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Abstract

Social bias in machine learning has drawn significant attention, with work ranging
from demonstrations of bias in a multitude of applications, curating definitions
of fairness for different contexts, to developing algorithms to mitigate bias. In
natural language processing, gender bias has been shown to exist in context-free
word embeddings. Recently, contextual word representations have outperformed
word embeddings in several downstream NLP tasks. These word representations
are conditioned on their context within a sentence, and can also be used to encode
the entire sentence. In this paper, we analyze the extent to which state-of-the-art
models for contextual word representations, such as BERT and GPT-2, encode
biases with respect to gender, race, and intersectional identities. Towards this, we
propose assessing bias at the contextual word level. This novel approach captures
the contextual effects of bias missing in context-free word embeddings, yet avoids
confounding effects that underestimate bias at the sentence encoding level. We
demonstrate evidence of bias at the corpus level, find varying evidence of bias in
embedding association tests, show in particular that racial bias is strongly encoded in
contextual word models, and observe that bias effects for intersectional minorities
are exacerbated beyond their constituent minority identities. Further, evaluating
bias effects at the contextual word level captures biases that are not captured at the
sentence level, confirming the need for our novel approach.

1 Introduction

Word embeddings [22, 24], which provide context-free vector representations of words, have become
standard practice in NLP. Recently, contextual word representations [19, 17, 25, 26, 10, 27] have had
significant success in improving downstream NLP tasks, and most state-of-the-art systems use such
representations of words. These models rely on a pre-trained encoder network run on a sentence to
output contextual embeddings for each token. The networks can be based on Long Short-Term Memory
(LSTM) units or a transformer, and the corresponding embeddings can be used in the same manner as
context-free word embeddings.

However, word embeddings such as word2vec [22] and GloVe [24] have been shown to exhibit
social biases, including gender bias [2, 5] and racial bias [20]. These biases are concerning, as word
embeddings form the foundation of most language systems. Their use can perpetuate and even amplify
cultural stereotypes by encoding them into language systems. Downstream tasks such as classification
and ranking will suffer from the implicit encoding of these biases, posing a hurdle to building fair
machine learning systems [31]. In this work we extend and expand on the analysis of contextual
representations with respect to social and intersectional biases. Zhao et al. [35] demonstrate that
ELMo [25] contextual word representations exhibit gender bias. However, BERT has since surpassed
ELMo in performance on downstream NLP tasks like natural language understanding, inference,
question answering, and named entity recognition [10]. BERT is composed of a layered self-attention
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transformer network trained on Wikipedia and the BookCorpus dataset [36]. Furthermore, GPT-2,
which is another transformer-based model trained on the WebText dataset, has also set state-of-the-
art benchmarks [27]. It is thus imperative to evaluate the extent to which they exhibit social and
intersectional bias.

May et al. [21] establish a preliminary study of social bias in BERT, but their analysis relies only on
sentence level encodings. Our work extends beyond this to provide an analysis of gender and racial
bias on a variety of state-of-the-art contextual word models. We also evaluate intersectional (gender
+ race) bias, since the lived experience of groups with multiple minority identities is cumulatively
worse than that of each of the groups with a singular minority identity [9]. We adapt the Sentence
Encoder Association Test (SEAT) [21] to evaluate how these techniques displays bias in contextual
word representations. This effectively gives a new metric that considers a word embedding and its bias
in context.

We find that the standard corpora for pre-training contextual word models exhibit significant gender
bias imbalances. Furthermore, we show evidence of social and intersectional bias in state-of-the-art
contextual word models. In addition, the biases are detected at different levels and in different instances
in contextual word representations as compared to sentence-level representations. This suggests both
encoding types are needed to measure bias as they capture context in different ways, and any proposed
de-biasing techniques should consider both metrics in their evaluation. We also show that racial bias is
encoded strongly in contextual word models, perhaps more so than gender bias. Lastly, we introduce a
method of comparison to provide evidence that intersectional identities (in this study, African American
females) suffer from such biases as well, more so than their constituent minority identities, and that the
effect of race seems to be larger than the effect of gender for such intersectional identities.

2 Related Work

Social bias in language has been demonstrated to exist upstream in a variety of corpora and datasets;
on a corpus elicited from crowdworkers [28], and on the 1 Billion Word Benchmark corpus [7] where
it was observed that there was gender skew in proportions of gendered pronouns and associations with
occupation words Zhao et al. [35]. Gender bias has also been demonstrated downstream on several
applications of natural language processing, including sentiment analysis [18, 30], abusive language
detection [23], image captioning [16] and text classification [11]. These models not only reflect the
bias in training data, but also amplify the bias [32, 5]. Our work extends the upstream corpus level
analysis in two ways: 1) we include the non-gendered or collective pronoun in occurrence counts, and
2) we apply the analysis on other datasets like BooksCorpus [36], Wikipedia, and WebText [27].

Significant work has been done to show social bias (in particular gender bias) in word embeddings.
Bolukbasi et al. [2] and Caliskan et al. [5] demonstrate that word embeddings associate occupations
with their stereotypical gender roles (eg. doctors are stereotypically male, nurses are stereotypically
female) by evaluating occupation words with Word Embedding Association Tests (WEATs) to gender
words. Inspired by implicit association tests, WEATs compute the differences in distances when word
vectors are asked to pair two concepts that are similar (e.g., stereotypically female occupation words
and female gender words) as opposed to two concepts that are different (e.g., stereotypically male
occupation words and female gender words). Brunet et al. [4] trace the internalization of gender bias
to representational differences at the corpus level. This line of work has very recently been extended
to evaluate gender bias in contextual word representations in some specific settings. Zhao et al. [35]
and Basta et al. [1] demonstrate gender bias in ELMo [25] word embeddings, whereas May et al. [21]
evaluate various models of contextual word representations on a sentential generalization of WEAT. Our
work extends such analyses in two ways: 1) we consider a wide variety of contextual word embedding
tools including state-of-the-art approaches such as BERT and GPT-2, 2) we extend the evaluation to
consider contextual word representations as opposed to prior work, which either used word embeddings
without context or used sentence-level embeddings that can have additional confounds and obscure
bias, and 3) we include additional embedding association tests targeting gender, race and intersectional
identities.
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Table 1: Occurrence statistics for the 1 Billion Word Benchmark, BookCorpus, Wikipedia, and
WebText datasets. We show counts for gendered and neutral pronouns, co-occurrence with stereotypi-
cally male occupation words (M-biased), co-occurrence with stereotypically female occupation words
(F-biased), and co-occurrences with neutral words (the rest).

#occcurrence M-biased occs (%) F-biased occs (%) Neutral (%)

1BWord
he/him/his 5370000 3.40 1.52 95.09

she/her/hers 1620000 2.12 2.28 95.60
they/them/their/theirs 3890000 1.89 0.88 97.23

BooksCorpus
he/him/his 18700000 0.51 0.24 99.25

she/her/hers 13500000 0.32 0.28 99.40
they/them/their/theirs 5330000 0.52 0.23 99.25

Wikipedia
he/him/his 16300000 3.26 3.39 93.35

she/her/hers 4820000 1.90 3.39 94.71
they/them/their/theirs 7510000 1.78 1.25 96.97

WebText
he/him/his 299000 2.35 1.13 96.52

she/her/hers 95500 1.55 1.74 96.72
they/them/their/theirs 261000 1.22 0.57 98.21

3 Gender Bias in Datasets

3.1 Counting Occurrences in Datasets

BERT [10] was trained on Wikipedia (2,500M words) 1 and BooksCorpus (800M words) [36]. ELMo
[25] was trained on the 1 Billion Word Benchmark (1,000M words) [7]. GPT [26] was trained on
BooksCorpus, and GPT-2 was trained on WebText [27]. We follow Zhao et al. [35] in counting,
in these datasets, the occurrence of a male pronoun or a female pronoun in a sentence, as well as
the co-occurrences of stereotypically gendered occupation words with the respective pronouns in
a sentence. We depart from previous work by including the nominative (she), accusative (her),
prenominal possessive (her) and predicative possessive (hers) inflections of personal pronouns, and
we also include the non-gendered or collective pronoun they. Specifically, for each sentence, we
increment a count for female pronoun occurrence if any female pronoun is in the sentence, and then
count the number pro-stereotypical and anti-stereotypical associations with occupation words (same
for male and non-gendered pronouns). Pro-stereotypical associations are referred to as occurrences of
the noun phrase referring to a profession that is male-dominated and is linked to a male pronoun, or
female-dominated linked to a female pronoun (anti-stereotypical associations are the opposite). The
occupation words were obtained from the WinoBias dataset [33], which were gathered from the US
Department of Labor. Since the WebText dataset has not been released fully by [27], we only use the
partially released version with 250K documents 2.

3.2 Analysis of Occurrence Statistics

First, in all the examined datasets, the occurrence of male pronouns is consistently higher than female
pronouns. On the BooksCorpus dataset, this factor is only 1.3x, whereas on the 1 Billion Word
Benchmark, Wikipedia and WebText, this factor is 3x. Similarly, on the BooksCorpus dataset, the
non-gendered or collective pronoun they and its inflections occur the least frequently, but on the other
datasets they occur second in frequency to the male pronouns. This could be because fiction books
tend to have greater parity in gender representation and less references to non-gendered or collective
pronouns, but online text data may have greater representation of male and non-gendered or collective
entities. Second, we also observe that on the 1 Billion Word Benchmark and WebText datasets, the
occurrences of pro-stereotypical associations for both male and female pronouns are proportionally
higher than the anti-stereotypical associations, suggesting evidence of gender bias in these datasets. On
the BooksCorpus dataset, stereotypically male occupation words co-occur proportionally more than
stereotypically female occupation words with gendered personal pronouns, regardless of the gender.
Conversely, on the Wikipedia dataset, the inverse relation is true. Third, non-gendered or collective
pronouns co-occur more frequently with stereotypically male occupation words across all datasets,

1Extracted using https://github.com/attardi/wikiextractor on the May 4 Wikipedia dump
2https://github.com/openai/gpt-2-output-dataset
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suggesting once again an implicit bias in these datasets. The full results are shown in Table 1. In Table
3 and section 5.3, we use the embedding association test (described below) to understand the bias of
the respective contextual word models given their datasets by analyzing their association of female and
male names with occupation words.

We note that the demonstration of bias in these datasets is a reflection of social bias captured in
language. Furthermore, the use of such datasets is entrenched into NLP practice due to the high costs
of constructing new datasets and importance of dataset size in training models, particularly contextual
word models. Barring the precise construction of datasets that reach representational parity across social
groups, other techniques like corpus-level constraints [32], learning constraints [6] or post-processing
[2] are likely to be more convenient solutions, though they ignore the origins of the problem [4].

4 Social and Intersectional Bias using Embedding Association Tests

4.1 Embedding Association Tests

We adopt the methodology of Caliskan et al. [5] and May et al. [21] to test social and intersectional bias
using embedding association tests with contextual word representations. Caliskan et al. [5] proposed
Word Embedding Association Tests (WEATs), which follows human implicit association tests [14] in
measuring the association between two target concepts and two attributes.

We follow May et al. [21] in describing WEATs and SEATs. Let X and Y be equal-size sets of target
concept embeddings, and A and B be sets of attribute embeddings. These embeddings are obtained
after encoding a set of words which define the concept or attribute. Intuitively, WEATs measure the
effect size of the association between a concept X with attribute A and concept Y with attribute B, as
opposed to concept X with attribute B and concept Y with attribute A. The test statistic is

s(X,Y,A,B) =
∑
x∈X

s(x,A,B)−
∑
y∈Y

s(y,A,B) (1)

where each addend is the difference between the mean of cosine similarities of the respective attributes:

s(w,A,B) = meana∈Acos(w, a)−meanb∈Bcos(w, b). (2)

To compute the significance of the association between (A,B) and (X,Y ), a permutation test on
s(X,Y,A,B) is used.

p = Pr[s(Xi, Yi, A,B) > s(X,Y,A,B)] (3)

where the probability is computed over the space of partitions (Xi, Yi) of X ∪ Y so that Xi and Yi are
of equal size. The effect size is defined to be

d =
meanx∈Xs(x,A,B)−meany∈Y s(y,A,B)

std_devw∈X∪Y s(w,A,B)
. (4)

A larger effect size corresponds to more severe pro-stereotypical representations, controlling for
significance.

May et al. [21] adopt the WEAT tests [5] into Sentence Encoder Association Tests (SEATs) to test biases
using sentence encodings. The embeddings used in the association tests are encodings of a sentence,
which are obtained by pooling per token contextual representations, or by using the representation
of the first or last token. SEATs are constructed from WEATs by using "semantically bleached"
sentence templates such as "This is a [doctor]" or "[Alice] is here". These "semantically bleached"
templates were created to observe the effect of a sentence encoding based on a given term, instead of
the associations made with the context of other potentially semantically meaningful words. We refer to
WEATs and SEATs as Caliskan tests [5].

4



Table 2: Proportion of significant positive effect sizes across embedding association tests, broken down
by type of identity and model. Significance level of 0.01. Other embedding association tests were
conducted (C9: disability, C10: age) but are reported only in the Supplementary Material. The total
number of embedding association tests was 92: 34 gender, 31 race, 21 intersectional, 6 disability, age.
For CBoW the c-word encoding tests are invalid, so the numbers are 22, 20, 14, 4 respectively.

Test CBoW ELMo BERT
(bbc)

BERT
(blc) GPT GPT-2

(117M)
GPT-2
(345M)

gender 0.73 0.03 0.32 0.12 0.35 0.24 0.15
race 0.60 0.10 0.58 0.58 0.39 0.42 0.42
intersectional 0.29 0.10 0.71 0.38 0.33 0.29 0.10
disability, age 0.75 0.17 0.00 0.00 0.17 0.33 0.17

Overall 0.58 0.08 0.48 0.33 0.35 0.32 0.23

4.2 Extension of Embedding Association Tests to Contextual Word Representations

May et al. [21] suggest that although they find less bias in sentence encoders than context free word
embeddings, the sentence templates may not be as semantically bleached as expected, and that a lack of
evidence of bias should not be taken as a lack of bias. We propose to assess bias at the contextual word
level. This allows an investigation into the bias of contextual word representation models (which allow
for sentence encoding), and at the same time avoids confounding contextual effects at the sentence
level, which can obscure bias.

To determine underlying bias in contextual word representations, we adopt SEATs and make a simple
modification. Instead of using the sentence encoding for the association tests, we use the contextual
word representation of the token of interest (i.e. we use the representation of the word before it is
pooled). For example, in BERT the sentence encoding is obtained as the representation of the [CLS]
token; in GPT it is the representation of the last token; in ELMo it is obtained by mean-pooling over all
token representations. However, in all cases we instead use the contextual word encoding corresponding
to the token representation of interest. More precise implementation details are in the Supplementary
Material.

4.3 New Embedding Association Tests for Social and Intersectional Biases

To investigate social and intersectional bias, we introduce new embedding association tests to more
comprehensively target race, gender and intersectional identities. The new tests are prefixed by a
"+" in Tables 3, 4 and 5. For race and gender, we are interested in attributes of pleasantness (P/U:
Pleasant/Unpleasant), work (Career/Family), discipline (Science/Arts) [5] and the Heilman double bind
[15, 21]. The Heilman double bind refers to how women, when clearly succeeding in a stereotypically
male occupation, are perceived as less likable than similar men, and how women, when success is
more ambiguous, are perceived as less competent than similar men. Although the Heilman double bind
originated in the context of gender, we also extend the attribute lists 3 of competence and likability to
the context of race. We preserve and report the original WEATs, SEATs and tests introduced by May
et al. [21] where possible. We also prefer tests using names (e.g. Alice) as concept words over group
terms (e.g. European American), since names were demonstrated to have a significant association more
often than group terms [21] 4. Specifically, for both the new gender tests (+C11, +Occ) and new race
tests (+C12, +C13, +Double Bind), we use the male, female, European American or African American
names from existing tests and match them with the appropriate attribute words from existing tests 5 For
example, test +C11 was created by matching male and female names from test C6 with attribute words
of pleasantness from test C3. The new double bind tests were created by matching European American
and African American names from test C3 with attribute words in existing double bind tests. More
information on how the tests were created can be found in the Supplementary Material.

For intersectional identities, we are focused primarily on the identity which is the subject of dis-
cussion in the work of Crenshaw [9]: being both African American and female. Specifically,

3See May et al. [21] for details on the Heilman double bind test.
4The full results in the Supplementary Material includes both tests using names and tests using terms.
5In the case of test +Occ, from the occupation words defined in the WinoBias dataset, see section 5.3
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Table 3: Gender embedding association tests and effect sizes, for word encodings (word), sentence en-
coding (sent) and contextual word representation (c-word). M/F: Male/Female. P/U: Pleas-
ant/Unpleasant. sent(u)/c-word(u): unbleached sentence templates were used. Tests introduced
in this paper are prefixed by "+". Gray shading indicates significant at p = 0.01. Green
check ( ): test is significant using c-word but not sent. Red cross ( ): test is significant
using sent but not c-word. Yellow triangle ( ): test is significant using both sent and c-word.

Test Encoding CBoW ELMo BERT
(bbc)

BERT
(blc) GPT GPT-2

(117M)
GPT-2
(345M)

+C11: M/F Names, P/U word -1.31 +0.34 +0.69 +0.83 -0.43 +0.82 -0.10
+C11: M/F Names, P/U sent -0.87 +0.15 +0.68 +0.18 -0.64 +0.27 -0.17
+C11: M/F Names, P/U c-word NA +0.14 -0.44 +0.27 -0.35 +0.46 -0.13

C6: M/F Names, Career/Family word +1.81 -0.44 -0.49 -0.51 -0.10 -0.25 -0.27
C6: M/F Names, Career/Family sent +1.74 -0.38 -0.74 -0.57 +1.04 +0.27 +0.25
C6: M/F Names, Career/Family c-word NA -0.10 +0.67 -0.04 +1.07 +0.39 -0.26

C8: Science/Arts, M/F Terms word +1.24 +0.24 -0.23 -0.15 +0.25 +0.51 +0.87
C8: Science/Arts, M/F Terms sent +1.01 -0.30 +0.11 -0.16 +0.89 -0.15 -0.15
C8: Science/Arts, M/F Terms c-word NA +0.16 +1.02 -0.08 +1.03 +0.64 +0.67

Double Bind M/F (Competent) word +1.62 -0.34 -0.35 -0.26 -0.66 +1.00 -0.04
Double Bind M/F (Competent) sent +0.79 -0.15 -0.06 0.00 +0.27 +0.52 +0.25
Double Bind M/F (Competent) c-word NA -0.07 +0.42 +0.02 -0.02 -0.94 +0.57
Double Bind M/F (Competent) sent (u) +0.84 +0.21 +0.39 +0.60 -0.76 +1.26 -0.59
Double Bind M/F (Competent) c-word (u) NA -0.48 +0.46 -0.37 -0.36 -0.72 +0.56

Double Bind M/F (Likable) word +1.29 -0.61 -1.37 -0.64 +0.15 +0.83 +0.02
Double Bind M/F (Likable) sent +0.69 -0.45 -0.66 -0.29 -0.53 -0.44 -0.13
Double Bind M/F (Likable) c-word NA -0.38 +0.64 +0.13 -0.03 -0.68 +0.50
Double Bind M/F (Likable) sent (u) +0.51 -0.92 +0.74 -0.97 -1.57 +0.25 -1.01
Double Bind M/F (Likable) c-word (u) NA +0.20 +1.29 -0.78 -1.22 -0.98 +0.39

+Occ: M/F Names, Occ Terms word +1.59 +0.63 +0.55 +0.65 -0.38 +0.76 +0.46
+Occ: M/F Names, Occ Terms sent +1.48 +0.06 +0.30 +0.51 +1.74 -0.00 -0.27
+Occ: M/F Names, Occ Terms c-word NA -0.27 +0.98 +0.67 +0.10 +0.27 +0.43

we anchor comparison in the most privileged group EuropeanAmerican+male, and compare
against AfricanAmerican+male (test +I3) and EuropeanAmerican+female (test +I4),
and finally the group with identity that intersects both less privileged axes of gender and race,
AfricanAmerican+female (test +I5). This allows us to compare the effect of being both African
American and female, relative to being African American or being female. Moreover, we provide
further tests where the anchoring comparison is respect to AfricanAmerican+female, and com-
pare against EuropeanAmerican+female (test +I1) and AfricanAmerican+male (test +I2),
and the most privileged group EuropeanAmerican+male (test +I1). The new tests were created
by matching names from existing tests with the attribute words of pleasantness from test C3. We
also report the Angry Black Woman Stereotype test introduced by May et al. [21], which targets the
stereotype of black women as loud, angry, and imposing [8].

5 Empirical Analysis

5.1 Experiments

We investigate biases in GPT-2 [27], one of the state-of-the-art models for contextual word repre-
sentations, in both its 117M and 345M versions. For comparison with previous work [1, 21, 35],
we also report on other word representation models: CBoW-GLoVe [24], ELMo [25], BERT
bert-base-cased (bbc) and bert-large-cased (blc) versions [10], and GPT [26]. For all
association tests, we use p = 0.01 for significance testing. We use PyTorch, as well as the framework
and code from May et al. [21], to conduct the experiments 6.

5.2 Overall Analysis

We report the proportion of tests with significant effects in Table 2. Note that all instances of significant
effects had positive effect sizes. We observe that the context-free GloVe model exhibits the highest

6https://github.com/W4ngatang/sent-bias
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Table 4: Race embedding association tests and effect sizes, for word encodings (word), sentence enc-
oding (sent) and contextual word representation (c-word). EA/AA: European American/African
American. P/U: Pleasant/Unpleasant. sent(u)/c-word(u): unbleached sentence templates were used.
Tests introduced in this paper are prefixed by "+". Gray shading indicates significant at p = 0.01.
Green check ( ): test is significant using c-word but not sent. Red cross ( ): test is significant
using sent but not c-word. Yellow triangle ( ): test is significant using both sent and c-word.

Test Encoding CBoW ELMo BERT
(bbc)

BERT
(blc) GPT GPT-2

(117M)
GPT-2
(345M)

C3: EA/AA Names, P/U word +1.41 -0.41 +0.38 +0.63 -1.06 +1.34 +0.54
C3: EA/AA Names, P/U sent +0.52 -0.38 +0.73 +1.04 +0.65 -0.14 -0.30
C3: EA/AA Names, P/U c-word NA -0.02 +0.93 +0.21 +1.05 +0.63 +1.22

+C12: EA/AA Names, Career/Family word -0.15 -0.24 -0.58 -0.37 -0.95 -1.34 -0.87
+C12: EA/AA Names, Career/Family sent 0.00 -0.18 -0.50 -0.66 -0.69 -0.17 +0.30
+C12: EA/AA Names, Career/Family c-word NA -0.03 -0.09 -0.32 -1.09 +0.47 +0.51

+C13: EA/AA Names, Science/Arts word -0.51 -0.36 -0.08 +0.10 +0.48 +0.60 +0.61
+C13: EA/AA Names, Science/Arts sent +0.14 -0.35 +0.39 -0.03 -0.11 +0.31 -0.13
+C13: EA/AA Names, Science/Arts c-word NA +0.02 +0.90 -0.25 +0.18 +0.03 -0.06

+Double Bind EA/AA (Competent) word +1.49 +0.22 +0.90 +1.20 -0.66 +1.21 +0.09
+Double Bind EA/AA (Competent) sent +1.03 +0.14 +1.19 +1.05 +0.35 -0.30 +0.42
+Double Bind EA/AA (Competent) c-word NA +0.10 +0.91 +0.31 +0.77 -0.81 -0.01
+Double Bind EA/AA (Competent) sent (u) +1.15 -0.33 +1.23 +1.03 +1.17 -0.78 +0.44
+Double Bind EA/AA (Competent) c-word (u) NA +0.06 +1.01 +0.70 +0.78 -0.70 +0.59

+Double Bind EA/AA (Likable) word +1.62 +0.38 +0.79 +0.60 -0.56 +1.33 +0.06
+Double Bind EA/AA (Likable) sent +1.24 +0.28 +1.14 +0.90 -0.04 +0.38 -0.48
+Double Bind EA/AA (Likable) c-word NA +0.22 +0.61 +0.21 +0.66 -0.79 -0.07
+Double Bind EA/AA (Likable) sent (u) +1.29 +0.42 +1.30 +1.02 +0.51 -0.53 +0.51
+Double Bind EA/AA (Likable) c-word (u) NA -0.17 -0.34 +0.87 -0.42 -0.76 -0.90

overall proportion of significant positive effect sizes, indicating severe pro-stereotypical bias. ELMo
demonstrates the lowest proportion of significant positive effect sizes, although this might be due to
the use of character convolutions for names that are out of vocabulary, which may lead to the loss of
stereotypical semantics. Furthermore, BERT (bbc) exhibits the highest proportion of bias on both race
and intersectional tests, and the highest proportion overall among contextual word models. We also
observe that larger models tend to exhibit a smaller proportion of significant positive effect sizes. This is
true for both the BERT family (blc: 0.48, bbc: 0.33) and the GPT family (GPT: 0.3, GPT-2_117M: 0.32,
GPT-2_345M: 0.23). However, barring a more robust study with more model sizes in consideration, we
caution against a definitive conclusion. Moreover, embedding association tests targeting race generally
demonstrate a higher proportion of significant associations across models than those targeting gender,
suggesting that on a broad level the problem of racial bias is more severe in word representations than
gender bias. This motivates more attention on racial bias in word representations.

Furthermore, over the reported embedding association tests, we find that using contextual word
representations in embedding association tests uncovers bias that using sentence encoders does not.
Across the four test types and six contextual word models, we observe 93 instances where there was a
significant effect either on the sent encoding or the c-word encoding. Of these 93 instances, 36.6% (34)
were observed only with the c-word encoding, 25.8% (24) were observed only with the sent encoding,
and 37.6% (35) were observed on both. Of the 17 embedding association tests reported in Tables 3, 4,
5, on 9 of the tests there were more positive significant associations with the c-word encoding instead
of the sent encoding across all contextual word models. This indicates that when assessing social bias,
the type of encoding matters determines whether the bias can be measured. In particular, contextual
word representations can be used in conjunction with sentence encodings to determine bias in a given
model. In Tables 3, 4, 5 and the Supplementary Material, we use colored symbols to indicate for a
given model and test if significant associations were observed using either of c-word ( ) or sent ( )
encodings, or both ( ).

5.3 Analysis: Gender and Race

On embedding association tests targeting gender, we observe varying results across the models (see
Table 3). Although the BERT and GPT/GPT-2 models demonstrate some significant positive effect
sizes, they also unexpectedly demonstrate negative effect sizes. This seems to suggest a degree of
anti-stereotypical associations, but none of the tests which have negative effect sizes are significant
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Table 5: Intersectional embedding association tests and effect sizes, for word encodings (word), sent-
ence encoding (sent) and contextual word representation (c-word). M/F: Male/Female. EA/AA:
European American/African American. P/U: Pleasant/Unpleasant. ABW: Angry Black Woman
Stereotype. Tests introduced in this paper are prefixed by "+". Gray shading indicates significant
at p = 0.01. Green check ( ): test is significant using c-word but not sent. Red cross ( ): test is
significant using sent but not c-word. Yellow triangle ( ): test is significant using both sent and c-word.

Test Encoding CBoW ELMo BERT
(bbc)

BERT
(blc) GPT GPT-2

(117M)
GPT-2
(345M)

+I1: (F) EA/AA Names, P/U word +1.19 -0.01 +1.13 +1.43 -1.16 +1.07 +0.65
+I1: (F) EA/AA Names, P/U sent +0.15 +0.04 +1.35 0.00 +0.44 -0.75 -0.75
+I1: (F) EA/AA Names, P/U c-word NA +0.04 +0.98 -0.12 +1.45 +0.09 +0.41

+I2: (AA) M/F Names, P/U word -0.63 +0.64 +0.96 +1.07 -0.78 +0.70 -0.49
+I2: (AA) M/F Names, P/U sent -0.94 +0.02 +0.89 0.00 -0.80 -0.66 -0.88
+I2: (AA) M/F Names, P/U c-word NA +0.07 -0.43 -0.10 +0.20 +0.31 -0.23

+I3: (M) EA/AA Names, P/U word +1.06 -0.31 +0.37 +0.37 -0.93 +1.43 +0.98
+I3: (M) EA/AA Names, P/U sent +0.28 -0.44 +0.94 +1.05 +0.79 +0.17 +0.21
+I3: (M) EA/AA Names, P/U c-word NA -0.02 +0.85 +0.43 +1.11 -0.56 -0.49

+I4: (EA) M/F Names, P/U word -0.22 +0.36 -0.42 -0.39 -0.48 +1.06 +0.21
+I4: (EA) M/F Names, P/U sent -0.23 -0.58 +0.14 -0.05 -0.45 +0.28 -0.07
+I4: (EA) M/F Names, P/U c-word NA +0.02 -0.59 +0.50 -0.27 -0.31 -0.03

+I5: EA M/AA F Names, P/U word +0.48 +0.48 +1.19 +1.26 -1.15 +1.64 +0.77
+I5: EA M/AA F Names, P/U sent -0.10 -0.42 +1.48 +1.68 -0.06 -0.56 -0.78
+I5: EA M/AA F Names, P/U c-word NA +0.07 +0.42 +0.26 +1.26 -0.43 +0.16

ABW Stereotype Names word +1.10 +0.53 +1.23 +1.69 -0.79 +0.87 +0.21
ABW Stereotype Names sent +0.62 +0.52 +1.62 0.00 -0.82 -0.70 -0.92
ABW Stereotype Names c-word NA +0.19 +1.34 +0.08 +1.04 +0.15 -0.28

at p = 0.01 with the permutation test. The results suggest that P/U attributes are not stereotypically
associated with gender, but attributes relating to work, discipline, competence and likability display
gender bias. Note specifically that across BERT (bbc), GPT-2_117M and GPT-2_345M, c-word
encodings often reveal bias that sent encodings do not, supporting the importance of evaluating bias at
the contextual word level.

To understand the effect of gender bias propagating from the corpus level to the contextual word level,
we devised test +Occ, which associates male and female names as concept words and the stereotypically
male and female occupation words used in section 3 and defined in the WinoBias dataset [33]. We
observe that at the c-word encoding level, the effect sizes for GPT, trained on BooksCorpus which
had the lowest percentages of pro-stereotypical and anti-stereotypical occupation associations overall,
are the smallest (+0.10). This is in comparison to GPT-2 (117M: +0.27, 345M: +0.43), which was
trained on WebText the next least gendered corpus, and BERT, which was (bbc: +0.98, blc: +0.67)
partially trained on Wikipedia the most gendered corpus. Note, however, that the result on ELMo does
not support this trend (-0.27). Nevertheless, this finding reaffirms that bias tends to propagate from the
corpus level to the encoding level [4].

On embedding association tests targeting race, we observe more significant positive associations,
revealing an extensive problem of racial bias encoded in contextual word models (see Table 4).
Although negative effect sizes are also present, similar to gender tests none of these effect sizes are
significant at p = 0.01. The models demonstrate less evidence of racial bias on to career/family and
science/art attributes than they do on attributes relating to pleasantness, competence and likability.
Of note, the large BERT models (blc) and GPT models (GPT-2_345M) demonstrate few significant
positive associations on gender, but many such associations on race.

5.4 Analysis: Intersectional Identities

On embedding association tests targeting intersectional identities (specifically the intersection of being
both African American and female), we generally observe larger significant effect sizes when comparing
the most privileged group against the multiple minority case (test +I5), larger than when comparing the
the corresponding effect size of the most privileged group against the singular minority case of race
(test +I3) or gender (test +I4) for the same encoding and model type. This is true of all instances of
significant effect sizes on test +I5 except for the c-word encoding of BERT (bbc). Moreover, we find
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stronger evidence for bias when comparing against race (test +I3) than when comparing against gender
(test +I4). In particular, there are only 2 significant positive associations for test +I4, but there are 9
such associations for test +I3 across all models. This also coheres with the relatively high number of
significant positive associations (9) on the Angry Black Woman Stereotype test.

6 Discussion and Limitations

This paper makes the following contributions. First, we use co-occurrence counts to show that standard
corpora for pre-training contextual word models exhibit significant gender imbalances. Second, we
extend existing analyses of social bias to state-of-the-art contextual word models like GPT-2, and
indicate that social bias also exists in those models. This highlights the scope of the problem of fairness
in state-of-the-art models for language processing. Third, we demonstrate that when measuring social
bias in contextual word models, both the sentence encoding and contextual word representation should
be used. It is possible that either encoding type may be unable to uncover latent social bias, whereas
the other encoding type is able to. Fourth, we provide evidence for how racial bias is encoded strongly
in contextual word models, potentially even more so than gender bias. Fifth, we introduce a method
of comparison that anchors at the most or least privileged group to show that intersectional identities
suffer from such bias as well, and more so than their constituent minority identities. In particular, we
show that the effect of race on intersectional identities seems to be larger than the effect of gender.

It is important to highlight the following limitations of our work. First, the lack of significant positive
associations should not be taken as an absence of social bias. Rather, this only indicate the absence
as such measured by these specific tests. Second, this work assumes binary gender (male/female),
which is a significant limitation in evaluating the bias of non-binary genders. We believe that the bias
towards non-binary genders is likely to be worse, but there can also be more data sparsity issues in such
evaluations. Third, this work only provides a preliminary investigation into the multiplicative aspects
of identities of multiple minorities, in particular the specific interactions between different identities.
While we have tried to isolate the effects of the different dimensions of identity in intersectional tests,
more work needs to be done to determine the interactive nature of such effects.

We propose the following potential future directions. First, investigate how and why the encoding of
bias may differ across both model size and model layers. Our results show that larger contextual word
models seem to encode less social bias. It would be important to trace the presence of such bias across
transformer or LSTM layers for each model type, to determine how bias can be hidden or potentially
abstracted. Second, there can be a push for greater clarity on the types of biases encoded in a dataset.
The gender skew at the corpus level can be documented similar to the datasheets proposed by Gebru
et al. [12], to inform dataset users of such biases. Third, devise methods of de-biasing contextual word
models. Current de-biasing methods largely address biases in context-free word embeddings [3], but
the imperative for de-biasing contextual word models increases as they become more widespread.

7 Conclusion

This paper suggests that social and intersectional biases were not sufficiently detected with previous
techniques that used sentence encodings, and suggests a new method for evaluating contextual word
models at the contextual word level in order to assess social biases at both primary and intersectional
levels. We acknowledge that techniques to evaluate social bias are ever evolving, and are keen to see
more work on different and better methods to detect social bias in word models. Furthermore, we
note that social bias detection is simply a first step. There is recent literature on methods to de-bias
word embeddings, including post-processing methods [2] and techniques that use constraints during
training [34, 32]. Although these methods are promising, Gonen and Goldberg [13] show that the
gender bias encoded in word embeddings is mostly hidden from the defined metric of projecting onto
the "he-she" vector direction. In particular, words still receive implicit gender from their associations
(e.g. "receptionist" is no longer gendered with respect to "he", but is still gendered with respect to
"captain"). This suggests that there is a need to expand these techniques to consider context, and
our proposed use of contextual word embeddings to assess bias represents an important step in this
direction. Combining the above de-biasing techniques for contextual word models remains a crucial
direction for future work. Furthermore, methods for de-biasing specifically across race, gender, and
intersectional identities remains a challenging open question.
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