
Encoder Q→A QA→R Q→AR Params

Shared 69.69 72.18 50.52 4.7M
Unshared 69.92 72.08 50.66 7.9M

Table 1: Effect of shared vs. unshared parameters in the
joint encoder f( · ; θ) of the TAB-VCR model.

VCR subtask Avg. no. of tags in query+response
(a) all (b) correct (c) errors

Q→A 2.677 2.730 2.556
QA→R 4.302 4.411 4.017

Table 2: Error analysis as a function of number of tags. Less
image-text grounding increases TAB-VCR errors.

We thank all reviewers for their valuable feedback.1

R1: Method not particularly novel; we know that a richer image representation helps VQA: While commonsense2

reasoning in VCR is evaluated via question answering, VCR data differs from VQA and visual madlibs, even for3

the Q→A subtask. In contrast to VQA, answers are entire sentences. Also, addressing Q→A and QA→R (answer4

justification) requires “background knowledge about how the world works” [5]. Further, VQA depends on recognition,5

which has been largely abstracted away from VCR by providing tags (and our new-tags).6

These differences in data & task necessitate research for novel models and study of their trends. This is substantiated by7

poor performance of state-of-the-art VQA models (after retraining) on VCR. More importantly, the VCR performance8

trends across models are different from the VQA results. E.g., MUTAN [2] and BUTD [1] achieve 61.04% and 65.05%9

on VQAv2 val set (source: [4]) but yield 14.6% and 10.7% on VCR val set (source: [5]).10

R1: Overall a good work, but maybe too specific to the given dataset and therefore perhaps not the best fit for NeurIPS:11

We think commonsense reasoning is a new aspect of explainability and interpretability of machine learning models. This12

has been widely studied by the NeurIPS community, especially in the past years. During the response period, we studied13

the impact of tags on a new reasoning dataset – GQA [3]. We found that addition of tags to our Base+Resnet10114

model improves accuracy from 45.85% to 54.96%, on the val set (4 epochs ∼9 hrs. on 2 V100 GPUs & 24 cores).15

R2: Earlier reference to citations [1, 29, 34]: We’ll refer to the papers early in our revised version, i.e., in L25-L29.16

R2: Request to add clear explanation on intricacy of existing R2C model in L38: We’ll detail the intricacies of the R2C17

model: the R2C model has three modules: grounding, contextualization and reasoning. Grounding uses a Bidirectional18

LSTM to jointly encode language and visual inputs into an encoded query (q) and response (r). Contextualization19

uses two bilinear attentions: between r and q and between r and object representations o. Reasoning concatenates and20

feeds the attended query q̂ (from the first attention), the attended object representation ô and the encoded response r21

into another bidirectional LSTM. The output of this LSTM is again concatenated with the encoded response r and the22

attended query q̂, max pooled and transformed by a multilayer perceptron to predict.23

R2: Clarify ‘joint encoder is identical’ in L126: The joint encoder along with its parameters is shared for processing the24

query and response. To validate this design choice, we empirically study that there isn’t a significant improvement25

(Tab. 1) when using separate weights, which comes at the cost of 3.2M extra trainable parameters. Note that Zellers et26

al. also share the encoder for query and response processing. Our design choice makes the comparison fair.27

R3: Clarifying fine-tuning and ablations for design choices: BERT: For all our models, consistent with [5], the28

referenced BERT model is fine-tuned on the VCR dataset. These embeddings of BERT fine-tuned on VCR were29

released by the VCR dataset authors: https://github.com/rowanz/r2c/tree/master/data.30

ResNet101: In Tab. 3 we study the effect of finetuning the last conv block of ResNet101 and the downsample net.31

Zellers et al. use row #1. We assess lower learning rates – 0.5x, 0.25x, and 0.125x (#2 to #4). We chose to freeze the32

conv block (#5) to reduce trainable parameters by 15M, with slight improvement in performance. By comparing #5 and33

#6, we find the downsample net to reduce model size and improve performance. We believe the downsample net (which34

trains from scratch) helps adapt the image features to VCR data, removing the need to finetune the last conv block.35

R3: Error analysis: In Tab. 4 we show accuracy of the TAB-VCR model based on question type defined by the36

corresponding matching patterns. Our model is more error prone on why and how questions on the Q→A subtask,37

which usually require more complex reasoning. In Tab. 2, we provide average number of tags in the query+response for38

the two subtasks for (a) all datapoints (b) datapoints where TAB-VCR was correct (c) datapoints where TAB-VCR39

made errors. Our model performs better on datapoints with more tags, i.e., richer association of image and text.40
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#
Fourth

conv block
Downsample

net Q→A QA→R Q→AR
Trainable

params (mn)

1 64.57 68.86 44.60 19.9
2 (1/2) 64.26 68.14 44.08 19.9
3 (1/4) 63.11 67.73 42.87 19.9
4 (1/8) 63.51 67.49 43.21 19.9
5 66.47 69.22 46.45 4.9
6 65.30 69.09 45.57 7.0

Table 3: Ablation for our base model. : finetuning and :
freezing weights of the fourth conv block in ResNet101 image
CNN. Presence and absence of downsample net (to project image
representation from 2048 to 512) is denoted by and .

Ques. type Matching patterns Counts Q→A QA→R

what what 10688 72.2 72.7
why why 9395 64.7 73.2
isn’t is, are, was, were, isn’t 1768 75.1 66.9

where where 1546 75.4 73.1
how how 1350 60.4 69.6
do do, did, does 655 71.9 68.4

who who, whom, whose 556 85.1 70.1
will will, would, wouldn’t 307 74.3 71.0

Table 4: Accuracy analysis by question type (with at least
100 counts) of TAB-VCR model. Why and how questions
are most challenging for the Q→A subtask.


