial examples. International Conference on Learning Representations (ICLR), arXiv preprint
arXiv:1801.09344, 2018a.

Aditi Raghunathan, Jacob Steinhardt, and Percy S Liang. Semidefinite relaxations for certifying
robustness to adversarial examples. In Advances in Neural Information Processing Systems, pages
10900-10910, 2018b.

Ralph Tyrell Rockafellar. Convex analysis. Princeton university press, 2015.

Hadi Salman, Jerry Li, Ilya Razenshteyn, Pengchuan Zhang, Huan Zhang, Sebastien Bubeck, and
Greg Yang. Provably robust deep learning via adversarially trained smoothed classifiers. In
Advances in Neural Information Processing Systems, pages 11289-11300, 2019.

Karsten Scheibler, Leonore Winterer, Ralf Wimmer, and Bernd Becker. Towards verification of
artificial neural networks. In MBMV, pages 30-40, 2015.

Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Piischel, and Martin Vechev. Fast and
effective robustness certification. In Advances in Neural Information Processing Systems, pages
10825-10836, 2018.

Gagandeep Singh, Timon Gehr, Markus Piischel, and Martin Vechev. An abstract domain for
certifying neural networks. Proceedings of the ACM on Programming Languages, 3(POPL):41,
2019a.

Gagandeep Singh, Timon Gehr, Markus Piischel, and Martin Vechev. Robustness certification with
refinement. /CLR, 2019b.

Vincent Tjeng, Kai Y. Xiao, and Russ Tedrake. Evaluating robustness of neural networks with mixed
integer programming. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=HyGIdiRqtm.

Shigi Wang, Yizheng Chen, Ahmed Abdou, and Suman Jana. Mixtrain: Scalable training of formally
robust neural networks. arXiv preprint arXiv:1811.02625, 2018a.

Shigi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. Efficient formal safety
analysis of neural networks. In Advances in Neural Information Processing Systems, pages
6369-6379, 2018b.

Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Duane Boning, Inderjit S
Dhillon, and Luca Daniel. Towards fast computation of certified robustness for ReLU networks. In
International Conference on Machine Learning, 2018.

Eric Wong and Zico Kolter. Provable defenses against adversarial examples via the convex outer
adversarial polytope. In International Conference on Machine Learning (ICML), pages 5283-5292,
2018.

11

https://openreview.net/forum?id=HyGIdiRqtm

Eric Wong, Frank Schmidt, Jan Hendrik Metzen, and J Zico Kolter. Scaling provable adversarial
defenses. Advances in Neural Information Processing Systems (NIPS), 2018.

Kai Y. Xiao, Vincent Tjeng, Nur Muhammad (Mahi) Shafiullah, and Aleksander Madry. Training for
faster adversarial robustness verification via inducing reLU stability. In International Conference
on Learning Representations, 2019. URL https://openreview.net/forum?id=BJfIVjAcKm.

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neural network
robustness certification with general activation functions. In Advances in Neural Information
Processing Systems (NIPS), dec 2018.

Huan Zhang, Pengchuan Zhang, and Cho-Jui Hsieh. Recurjac: An efficient recursive algorithm for
bounding jacobian matrix of neural networks and its applications. AAAI Conference on Artificial
Intelligence, 2019.

12

https://openreview.net/forum?id=BJfIVjAcKm

