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Abstract

Stochastic compositional optimization arises in many important machine learning
applications. The objective function is the composition of two expectations of
stochastic functions, and is more challenging to optimize than vanilla stochastic
optimization problems. In this paper, we investigate the stochastic compositional
optimization in the general smooth non-convex setting. We employ a recently
developed idea of Stochastic Recursive Gradient Descent to design a novel algo-
rithm named SARAH-Compositional, and prove a sharp Incremental First-order
Oracle (IFO) complexity upper bound for stochastic compositional optimization:
O((n + m)1/2ε−2) in the finite-sum case and O(ε−3) in the online case. Such
a complexity is known to be the best one among IFO complexity results for
non-convex stochastic compositional optimization. Numerical experiments on risk-
adverse portfolio management validate the superiority of SARAH-Compositional
over a few rival algorithms.

1 Introduction

We consider the general smooth, non-convex compositional optimization problem of minimizing the
composition of two expectations of stochastic functions:

min
x∈Rd

{Φ(x) ≡ (f ◦ g)(x)} , (1)

where the outer and inner functions f : Rl → R, g : Rd → Rl are defined as f(y) := Ev[fv(y)],
g(x) := Ew[gw(y)], v and w are index random variables, and each component fv, gw are smooth
but not necessarily convex. Compositional optimization can be used to formulate many important
machine learning problems, e.g. reinforcement learning (Sutton and Barto, 1998), risk management
(Dentcheva et al., 2017), multi-stage stochastic programming (Shapiro et al., 2009), deep neural net
(Yang et al., 2019), etc. We list a specific application instance that can be written in the stochastic
compositional form of (1), namely the risk-adverse portfolio management problem, formulated as

min
x∈RN

− 1

T

T∑
t=1

〈rt, x〉+
1

T

T∑
t=1

(
〈rt, x〉 −

1

T

T∑
s=1

〈rs, x〉

)2

, (2)

∗Partial work was performed when the author was an intern at Tencent AI Lab. Full version of this paper is
available at: http://arxiv.org/abs/1912.13515
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Algorithm Finite-sum Online
SCGD (Wang et al., 2017a) unknown ε−8

Acc-SCGD (Wang et al., 2017a) unknown ε−7

SCGD (Wang et al., 2017b) unknown ε−4.5

SCVR / SC-SCSG (Liu et al., 2017) (n+m)4/5ε−2 ε−3.6

VRSC-PG (Huo et al., 2018) (n+m)2/3ε−2 unknown
SARAH-Compositional (this work) (n+m)1/2ε−2 ε−3

Table 1: Comparison of IFO complexities with different algorithms for general non-convex problem.

where rt ∈ RN denotes the returns of N assets at time t, and x ∈ RN denotes the investment quantity
corresponding to N assets. The goal is to maximize the return while controlling the variance of the
portfolio. (2) can be written as a compositional optimization problem with two functions

g(x) =

[
x1, x2, . . . , xN ,

1

T

T∑
s=1

〈rs, x〉

]>
, (3)

f(w) = − 1

T

T∑
t=1

〈rt, w\(N+1)〉+
1

T

T∑
t=1

(
〈rt, w\(N+1)〉 − wN+1

)2
, (4)

where w\(N+1) denotes the (column) subvector consisting of the first N coordinates of w, and wN+1

denotes the (N + 1)-th coordinate of w.

Compared with vanilla stochastic optimization problem where the optimizer is allowed to access
the stochastic gradients, stochastic compositional problem (1) is more difficult to solve. Classical
algorithms for solving (1) are often more computationally challenging. This is mainly due to the
nonlinear structure of the composition function with respect to the random index pair (v, w). Treating
the objective function as an expectation Evfv(g(x)), computing each iterate of the gradient estimation
involves recalculating g(x) = Ewgw(x), which is either time-consuming or impractical. To tackle
such weakness in practice, Wang et al. (2017a) firstly introduce a two-time-scale algorithm called
Stochastic Compositional Gradient Descent (SCGD) along with its accelerated (in Nesterov’s sense)
variant Acc-SCGD, and provide a first convergence rate analysis to that problem. Subsequently,
Wang et al. (2017b) proposed accelerated stochastic compositional proximal gradient algorithm
(ASC-PG) which improves over the upper bound complexities in Wang et al. (2017a). Furthermore,
variance reduced gradient methods designed specifically for compositional optimization on non-
convex settings arises from Liu et al. (2017) and later generalized to the nonsmooth setting (Huo et al.,
2018). These approaches aim at getting variance reduced estimators of g, ∂g and ∂g(x)∇f(g(x)),
respectively. Such success signals the necessity and possibility of designing a special algorithm for
non-convex objectives with better convergence rates.

In this paper, we propose an efficient algorithm called SARAH-Compositional for the stochastic
compositional optimization problem (1). For notational simplicity, we let n,m ≥ 1 and the index
pair (v, w) be uniformly distributed over the product set [1, n]× [1,m], i.e.

Φ(x) =
1

n

n∑
i=1

fi

 1

m

m∑
j=1

gj(x)

 . (5)

We use the same notation for the online case, in which case either n or m can be infinite.

A fundamental theoretical question for stochastic compositional optimization is the Incremental
First-order Oracle (IFO) (the number of individual gradient and function evaluations; see Definition 1
in §2 for a precise definition) complexity bounds for stochastic compositional optimization. Our new
SARAH-Compositional algorithm is developed by integrating the iteration of Stochastic Recursive
Gradient Descent (Nguyen et al., 2017), shortened as SARAH,2 with the stochastic compositional
optimization formulation (Wang et al., 2017a). The motivation of this approach is that SARAH

2This is also referred to as stochastic recursive variance reduction method, incremental variance reduction
method or SPIDER-BOOST in various recent literatures. We stick to name the algorithm after SARAH to
respect to our best knowledge the earliest discovery of that algorithm.
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with specific choice of stepsizes is known to be optimal in stochastic optimization and regarded as
a cutting-edge variance reduction technique, with significantly reduced oracle access complexities
than earlier variance reduction method (Fang et al., 2018). We prove that SARAH-Compositional
can reach an IFO computational complexity of O(min

(
(n+m)1/2ε−2, ε−3

)
), improving the best

known result of O(min
(
(n+m)2/3ε−2, ε−3.6

)
) in non-convex compositional optimization. See

Table 1 for detailed comparison.

Related Works Classical first-order methods such as gradient descent (GD), accelerated gradient
descent (AGD) and stochastic gradient descent (SGD) have received intensive attetions in both
convex and non-convex optimization (Nesterov, 2004; Ghadimi and Lan, 2016; Li and Lin, 2015).
When the objective can be written in a finite-sum or online/expectation structure, variance-reduced
gradient (a.k.a. variance reduction) techniques including SAG (Schmidt et al., 2017), SVRG (Xiao
and Zhang, 2014; Allen-Zhu and Hazan, 2016; Reddi et al., 2016), SDCA (Shalev-Shwartz and
Zhang, 2013, 2014), SAGA (Defazio et al., 2014), SCSG (Lei et al., 2017), SNVRG (Zhou et al.,
2018), SARAH/SPIDER (Nguyen et al., 2017; Fang et al., 2018; Wang et al., 2019; Nguyen et al.,
2019), etc., can be employed to improve the theoretical convergence properties of classical first-order
algorithms. Notably in the smooth nonconvex setting, Fang et al. (2018) recently proposed the
SPIDER-SFO algorithm which non-trivially hybrids the iteration of stochastic recursive gradient
descent (SARAH) (Nguyen et al., 2017) with the normalized gradient descent. In the representative
case of batch-size 1, SPIDER-SFO adopts a small step-length that is proportional to ε2 ∧ εn−1/2

where ε is the squared targeted accuracy, and (by rebooting the SPIDER tracking iteration once every
n ∧ O(ε−2) iterates) the variance of the stochastic estimator can be constantly controlled by O(ε2).
For finding ε-accurate solution purposes, recent works Wang et al. (2019); Nguyen et al. (2019)
discovered two variants of the SARAH algorithm that achieve the same complexity as SPIDER-
SFO (Fang et al., 2018) and SNVRG (Zhou et al., 2018).3 The theoretical convergence property of
SARAH/SPIDER methods in the smooth non-convex case outperforms that of SVRG, and is provably
optimal under a set of mild assumptions (Arjevani et al., 2019; Fang et al., 2018; Nguyen et al., 2019;
Wang et al., 2019).

It turns out that when solving compositional optimization problem (1), classical first-order methods
for optimizing a single objective function can either be non-applicable or it brings at least O(m)
queries to calculate the inner function g. To remedy this issue, Wang et al. (2017a,b) considered the
stochastic setting and proposed the SCGD algorithm to calculate or estimate the inner finite-sum
more efficiently, achieving a polynomial rate that is independent of m. Later on, Lian et al. (2017);
Liu et al. (2017); Huo et al. (2018) and Lin et al. (2018) merged SVRG method into the compositional
optimization framework to do variance reduction on all three steps of the estimation. In stark contrast,
our work adopts the SARAH/SPIDER method which is theoretically more efficient than the SVRG
method in the non-convex compositional optimization setting.

Contributions This work makes two contributions as follows. First, we propose a new algo-
rithm for stochastic compositional optimization called SARAH-Compositional, which operates
SARAH/SPIDER-type recursive variance reduction to estimate relevant quantities. Second, we
conduct theoretical analysis for both online and finite-sum cases, which verifies the superiority of
SARAH-Compositional over the best known previous results. In the finite-sum case, we obtain
a complexity of (n + m)1/2ε−2 which improves over the best known complexity (n + m)2/3ε−2

achieved by Huo et al. (2018). In the online case we obtain a complexity of ε−3 which improves the
best known complexity ε−3.6 obtained in Liu et al. (2017).

Notational Conventions Throughout the paper, we treat the parameters Lg, Lf , LΦ,Mg,Mf ,∆ and
σ as global constants. Let ‖•‖ denote the Euclidean norm of a vector or the operator norm of a matrix
induced by Euclidean norm, and let ‖ • ‖F denotes the Frobenius norm. For fixed T ≥ t ≥ 0 let xt:T
denote the sequence {xt, ..., xT }. Let Et[•] denote the conditional expectation E[•|x0, x1, ..., xt].
Let [1, n] = {1, ..., n} and S denote the cardinality of a multi-set S ⊆ [1, n] of samples (a generic
set that permits repeated instances). The averaged sub-sampled stochastic estimator is denoted as
AS = (1/S)

∑
i∈S
Ai where the summation counts repeated instances. We denote pn = O(qn) if

there exist some constants 0 < c < C <∞ such that cqn ≤ pn ≤ Cqn as n becomes large. Other
notations are explained at their first appearances.

3Wang et al. (2019) names their algorithm SPIDER-BOOST since it can be seen as the SPIDER-SFO
algorithm with relaxed step-length restrictions.
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Organization The rest of our paper is organized as follows. §2 formally poses our algorithm and
assumptions. §3 presents the convergence rate theorem and §4 presents numerical experiments that
apply our algorithm to the task of portfolio management. We conclude our paper in §5. Proofs of
convergence results for finite-sum and online cases and auxiliary lemmas are deferred to §A and §B
in the supplementary material.

2 SARAH for Stochastic Compositional Optimization

Recall our goal is to solve the compositional optimization problem (1), i.e. to minimize Φ(x) =
f (g(x)) where

f(y) :=
1

n

n∑
i=1

fi(y), g(x) :=
1

m

m∑
j=1

gj(x).

Here for each j ∈ [1,m] and i ∈ [1, n] the functions gj : Rd → Rl and fi : Rl → R. We can
formally take the derivative to the function Φ(x) and obtain (via the chain rule) the gradient descent
iteration

xt+1 = xt − η[∂g(xt)]
>∇f(g(xt)) , (6)

where the ∂ operator computes the Jacobian matrix of the smooth mapping, and the gradient operator
∇ is only taken with respect to the first-level variable. As discussed in §1, it can be either impossible

(online case) or time-consuming (finite-sum case) to estimate the terms ∂g(xt) =
1

m

m∑
j=1

∂gj(xt)

and g(xt) =
1

m

m∑
j=1

gj(xt) in the iteration scheme (6). In this paper, we design a novel algorithm

(SARAH-Compositional) based on Stochastic Compositional Variance Reduced Gradient method (see
Lin et al. (2018)) yet hybriding with the stochastic recursive gradient method Nguyen et al. (2017).
As the readers see later, our SARAH-Compositional is more efficient than all existing algorithms for
non-convex compositional optimization.

We introduce some definitions and assumptions. First, we assume the algorithm has accesses to
an Incremental First-order Oracle (IFO) in our black-box environment (Lin et al., 2018); also see
(Agarwal and Bottou, 2015; Woodworth and Srebro, 2016) for vanilla optimization case:
Definition 1 (IFO). (Lin et al., 2018) The Incremental First-order Oracle (IFO) returns, when some
x ∈ Rd and j ∈ [1,m] are inputted, the vector-matrix pair [gj(x), ∂gj(x)] or when some y ∈ Rl and
i ∈ [1, n] are inputted, the scalar-vector pair [fi(y),∇fi(y)].

Second, our goal in this work is to find an ε-accurate solution, defined as
Definition 2 (ε-accurate solution). We call x ∈ Rd an ε-accurate solution to problem (1), if

‖∇Φ(x)‖ ≤ ε. (7)

It is worth remarking here that the inequality (7) can be modified to ‖∇Φ(x)‖ ≤ Cε for some global
constant C > 0 without hurting the magnitude of IFO complexity bounds.

Let us first make some assumptions regarding to each component of the (compositional) objective
function. Analogous to Assumption 1(i) in Fang et al. (2018), we make the following finite gap
assumption:
Assumption 1 (Finite gap). We assume that the algorithm is initialized at x0 ∈ Rd with

∆ := Φ(x0)− Φ∗ <∞ , (8)
where Φ∗ denotes the global minimum value of Φ(x).

We make the following smoothness and boundedness assumptions, which are standard in recent
compositional optimization literatures (e.g. Lian et al. (2017); Huo et al. (2018); Lin et al. (2018)).
Assumption 2 (Smoothness). There exist Lipschitz constants Lg, Lf , LΦ > 0 such that for i ∈ [1, n],
j ∈ [1,m] we have

‖∂gj(x)− ∂gj(x′)‖F ≤ Lg‖x− x′‖ for x, x′ ∈ Rd,

‖∇fi(y)−∇fi(y′)‖ ≤ Lf‖y − y′‖ for y, y′ ∈ Rl,∥∥[∂gj(x)]>∇fi(g(x))− [∂gj(x
′)]>∇fi(g(x′))

∥∥ ≤ LΦ‖x− x′‖ for x, x′ ∈ Rd.

(9)
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Algorithm 1 SARAH-Compositional, Online Case (resp. Finite-Sum Case)

Input: T, q, x0, η, S
L
1 , S

L
2 , S

L
3

for t = 0 to T − 1 do
if mod (t, q) = 0 then

Draw SL
1 indices with replacement SL1,t ⊆ [1,m] and let gt =

1

SL
1

∑
j∈SL

1,t

gj(xt)

(resp. gt = g (xt) in finite-sum case)

Draw SL
2 indices with replacement SL2,t ⊆ [1,m] and let Gt =

1

SL
2

∑
j∈SL

2,t

∂gj(xt)

(resp. Gt = ∂g (xt) in finite-sum case)

Draw SL
3 indices with replacement SL3,t ⊆ [1, n] and let Ft = (Gt)

>

[
1

SL
3

∑
i∈SL

3,t

∇fi(gt)

]
(resp. Ft = (Gt)

>∇f (gt) in finite-sum case)
else

Draw one index jt ∈ [1,m] and let gt = gjt(xt)− gjt(xt−1) + gt−1 and

Gt = ∂gjt(xt)− ∂gjt(xt−1) + Gt−1

Draw one index it ∈ [1, n] and let

Ft = (Gt)
>∇fit (gt)− (Gt−1)

>∇fit (gt−1) + Ft−1

end if
Update xt+1 = xt − ηFt

end for
return Output x̃ chosen uniformly at random from {xt}T−1

t=0

Here for the purpose of using stochastic recursive estimation of ∂g(x), we slightly strengthen the
smoothness assumption by adopting the Frobenius norm on the left hand of the first line of (9).

Assumption 3 (Boundedness). There exist boundedness constants Mg,Mf > 0 such that for
i ∈ [1, n], j ∈ [1,m] we have

‖∂gj(x)‖ ≤Mg for x ∈ Rd,

‖∇fi(y)‖ ≤Mf for y ∈ Rl.
(10)

Notice that applying mean-value theorem for vector-valued functions to (10) gives another Lipschitz
condition

‖gj(x)− gj(x′)‖ ≤Mg‖x− x′‖ for x, x′ ∈ Rd , (11)

and analogously for fi(y). It turns out that under the above two assumptions, a choice of LΦ in (9)
can be expressed as a polynomial of Lf , Lg,Mf ,Mg. For clarity purposes in the rest of this paper,
we adopt the following typical choice of LΦ

LΦ ≡MfLg +M2
gLf , (12)

whose applicability can be verified via a simple application of the chain rule. We integrate both
finite-sum and online cases into one algorithm SARAH-Compositional and write it in Algorithm 1.

3 Convergence Rate Analysis

In this section, we aim to justify that our proposed SARAH-Compositional algorithm provides IFO
complexities of O((n + m)1/2ε−2) in the finite-sum case and O(ε−3) in the online case, which
supersedes the concurrent and comparative algorithms (see more in Table 1).

Let us first analyze the convergence in the finite-sum case. In this case we have SL1 = [1,m],
SL2 = [1,m], SL3 = [1, n]. Involved analysis leads us to conclude
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Theorem 1 (Finite-sum case). Suppose Assumptions 1, 2 and 3 in §2 hold, let SL1 = SL2 = [1,m],
SL3 = [1, n], q = (2m+ n)/3, and set the stepsize

η =
1√

6(2m+ n)
(
M4

gL
2
f +M2

fL
2
g

) . (13)

Then for the finite-sum case, SARAH-Compositional Algorithm 1 outputs an x̃ satisfying
E‖∇Φ(x̃)‖2 ≤ ε2 in

√
2m+ n ·

√
M4

gL
2
f +M2

fL
2
g ·
√

24[Φ(x0)− Φ∗]

ε2
(14)

iterates. The IFO complexity to achieve an ε-accurate solution is bounded by

2m+ n+
√

2m+ n ·
√
M4

gL
2
f +M2

fL
2
g ·
√

1944[Φ(x0)− Φ∗]

ε2
. (15)

Theorem 1 allows us to achieve an ε-accurate solution, and a simple application of Markov’s
inequality allows us to derive high-probability results for achieving ε-accurate solutions. Compared
with Fang et al. (2018), one observes that Theorem 1 indicates an IFO complexity upper bound of
O(m+ n+ (m+ n)1/2ε−2) to achieve an ε-accurate solution, sharing a similar form with that of
SARAH/SPIDER for non-convex stochastic optimization when m+ n is regarded as the number of
individual functions.4 SPIDER-SFO (as a SARAH variant) is optimal in both finite-sum and online
cases, in the sense that it matches the theoretical lower bound (Fang et al., 2018; Arjevani et al.,
2019), which makes it tempting to claim that our proposed SARAH-Compositional as its extension is
also optimal. We emphasize that the set of assumptions for compositional optimization is different
from vanilla optimization, and claiming optimality of the IFO complexity requires a corresponding
lower bound result, left as a future direction to explore.

Let us then analyze the convergence in the online case, where we sample minibatches SL1 ,SL2 ,SL3 of
relevant quantities instead of the ground truth once every q iterates. To characterize the estimation
error, we put in one additional finite variance assumption:
Assumption 4 (Finite Variance). We assume that there exists H1, H2 and H3 as the upper bounds
on the variance of the functions f(y), ∂g(x), and g(x), respectively, such that

E‖gi(x)− g(x)‖2 ≤ H1 for x ∈ Rd,

E‖∂gi(x)− ∂g(x)‖2 ≤ H2 for x ∈ Rd,

E‖∇fi(y)−∇f(y)‖2 ≤ H3 for y ∈ Rl.

(16)

From Assumptions 2 and 3 we can easily verify, via triangle inequality and convexity of norm, that
H2 can be chosen as 4M2

g andH3 can be chosen as 4M2
f . On the contrary, H1 cannot be represented

as a function of boundedness and smoothness constants. We conclude the following theorem for the
online case:

Theorem 2 (Online case). Suppose Assumptions 1, 2, 3 and 4 in §2 hold, let SL
1 =

3H1M
2
gL

2
f

ε2
,

SL
2 =

3H2M
2
f

ε2
, SL

3 =
3H3M

2
g

ε2
, let q =

D0

3ε2
where we denote the noise-relevant parameter

D0 := 3
(
H1M

2
gL

2
f +H2M

2
f +H3M

2
g

)
, (17)

and set the stepsize
η =

ε√
6D0

(
M4

gL
2
f +M2

fL
2
g

) . (18)

Then for the online case, SARAH-Compositional Algorithm 1 outputs an x̃ satisfying E‖∇Φ(x̃)‖2 ≤
2ε2 in √

D0 ·
√
M4

gL
2
f +M2

fL
2
g ·
√

24[Φ(x0)− Φ∗]

ε3
(19)

4Here and in below, the smoothness and boundedness parameters and Φ(x0) − Φ∗ are treated as constants.
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Figure 1: Experiment on the portfolio management. The x-axis is the number of gradients calculations
divided by the number of samples, the y-axis is the function value gap.

iterates. The IFO complexity to achieve an ε-accurate solution is bounded by

D0

ε2
+
√
D0 ·

√
M4

gL
2
f +M2

fL
2
g ·
√

1944[Φ(x0)− Φ∗]

ε3
. (20)

We see that in the online case, the IFO complexity to achieve an ε-accurate solution is upper bounded
by O(ε−3). Due to space limits, the detailed proofs of Theorems 1 and 2 are deferred to the
supplementary material.

4 Experiments

In this section, we study performance of our algorithm to risk-adverse portfolio management problem
and conduct numerical experiments to support our theory.5 We follow the setups in Huo et al. (2018);
Liu et al. (2017) and compare with existing algorithms for compositional optimization. Readers are
referred to Wang et al. (2017a) for more tasks our algorithm can be potentially applied for.

Recall that in §1, we formulate our portfolio management problem as a mean-variance optimization
problem (2), which can be formulated as a compositional optimization problem (1). As it satisfies
Assumptions 1–4 in a bounded domain of optimization, it serves as a good example to validate our
theory. For convenience we repeat the display here:

min
x∈RN

− 1

T

T∑
t=1

〈rt, x〉+
1

T

T∑
t=1

(
〈rt, x〉 −

1

T

T∑
s=1

〈rs, x〉

)2

, (2)

where x = {x1, x2, . . . , xN} ∈ RN denotes the quantities invested at every asset i = 1, . . . , N .

When applying SARAH-Compositional we adopt the online case where we pick SL
1 , S

L
2 , S

L
3 as the

mini-batch sizes once every q steps. Datasets include different portfolio datas formed on Size and
Operating Profitability.6 We choose to use 6 different 25-portfolio datasets where N = 25 and T =
7240, same as the ones adopted by Lin et al. (2018). Specifically, we choose SL

1 = SL
2 = SL

3 = 2000
(roughly optimized to improve the numerical performance). The results are shown in Figure 1.

5The source code can be found at http://github.com/angeoz/SCGD. Space limiting, we refer the readers
to the full version of this paper for the experiment studies of other applications including reinforcement learning
and stochastic neighborhood embedding.

6http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

7

http://github.com/angeoz/SCGD
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html


We demonstrate the comparison among our algorithm SARAH-Compositional, SCGD (Wang
et al., 2017a), ASC-PG (Wang et al., 2017b) and VRSC-PG (Huo et al., 2018) (serving as a
baseline for variance-reduced stochastic compositional optimization methods). We plot the ob-
jective function value gap and gradient norm against IFO complexity (measured by gradients
calculation) for all four algorithms in two covariance settings and six real-world datasets. We
observe that SARAH-Compositional outperforms all comparable algorithms. Our range of stepsize is{

1× 10−5, 1× 10−4, 2× 10−4, 5× 10−4, 1× 10−3, 1× 10−2
}

, and we plot the learning curve for
each algorithm corresponding to their individually optimized stepsize. For SCGD and ASC-PG algo-
rithms, we fix the extrapolation parameter β as 0.9. The q-parameters in both SARAH-Compositional
and VRSC-PG algorithms are set as 50.

The toy experiment provides evidence that our proposed SARAH-Compositional algorithm applied to
risk-adverse portfolio management problem achieves state-of-the art performance. Moreover, we note
that due to the small mini-batch sizes, basic SCGD achieves a less satisfactory result, a phenomenon
also shown by Huo et al. (2018); Lian et al. (2017).

5 Conclusion

In this paper, we propose a novel algorithm called SARAH-Compositional for solving stochastic
compositional optimization problems using the idea of a recently proposed variance reduced gradient
method. Our algorithm achieves both outstanding theoretical and experimental results. Theoretically,
we show that the SARAH-Compositional algorithm can achieve desirable efficiency and IFO upper
bound complexities for finding an ε-accurate solution of non-convex compositional problems in
both finite-sum and online cases. Theoretically, we show that the SARAH-Compositional algorithm
can achieve improved convergence rates and IFO complexities for finding an ε-accurate solution
to non-convex compositional problems in both finite-sum and online cases. Experimentally, we
compare our new compositional optimization method with a few rival algorithms for the task of
portfolio management and demonstrate its superior performance. Future directions include handling
the non-smooth case and the theory of lower bounds for stochastic compositional optimization. We
hope this work can provide new perspectives to both optimization and machine learning communities
interested in compositional optimization.

References
Agarwal, A. and Bottou, L. (2015). A lower bound for the optimization of finite sums. In International

Conference on Machine Learning, pages 78–86.

Allen-Zhu, Z. and Hazan, E. (2016). Variance reduction for faster non-convex optimization. In
International Conference on Machine Learning, pages 699–707.

Arjevani, Y., Carmon, Y., Duchi, J. C., Foster, D. J., Srebro, N., and Woodworth, B. (2019). Lower
bounds for non-convex stochastic optimization. arXiv preprint arXiv:1912.02365.

Defazio, A., Bach, F., and Lacoste-Julien, S. (2014). Saga: A fast incremental gradient method
with support for non-strongly convex composite objectives. In Advances in neural information
processing systems, pages 1646–1654.
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