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Abstract

Computing approximate nearest neighbors in high dimensional spaces is a
central problem in large-scale data mining with a wide range of applications
in machine learning and data science. A popular and effective technique in
computing nearest neighbors approximately is the locality-sensitive hashing
(LSH) scheme. In this paper, we aim to develop LSH schemes for distance
functions that measure the distance between two probability distributions,
particularly for f -divergences as well as a generalization to capture mutual
information loss. First, we provide a general framework to design LHS
schemes for f -divergence distance functions and develop LSH schemes for
the generalized Jensen-Shannon divergence and triangular discrimination in
this framework. We show a two-sided approximation result for approximation
of the generalized Jensen-Shannon divergence by the Hellinger distance,
which may be of independent interest. Next, we show a general method of
reducing the problem of designing an LSH scheme for a Krĕın kernel (which
can be expressed as the difference of two positive definite kernels) to the
problem of maximum inner product search. We exemplify this method by
applying it to the mutual information loss, due to its several important
applications such as model compression.

1 Introduction

A central problem in machine learning and data mining is to find top-k similar items to each
item in a dataset. Such problems, referred to as approximate nearest neighbor problems, are
especially challenging in high dimensional spaces and are an important part of a wide range
of data mining tasks such as finding near-duplicate pages in a corpus of images or web pages,
or clustering items in a high-dimensional metric space. A popular technique for solving these
problems is the locality-sensitive hashing (LSH) technique [19]. In this method, items in a
high-dimensional metric space are first mapped into buckets (via a hashing scheme) with
the property that closer items have a higher chance of being assigned to the same bucket.
LSH-based nearest neighbor methods limit their scope of search to the items that fall into
the same bucket in which the target item resides 1.
Locality sensitive hashing was first introduced and studied by [19]. They provide a family of
basic locality-sensitive hash functions for the Hamming distance in a d-dimensional space

1We note that LSH is a popular data-independent technique for nearest neighbor search. Another
category of nearest neighbor search algorithms, referred to as data-dependent techniques, are
learning-to-hash methods [37] which learn a hash function that maps each item to a compact code.
However, this line of work is out of the scope of this paper.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



and for the L1 distance in a d-dimensional Euclidean space. They also show that such a
family of hash functions provides a randomized (1 + ε)-approximation algorithm for the
nearest neighbor search problem with sublinear space and sublinear query time. Following
[19], several families of locality-sensitive hash functions have been designed and implemented
for different metrics, each serving a certain application. We summarize further results in
this area in Section 1.1.
In several applications, data points can be represented as probability distributions. One
example is the space of users’ browsed web pages, read articles or watched videos. In order
to represent such data, one can represent each user by a distribution of documents they
read, and the documents by topics included in those documents. Other examples are time
series distributions, content of documents, or images that can be represented as histograms.
Particularly, analysis of similarities in time series distributions or documents can be used
in the context of attacks, and spam detection. Analysis of user similarities can be used in
recommendation systems and online advertisement.
In fact, many of the aforementioned applications deal with huge datasets and require very
time efficient algorithms to find similar data points. These applications motivated us to study
LSH functions for distributions, especially for distance measures with information-theoretic
justifications. In fact, in addition to k-nearest neighbor, LSH functions can be used to
implement very fast distributed algorithms for traditional clusterings such as k-means [7].
Recently, Mao et al. [26] noticed the importance and lack of LSH functions for the distance
of distributions, especially for information-theoretic measures. They attempted to design an
LSH to capture the famous Jensen-Shannon (JS) divergence. However, instead of directly
providing locality-sensitive hash functions for Jensen-Shannon divergence, they take two
steps to turn this distance function into a new distance function that is easier to hash. They
first looked at a less common divergence measure S2JSD which is the square root of two
times the JS divergence. Then they defined a related distance function S2JSDapprox

new , which
was obtained by only keeping the linear terms in the Taylor expansion of the logarithm in
the expression of S2JSD and designed a locality-sensitive hash function for the new measure
S2JSDapprox

new . This is an interesting work; however, unfortunately it does not provide any
bound on the actual JS divergence using the LSH that they designed for S2JSDapprox

new . Our
results resolve this issue by providing LSH schemes with provable guarantees for information-
theoretic distance measures including the JS divergence and its generalizations.
Mu and Yan [27] proposed an LSH algorithm for non-metric data by embedding them into a
reproducing kernel Krĕın space. However, their method is indeed data-dependent. Given a
finite set of data pointsM, they compute the distance matrix D whose (i, j)-entry is the
distance between i and j, where both i and j are data points inM. Data is embedded into
a reproducing kernel Krĕın space by performing singular value decomposition on a transform
of the distance matrix D. The embedding changes if we are given another dataset.
Our Contributions. In this paper, we first study LSH schemes for f -divergences2 between
two probability distributions. We first in Proposition 1 provide a simple reduction tool for
designing LSH schemes for the family of f -divergence distance functions. This proposition
is not hard to prove but might be of independent interest. Next we use this tool and
provide LSH schemes for two examples of f -divergence distance functions, Jensen-Shannon
divergence and triangular discrimination. Interestingly our result holds for a generalized
version of Jensen-Shannon divergence. We apply this tool to design and analyze an LSH
scheme for the generalized Jensen-Shannon (GJS) divergence through approximation by the
squared Hellinger distance. We use a similar technique to provide an LSH for triangular
discrimination. Our approximation is provably lower bounded by a factor 0.69 for the Jensen-
Shannon divergence and is lower bounded by a factor 0.5 for triangular discrimination. The
approximation result of the generalized Jensen-Shannon divergence by the squared Hellinger
requires a more involved analysis and the lower and upper bounds depend on the weight
parameter. This approximation result may be of independent interest for other machine
learning tasks such as approximate information-theoretic clustering [12]. Our technique may
be useful for designing LSH schemes for other f -divergences.

2The formal definition of f -divergence is presented in Section 2.2.
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Next, we propose a general approach to designing an LSH for Krĕın kernels. A Krĕın
kernel is a kernel function that can be expressed as the difference of two positive definite
kernels. Our approach is built upon a reduction to the problem of maximum inner product
search (MIPS) [33, 28, 41]. In contrast to our LSH schemes for f -divergence functions via
approximation, our approach for Krĕın kernels involves no approximation and is theoretically
lossless. Contrary to [27], this approach is data-independent. We exemplify our approach
by designing an LSH function specifically for mutual information loss. Mutual information
loss is of our particular interest due to its several important applications such as model
compression [6, 17], and compression in discrete memoryless channels [20, 30, 42].

1.1 Other Related Work

Datar et al. [16] designed an LSH for Lp distances using p-stable distributions. Broder
[10] designed MinHash for the Jaccard similarity. LSH for other distances and similarity
measures were proposed later, for example, angle similarity [11], spherical LSH on a unit
hypersphere [34], rank similarity [40], and non-metric LSH [27]. Li et al. [24] demonstrated
that uniform quantization outperforms the standard method in [16] with a random offset.
Gorisse et al. [18] proposed an LSH family for χ2 distance by relating it to the L2 distance
via an algebraic transform. Interested readers are referred to a more comprehensive survey of
existing LSH methods [38]. Another related problem is the construction of feature maps of
positive definite kernels. A feature map maps a data point into a usually higher-dimensional
space such that the inner product in that space agrees with the kernel in the original space.
Explicit feature maps for additive kernels are introduced in [35]. Bregman divergences are
another broad class of distances that arise naturally in practical applications. The nearest
neighbor search problem for Bregman divergences were studied in [3, 2, 1].

2 Preliminaries

2.1 Locality-Sensitive Hashing

LetM be the universal set of items (the database), endowed with a distance function D.
Ideally, we would like to have a family of hash functions such that for any two items p and
q in M that are close to each other, their hash values collide with a higher probability,
and if they reside far apart, their hash values collide with a lower probability. A family of
hash functions with the above property is said to be locality-sensitive. A hash value is also
known as a bucket in other literature. Using this metaphor, hash functions are imagined
as sorters that place items into buckets. If hash functions are locality-sensitive, it suffices
to search the bucket into which an item falls if one wants to know its nearest neighbors.
The (r1, r2, p1, p2)-sensitive LSH family formulates the intuition of locality sensitivity and is
formally defined in Definition 1.
Definition 1 ([19]). Let H = {h :M→ U} be a family of hash functions, where U is the
set of possible hash values. Assume that there is a distribution h ∼ H over the family of
functions. This family H is called (r1, r2, p1, p2)-sensitive (r1 < r2 and p1 > p2) for D, if for
∀p, q ∈M the following statements hold: (1) if D(p, q) ≤ r1, then Prh∼H[h(p) = h(q)] ≥ p1;
(2) if D(p, q) > r2, then Prh∼H[h(p) = h(q)] ≤ p2.

We would like to note that the gap between the high probability p1 and p2 can be amplified
by constructing a compound hash function that concatenates multiple functions from an LSH
family. For example, one can construct g :M→ UK such that g(p) , (h1(p), . . . , hK(p)) for
∀p ∈M, where h1, . . . , hK are chosen from the LSH family H. This conjunctive construction
reduces the amount of items in one bucket. To improve the recall, an additional disjunction
is introduced. To be precise, if g1, . . . , gL are L such compound hash functions, we search all
of the buckets g1(p), . . . , gL(p) in order to find the nearest neighbors of p.

2.2 f-Divergence

Let P and Q be two probability measures associated with a common sample space Ω. We
write P � Q if P is absolutely continuous with respect to Q, which requires that for every
subset A of Ω, Q(A) = 0 imply P (A) = 0.
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Let f : (0,∞)→ R be a convex function that satisfies f(1) = 0. If P � Q, the f -divergence
from P to Q [14] is defined by

Df (P ‖ Q) =
∫

Ω
f

(
dP

dQ

)
dQ, (1)

provided that the right-hand side exists, where dP
dQ is the Radon-Nikodym derivative of P

with respect to Q. In general, an f -divergence is not symmetric: Df (P ‖ Q) 6= Df (Q ‖ P ).
If fKL(t) = t ln t + (1 − t), the fKL-divergence yields the KL divergence DKL(P ‖ Q) =∫

Ω ln dP
dQdP [13]. If hel(t) = 1

2 (
√
t− 1)2, the hel-divergence is the squared Hellinger distance

H2(P,Q) = 1
2
∫

Ω(
√
dP −

√
dQ)2 [15]. If δ(t) = (t−1)2

t+1 , the δ-divergence is the triangular
discrimination (also known as Vincze-Le Cam distance) [22, 36]. If the sample space is finite,
the triangular discrimination between P and Q is given by ∆(P ‖ Q) =

∑
i∈Ω

(P (i)−Q(i))2

P (i)+Q(i) .

The Jensen-Shannon (JS) divergence is a symmetrized version of the KL divergence. If
P � Q, Q� P and M = (P +Q)/2, the JS divergence is defined by

DJS(P ‖ Q) = 1
2DKL(P ‖M) + 1

2DKL(Q ‖M) . (2)

2.3 Mutual Information Loss and Generalized Jensen-Shannon Divergence

The mutual information loss arises naturally in many machine learning tasks, such as
information-theoretic clustering [17] and categorical feature compression [6].
Suppose that two random variables X and C obeys a joint distribution p(X,C). This joint
distribution can model a dataset where X denotes the feature value of a data point and C
denotes its label [6]. Let X and C denote the support of X and C (i.e., the universal set of
all possible feature values and labels), respectively. Consider clustering two feature values
into a new combined value. This operation can be represented by the following map

πx,y : X → X \ {x, y} ∪ {z} such that πx,y(t) =
{
t, t ∈ X \ {x, y} ,
z, t = x, y ,

where x and y are the two feature values to be clustered and z /∈ X is the new combined feature
value. To make the dataset after applying the map πx,y preserve as much information of the
original dataset as possible, one has to select two feature values x and y such that the mutual
information loss incurred by the clustering operation mil(x, y) = I(X;C)− I(πx,y(X);C) is
minimized, where I(·; ·) is the mutual information between two random variables [13]. Note
that the mutual information loss (MIL) divergence mil : X × X → R is symmetric in both
arguments and always non-negative due to the data processing inequality [13].
Next, we motivate the generalized Jensen-Shannon divergence. If we let P and Q be the
conditional distribution of C given X = x and X = y, respectively, such that P (c) = p(C =
c|X = x) and Q(c) = p(C = c|X = y), the mutual information loss can be re-written as

λDKL(P ‖Mλ) + (1− λ)DKL(Q ‖Mλ) , (3)

where λ = p(x)
p(x)+p(y) and the distribution Mλ = λP + (1−λ)Q. Note that (3) is a generalized

version of (2). Therefore, we define the generalized Jensen-Shannon (GJS) divergence between
P andQ [25, 5, 17] byDλ

GJS(P ‖ Q) = λDKL(P ‖Mλ)+(1−λ)DKL(Q ‖Mλ), where λ ∈ [0, 1]
andMλ = λP+(1−λ)Q. We immediately have D1/2

GJS(P ‖ Q) = DJS(P ‖ Q), which indicates
that the JS divergence is indeed a special case of the GJS divergence when λ = 1/2. The GJS
divergence has another equivalent definition Dλ

GJS(P ‖ Q) = H(Mλ)−λH(P )− (1−λ)H(Q),
where H(·) denotes the Shannon entropy [13]. In contrast to the MIL divergence, the GJS
Dλ

GJS(· ‖ ·) is not symmetric in general as the weight λ ∈ [0, 1] is fixed and not necessarily
equal to 1/2. We will show in Lemma 1 that the GJS divergence is an f -divergence.

2.4 Positive Definite Kernel and Krĕın Kernel

We first review the definition of a positive definite kernel.
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Definition 2 (Positive definite kernel [32]). Let X be a non-empty set. A symmetric,
real-valued map k : X ×X → R is a positive definite kernel on X if for all positive integer n,
real numbers a1, . . . , an ∈ R, and x, . . . , xn ∈ X , it holds that

∑n
i=1
∑n
j=1 aiajk(xi, xj) ≥ 0.

A kernel is said to be a Krĕın kernel if it can be represented as the difference of two positive
definite kernels. The formal definition is presented below.
Definition 3 (Krĕın kernel [29]). Let X be a non-empty set. A symmetric, real-valued map
k : X × X → R is a Krĕın kernel on X if there exists two positive definite kernels k1 and k2
on X such that k(x, y) = k1(x, y)− k2(x, y) holds for all x, y ∈ X .

3 LSH Schemes for f-Divergences

We build LSH schemes for f -divergences based on approximation via another f -divergence if
the latter admits an LSH family. If Df and Dg are two divergences associated with convex
functions f and g as defined by (1), the approximation ratio of Df (P ‖ Q) to Dg(P ‖ Q)
is determined by the ratio of the functions f and g, as well as the ratio of P to Q (to be
precise, infi∈Ω

P (i)
Q(i) ) [31].

Proposition 1 (Proof in Appendix A.4). Let β0 ∈ (0, 1), L, U > 0 and let f and g be two
convex functions (0,∞)→ R that obey f(1) = 0, g(1) = 0, and f(t), g(t) > 0 for every t 6= 1.
Let P be a set of probability measures on a finite sample space Ω such that for every i ∈ Ω
and P,Q ∈ P, 0 < β0 ≤ P (i)

Q(i) ≤ β−1
0 . Assume that for every β ∈ (β0, 1) ∪ (1, β−1

0 ), it holds
that 0 < L ≤ f(β)

g(β) ≤ U <∞. If H forms an (r1, r2, p1, p2)-sensitive family for g-divergence
on P, then it is also an (Lr1, Ur2, p1, p2)-sensitive family for f -divergence on P.

Proposition 1 provides a general strategy of constructing LSH families for f -divergences.
The performance of such LSH families depends on the tightness of the approximation. In
Sections 3.1 and 3.2, as instances of the general strategy, we derive concrete results for the
generalized Jensen-Shannon divergence and triangular discrimination, respectively.

3.1 Generalized Jensen-Shannon Divergence

First, Lemma 1 shows that the GJS divergence is indeed an instance of f -divergence.
Lemma 1 (Proof in Appendix A.3). Define mλ(t) = λt ln t − (λt + 1 − λ) ln(λt + 1 − λ).
For any λ ∈ [0, 1], mλ(t) is convex on (0,∞) and mλ(1) = 0. Furthermore, mλ-divergence
yields the GJS divergence with parameter λ.

We choose to approximate it via the squared Hellinger distance, which plays a central role in
the construction of the hash family with desired properties.
The approximation guarantee is established in Theorem 1. We show that the ratio of
Dλ

GJS(P ‖ Q) to H2(P,Q) is upper bounded by the function U(λ) and lower bounded by
the function L(λ). Furthermore, Theorem 1 shows that U(λ) ≤ 1, which implies that the
squared Hellinger distance is an upper bound of the GJS divergence.
Theorem 1 (Proof in Appendix A.2). We assume that the sample space Ω is finite. Let P
and Q be two different distributions on Ω. For every t > 0 and λ ∈ (0, 1), we have

L(λ)H2(P,Q) ≤ Dλ
GJS(P ‖ Q) ≤ U(λ)H2(P,Q) ≤ H2(P,Q),

where L(λ) = 2 min{η(λ), η(1− λ)}, η(λ) = −λ lnλ and U(λ) = 2λ(1−λ)
1−2λ ln 1−λ

λ .

We show Theorem 1 by showing a two-sided approximation result regarding mλ and hel. This
result might be of independent interest for other machine learning tasks, say, approximate
information-theoretic clustering [12].

Lemma 2 (Proof in Appendix A.1). Define κλ(t) = mλ(t)
hel(t) . For every t > 0 and λ ∈ (0, 1),

we have κλ(t) = κ1−λ(1/t) and κλ(t) ∈ [L(λ), U(λ)].
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We illustrate the upper and lower bound functions U(λ) and L(λ) in Appendix B. Recall that
if λ = 1/2, the generalized Jensen-Shannon divergence reduces to the usual Jensen-Shannon
divergence. Theorem 1 yields the approximation guarantee 0.69 < ln 2 ≤ DJS(P‖Q)

H2(P,Q) ≤ 1.

If the common sample space Ω with which the two distributions P and Q are associated is
finite, one can identify P and Q with the |Ω|-dimensional vectors [P (i)]i∈Ω and [Q(i)]i∈Ω,
respectively. In this case, H2(P,Q) = 1

2‖
√
P −

√
Q‖22, which is exactly half of the squared

L2 distance between the two vectors
√
P , [

√
P (i)]i∈Ω and

√
Q , [

√
Q(i)]i∈Ω. Therefore,

the squared Hellinger distance can be endowed with the L2-LSH family [16] applied to the
square root of the vector. In light of this, the locality-sensitive hash function that we propose
for the generalized Jensen-Shannon divergence is

ha,b(P ) =
⌈

a ·
√
P + b

r

⌉
, (4)

where a ∼ N (0, I) is a |Ω|-dimensional standard normal random vector, · denotes the inner
product, b is uniformly at random on [0, r], and r is a positive real number.
Theorem 2 (Proof in Appendix A.5). Let c = ‖

√
P −

√
Q‖2 and f2 be the probability

density function of the absolute value of the standard normal distribution. The hash functions
{ha,b} defined in (4) form a (R, c2 U(λ)

L(λ)R, p1, p2)-sensitive family for the generalized Jensen-
Shannon divergence with parameter λ, where R > 0, p1 = p(1), p2 = p(c), and p(u) =∫ r

0
1
uf2(t/u)(1− t/r)dt.

3.2 Triangular Discrimination

Recall that triangular discrimination is the δ-divergence, where δ(t) = (t−1)2

t+1 . As shown
in the proof of Theorem 3 (Appendix A.6), the function δ can be approximated by the
function hel(t) that defines the squared Hellinger distance 1 ≤ δ(t)

hel(t) ≤ 2. The squared
Hellinger distance can be sketched via L2-LSH after taking the square root, as exemplified in
Section 3.1. By Proposition 1, the LSH family for the square Hellinger distance also forms
an LSH family for the triangular discrimination. Theorem 3 shows that the LSH family
defined in (4) form a (R, 2c2R, p1, p2)-sensitive family for triangular discrimination.
Theorem 3 (Proof in Appendix A.6). Let c = ‖

√
P −
√
Q‖2 and f2 be the probability density

function of the absolute value of the standard normal distribution. The hash functions {ha,b}
defined in (4) form a (R, 2c2R, p1, p2)-sensitive family for triangular discrimination, where
R > 0, p1 = p(1), p2 = p(c), and p(u) =

∫ r
0

1
uf2(t/u)(1− t/r)dt.

4 Krĕın-LSH for Mutual Information Loss

In this section, we first show that the mutual information loss is a Krĕın kernel. Then we
propose Krĕın-LSH, an asymmetric LSH method [33] for mutual information loss. We would
like to remark that this method can be easily extended to other Krĕın kernels, provided that
the associated positive definite kernels allow an explicit feature map.

4.1 Mutual Information Loss is a Krĕın Kernel

Recall that in Section 2.3 we assume a joint distribution p(X,C) whose support is X ×C. Let
x, y ∈ X be represented by x = [p(c, x) : c ∈ C] ∈ [0, 1]|C| and y = [p(c, y) : c ∈ C] ∈ [0, 1]|C|,
respectively. We consider the mutual information loss of merging x and y, which is given by
I(X;C)− I(πx,y(X);C).
Theorem 4 (Proof in Appendix A.8). The mutual information loss mil(x,y) is a
Krĕın kernel on [0, 1]|C|. In other words, there exist two positive definite kernels K1
and K2 on [0, 1]|C| such that mil(x,y) = K1(x,y) − K2(x,y). To be explicit, we set
K1(x,y) = k(

∑
c∈C p(c, x),

∑
c∈C p(c, y)) and K2(x,y) =

∑
c∈C k(p(c, x), p(c, y)), where

k(a, b) = a ln a
a+b + b ln b

a+b .
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To prove Theorem 4 and construct explicit feature maps for K1 and K2, we need the following
lemma.
Lemma 3 (Proof in Appendix A.7). The kernel k is a positive definite kernel on [0, 1].
Moreover, it is endowed with the following explicit feature map x 7→ Φw(x) such that
k(x, y) =

∫
R Φw(x)∗Φw(y)dw, where Φw(x) , e−iw ln(x)

√
x 2 sech(πw)

1+4w2 and Φw(x)∗ denotes the
complex conjugate of Φw(x).

The map Φ(x) : w 7→ Φw(x) is called the feature map of x. The integral
∫
R Φw(x)∗Φw(y)dw

is also denoted by a Hermitian inner product 〈Φ(x),Φ(y)〉.

4.2 Krĕın-LSH for Mutual Information Loss

Now we are ready to present an asymmetric LSH scheme [33] for mutual information loss.
This method can be easily extended to other Krĕın kernels, provided that the associated
positive definite kernels admit an explicit feature map. In fact, we reduce the problem of
designing the LSH for a Krĕın kernel to the problem of designing the LSH for maximum
inner product search (MIPS) [33, 28, 41]. We call this general reduction Krĕın-LSH.

4.2.1 Reduction to Maximum Inner Product Search

Our reduction is based on the following observation. Suppose that K is a Krĕın kernel on
X such that K = K1 −K2 where K1 and K2 are positive definite kernels on X . Assume
that K1 and K2 admit feature maps Φ1 and Φ2 such that K1(x, y) = 〈Ψ1(x),Ψ1(y)〉 and
K2(x, y) = 〈Ψ2(x),Ψ2(y)〉. Then the Krĕın kernel K can also represented as an inner product

K(x, y) = 〈Φ1(x)⊕ Φ2(x),Φ1(y)⊕−Φ2(y)〉 , (5)
where ⊕ denotes the direct sum. If we define a pair of transforms T1(x) , Φ1(x)⊕ Φ2(x)
and T2(x) , Φ1(x) ⊕ −Φ2(x), then we have K(x, y) = 〈T1(x), T2(y)〉. We call this pair of
transforms left and right Krĕın transforms.

Algorithm 1 Krĕın-LSH
Input: Discretization parameters J ∈ N and ∆ > 0.
Output: The left and right Krĕın transform η1 and η2.
1: wj ← (j − 1/2)∆ for j = 1, . . . , J
2: Construct the atomic transform

τ(x,w, j) ,
[

cos(w ln(x))

√
2x
∫ j∆

(j−1)∆
ρ(w′)dw′, sin(w ln(x))

√
2x
∫ j∆

(j−1)∆
ρ(w′)dw′

]
.

3: Construct the left and right basic transform

η1(x) ,
J⊕
j=1

τ(p(x), wj , j)⊕
J⊕
j=1

⊕
c∈C

τ(p(c, x), wj , j) ,

η2(x) ,
J⊕
j=1

τ(p(x), wj , j)⊕
J⊕
j=1

⊕
c∈C
−τ(p(c, x), wj , j) .

4: Construct the left and right Krĕın transform

T1(x,M) , [η1,
√
M − ‖η1(x)‖22, 0], T2(y,M) , [η2, 0,

√
M − ‖η2(x)‖22] .

where M is a constant such that M ≥ ‖η1(x)‖22 (note that ‖η1(x)‖2= ‖η2(x)‖2).
5: Sample a ∼ N (0, I) and construct the hash function h(x;M) , sign(a>T (x,M)), where
T is either the left or right transform.

We exemplify this technique by applying it to the MIL divergence. For ease of exposition,
we define ρ(w) , 2 sech(πw)

1+4w2 . The proposed approach Krĕın-LSH is presented in Algorithm 1.
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To make the intuition of (5) applicable in a practical implementation, we have to truncate
and discretize the integral k(x, y) =

∫
R

Φw(x)∗Φw(y)dw. First we analyze the truncation.
The analysis is similar to Lemma 10 of [4].
Lemma 4 (Truncation error bound, proof in Appendix A.9). If t > 0 and x, y ∈ [0, 1], the
truncation error can be bounded as follows

∣∣∣k(x, y)−
∫ t
−t Φw(x)∗Φw(y)dw

∣∣∣ ≤ 4e−t.

To discretize the finite integral
∫ t
−t Φw(x)∗Φw(y)dw, we divide the inteval into 2J sub-intervals

of length ∆. The following lemma bounds the discretization error.
Lemma 5 (Discretization error bound, proof in Appendix A.10). If J is a positive in-
teger, ∆ > 0, and wj = (j − 1/2)∆, the discretization error is bounded as follows∣∣∣∫∆J
−∆J Φw(x)∗Φw(y)dw −

〈⊕J
j=1 τ(x,wj , j),

⊕J
j=1 τ(y, wj , j)

〉∣∣∣ ≤ 2∆, where τ(x,w, j) =[
cos(w ln(x))

√
2x
∫ j∆

(j−1)∆ ρ(w′)dw′, sin(w ln(x))
√

2x
∫ j∆

(j−1)∆ ρ(w′)dw′
]
∈ R2.

By Lemmas 4 and 5, to guarantee that the total approximation error (including both
truncation and discretization errors) is at most ε, it suffices to set ∆ = ε

4(1+|C|) and
J ≥ 4(1+|C|)

ε ln 8(1+|C|)
ε .

4.2.2 LSH for Maximum Inner Product Search

The second stage of our proposed method is to apply LSH to the MIPS problem. As
an example, in Line 5, we use the Simple-LSH introduced by [28]. Let us have a quick
review of Simple-LSH. Assume that M ⊆ Rd is a finite set of vectors and that for all
x ∈M, there is a universal bound on the squared 2-norm, i.e., ‖x‖22≤M . Neyshabur and
Srebro [28] assume that M = 1 without loss of generality. We allow M to be any positive
real number. For two vectors x,y ∈ M, Simple-LSH performs the following transform
L1(x) , [x,

√
M − ‖x‖22, 0], L2(y) , [y, 0,

√
M − ‖y‖22]. Note that the norm of L1 and L2 is

M and that therefore their cosine similarity equals their inner product. In fact, Simple-LSH
is a reduction from MIPS to LSH for the cosine similarity. Then a random-projection-based
LSH for the cosine similarity [11, 38]

h(x) , sign(x>Li(x)), a ∼ N (0, I), i = 1, 2
can be used for MIPS and thereby LSH for the MIL divergence via our reduction.

Discussion We have some important remarks for practical implementation of Krĕın-LSH.
Although [28] provides a theoretical guarantee for LSH for MIPS, as noted in [41], the
additional term

√
M − ‖x‖22 may dominate in the 2-norm and significantly degrade the

performance of LSH. To circumvent this issue, we recommend a method that partitions the
dataset according to the 2-norm, e.g., the norm-ranging method [41].

5 Experiment Results

G
JS

(a) λ = 1/2

G
JS

 

(b) λ = 1/3

G
JS

(c) λ = 1/10

Figure 1: The empirical performance of Hellinger approximation

Approximation Guarantee. In the first part, we verify the theoretical bounds derived
in Theorem 1 on real data. We used the latent Dirichlet allocation to extract the topic
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(a) Fashion MNIST (b) MNIST (c) CIFAR-10

Figure 2: Precision vs. speed-up factor for different λ’s.

distributions of Reuters-21578, Distribution 1.0. The number of topics is set to 10. We
sampled 100 documents uniformly at random and computed the GJS divergence and Hellinger
distance between each pair of topic distributions. Each dot in Fig. 1 represents the topic
distribution of a document. The horizontal axis denotes the Hellinger distance while
the vertical axis denotes the GJS divergence. We chose different parameter values (λ =
1/2, 1/3, 1/10) for the GJS divergence. From the three subfigures, we observe that both the
upper and lower bounds are tight for the data.
Nearest Neighbor Search. In the second part, we apply the proposed LSH scheme for the
GJS divergence to the nearest neighbor search problem in Fashion MNIST [39], MNIST [23],
and CIFAR-10 [21]. Each image in the datasets is flattened into a vector and L1-normalized,
thereby summing to 1. As described in Section 2.1, a concatenation of hash functions is
used. We denote the number of concatenated hash functions by K and the number of
compound hash functions by L. In the first set of experiments, we set K = 3 and vary
L from 20 to 40. We measure the execution time of LSH-based k-nearest neighbor search
and the exact (brute-force) algorithm, where k is set to 20. Both algorithms were run on a
2.2 GHz Intel Core i7 processor. The speed-up factor is the ratio of the execution time of
the exact algorithm to that of the LSH-based method. The quality of the result returned
by the LSH-based method is quantified by its precision, which is the fraction of correct
nearest neighbors among the retrieved items. We would like to remark that the precision
and recall are equal in our case since both algorithms return k items. We also vary the
parameter of the GJS divergence and choose λ from {1/2, 1/3, 1/10}. The result is illustrated
in Figs. 2a to 2c. We observe a trade-off between the quality of the output (precision) and
computational efficiency (speed-up factor). The performance appears to be robust to the
parameter of the GJS divergence. In the second set of experiments, we fix the parameter of
the GJS divergence to 1/2; i.e., the JS divergence is used. The number of concatenated hash
functions K ranges from 3 to 5 or 4 to 6. The result is presented in Appendix C. In addition
to the aforementioned quality-efficiency trade-off, we observe that a larger K results in a
more efficient algorithm given the same target precision.

6 Conclusion

In this paper, we propose a general strategy of designing an LSH family for f -divergences.
We exemplify this strategy by developing LSH schemes for the generalized Jensen-Shannon
divergence and triangular discrimination in this framework. They are endowed with an LSH
family via the Hellinger approximation. In particular, we show a two-sided approximation
for the generalized Jensen-Shannon divergence by the Hellinger distance. This may be of
independent interest. Next, we propose a general approach to designing an LSH scheme
for Krĕın kernels via a reduction to the problem of maximum inner product search. In
contrast to our strategy for f -divergences, this approach involves no approximation and is
theoretically lossless. We exemplify this approach by applying to mutual information loss.
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