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Abstract

We introduce a framework to study the transformation of problems with manifold
constraints into unconstrained problems through parametrizations in terms of
a Euclidean space. We call these parametrizations trivializations. We prove
conditions under which a trivialization is sound in the context of gradient-based
optimization and we show how two large families of trivializations have overall
favorable properties, but also suffer from a performance issue. We then introduce
dynamic trivializations, which solve this problem, and we show how these form
a family of optimization methods that lie between trivializations and Riemannian
gradient descent, and combine the benefits of both of them. We then show how
to implement these two families of trivializations in practice for different matrix
manifolds. To this end, we prove a formula for the gradient of the exponential
of matrices, which can be of practical interest on its own. Finally, we show how
dynamic trivializations improve the performance of existing methods on standard
tasks designed to test long-term memory within neural networksm

1 Introduction

Constrained optimization allows to put restrictions on the family of objects being optimized. When
the restrictions are simple, for example, having a vector with entries in [0,1] or [—1, 1], simple
element-wise parametrizations using sigmoid functions or tanh allow the design of powerful models
such as LSTM [Hochreiter and Schmidhuber;, |1997]] and GRU [Cho et al.| 2014] through the method of
gating. This kind of vector-regularization is now standard, and most of the advanced neural network
architectures use it as a basic building block [Bahdanau et al.|[2014]. Constraints on matrices, on the
other hand, are much more challenging.

Most of the interesting sets of matrices turn out to have a manifold structure. Optimization on
manifolds is both theoretically and practically challenging due to the inherent complexity of the
objects involved. Even then, optimization on matrix manifolds has proven to be rather useful in many
different subfields of machine learning and neural networks (NN). Examples of interesting matrix
manifolds in the context of gradient-based optimization are the set of positive definite matrices in
Bayesian statistics [Rasmussen and Williams}, [2005]], orthogonal matrices within RNNs [Arjovsky
et al.,[2016, [Helfrich et al., 2018 |[Lezcano-Casado and Martinez-Rubio, 2019]], NNs with structured
linear layers via the QR or the SVD decomposition [Berg et al.,2018| Zhang et al.l 2018| |Kingma and
Dhariwall 2018]], or invertible matrices in normalizing flows [Berg et al.,[2018|] and VAEs [Tomczak
and Welling}, 2016].

' An implementation can be found at: https://github. com/Lezcano/expRNN
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In this paper we aim to provide a theoretically sound but also efficiently implementable framework
to perform optimization on these and other matrix manifolds in the context of gradient-based
optimization.

QOutline of the paper and summary of the main contributions
In this paper, we study parametrizations of the form ¢: R™ — M.

We consider the transformation of a constrained optimization problem into an unconstrained one.

Initial problem: min f(x) Unconstrained problem: min f(4(y)).
zeEM yeR™

We call this process trivialization and we say that ¢ is a trivialization map. In we show
that whenever ¢ is regular enough— a diffeomorphism—these parametrizations act as a change of
metric on M, and thus, applying gradient descent to this new problem is equivalent to performing
RGD on the original problem with this new metric, for which standard convergence results hold.

After this, we look at two large families of parametrizations, the Riemannian exponential, and the
Lie exponential. We analyze these from the point of view of the framework presented before, and
we point out a problem that they present: they may create saddle points or local minima when near
certain region in the manifold.

In[Section 5] we introduce dynamic trivializations. They can be described as follows:

Main idea: Lift the function f to the current tangent space T, M using a map r, : T,, M — M
by considering the trivialization for, (think r;, = exp,., or, for efficiency, any retraction). Optimize
forg, onT,, M for a while using any standard optimization methods like ADAM, RMSPROP, or
ADAGRAD, since T, M is a linear space. When we are at a point y;, € T, M on which r,,
might create saddle-points or local minima, then we consider the current point in the manifold
Zit1 = g, (yx) and we start optimizing the function f o 7, i.e., lift the problem to T}, , M.

This family of methods has Riemannian gradient descent and classic trivializations as limit cases, and
in particular, they combine the strengths of the two. Furthermore, we show that these methods give a
natural generalization of Euclidean optimizers to manifolds.
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In we show how to compute the gradients associated to the Lie exponential and some cases
of the Riemannian exponential for matrix manifolds. To this end, we compute a formula that allows
for the approximation of the gradient of the exponential of matrices to machine-precision. We also
show some examples of for how to use this theory to perform optimization on some matrix manifolds.
In[Appendix E|we compile an extended list of examples that we hope might be helpful to the reader.

Finally, in[Section 7| we show how dynamic trivializations improve previously developed optimization
techniques in the context of optimization with orthogonal constraints.

2 Related Work

Optimization on manifolds. Most of the results on optimization on manifolds have found ana-
logues in the Riemannian setting [Udriste, [1994, |Absil et al., 2009]. Algorithms like conjugate
gradient descent or the Newton method were first devised for specific families of manifolds [[Smith|
1993| |[Edelman et al.| |1998§]], and then they were derived for general Riemannian manifolds [Bonnabell
2013} Sato and Iwai, 2015, [Boumal et al.,[2016].

Optimization methods on manifolds can be classified in two families: Those that follow geodesics, and
those that follow retractions—i.e., first order approximations to geodesics. In the first family, conver-
gence rates have been proven for most first order methods, both stochastic and non-stochastic [Zhang
and Sra,, 2016], and even purely first-order accelerated methods [Zhang and Sral [2018]]. When it
comes to retractions, rates of convergence have been proved in the Lipschitz setting for first and
second-order methods [Boumal et al., [2016].

Trivialization. The trick of parametrizing a Lie group with elements in the Lie algebra through
the Lie exponential map has been commonly used under the name of trivialization in the area of
differential equations on manifolds [Magnus| 1954} Iserles and Ngrsett, |1999, |Iserles et al.,2000].
We borrow the term, as the general idea behind these methods and ours is rather similar.

Optimization through parametrizations. Parametrizing a manifold in terms of a Euclidean space
is a common technique in optimization and machine learning. For example when doing computations



on symmetric positive definite matrices [[Arsigny et al.| 2006, 2007]], compact Lie groups [Lezcano-
Casado and Martinez-Rubio, 2019]], the special orthogonal group [Helfrich et al.| |2018]] or the unitary
group [Jing et al., 2017, Maduranga et al., [2018]]. In [Dreisigmeyer, 2018], it is used through the
Riemannian exponential to adapt 0" order methods to naturally reductive homogeneous manifolds.

Our work finds the closest connections in the papers [Lezcano-Casado and Martinez-Rubio, 2019,
Helfrich et al. 2018, Maduranga et al., 2018]] These papers present the use of the Lie exponential
and the Cayley map for optimization on SO(n). Our framework can be seen as an extension that
can be implemented on top of them at a negligible execution cost. We also show that this theoretical
improvement translates into a better convergence in practice in

3 Problem Set-Up

We include a short introduction to the concepts used from differential and Riemannian geometry
in[Appendix A
We are interested in approximating the following problem over a connected manifold M

min f(x).

min f(z)
A differentiable manifold does not carry intrinsically any metric information. As such, if one is
interested in talking about concepts like the distance to the optimum, or the steepest descent direction,
it is necessary to put additional structure on the problem. One way to do this is to consider a
Riemannian metric g on M, turning M into a Riemannian manifold.

3.1 The classic approach: Riemannian gradient descent

Given a complete metric on M, we can define geodesics 7, ., : [0, 00) — M such that v, ,(0) = p,
Ypw(0) = v for v € T, M. Then, the Riemannian exponential map is defined simply as the
map that maps rays starting at the origin in the tangent space to geodesics on M. In symbols,
exp,, (tv) = 7y (t) for t > 0.

Using the Riemannian exponential, one can define Riemannian gradient descent in an analogous way
to the Euclidean case:

Ti1 = expy, (—nV f(x1)).
In plain words, the algorithm follows the geodesic in the direction of steepest descent —V f(z;) for a
time 7 > 0. This approach has been extensively studied in the literature and it has been proven to
enjoy similar convergence properties to its Euclidean counterpart [|Absil et al., 2009, Bonnabel, |2013|
Boumal et al., 2016, Zhang et al., 2016].

Sometimes it is convenient, due to computational constraints, to use a first order approximation to the
exponential rather than the exponential map. This idea is encapsulated in the concept of a retraction.

Definition 3.1 (Retraction). A differentiable map r: T’M — M is called a retraction if for every
p € M, the map r,: T, M — M satisfies r,(0) = p and (drp)o = Id.

The update rule of Riemannian gradient descent along a retraction r is then given by

Tey1 = 1o, (V[ (24)).
In many cases, this update rule is enough to recover the same convergence guarantees as in Riemannian
gradient descent along the exponential map [[Boumal et al.l 2016].

The main problem of Riemannian gradient descent comes from a practical point of view. On many
practical problems, it has been empirically proved that algorithms like ADAM [Kingma and Ba, 2014]],
ADAGRAD [Duchi et al.} 2011]] or RMSPROP [Tieleman and Hintonl [2012]] outperform vanilla SGD.
These algorithms were designed to work on R”™, and although generalizations for product manifolds
are in order [cf.,Becigneul and Ganea, [2019], it is not clear how to generalize them to most manifolds
used in practice, and thus take advantage of them in the Riemannian setting.

4 Trivializations

‘We now introduce trivializations. Trivializations are functions that allow us to transform a constrained
problem on a manifold to an unconstrained one.



Definition 4.1 (Trivialization). Given a manifold M, we define a trivialization as a surjective map
¢: R" — M.

Example 4.2. The most simple examples are found when M has a product structure, i.e., for vectors.
For example, for a fixed n > 0, consider component-wise functions like rectified linear units,
parametrizing non-negative vectors relu: R” — (R™)™ or the sigmoid function o: R™ — (0,1)".

Having a trivialization in hand, we can transform a constrained optimization problem into an uncon-
strained one by composing f with ¢.
min f(¢(y)).

yeR”

Remark. When considering a parametrization ¢, the gradient V f(z) changes into the gradient
V(f o ¢)(y) for x = ¢(y). For a 1-dimensional trivialization, by the chain rule, if ¢'(y) = 0 for
many y € R, ¢ will not be a good parametrization, because then V(f o ¢)(y) = V f(o(y))d'(y) = 0,
even though V f(z) might not be zero. As such, not all trivializations are equally good.

We formalize this intuition for general trivializations in the following theorem.

Theorem 4.3. Let ¢: R™ — M be a diffeomorphism. Then, solving the problem min,cg~ f($(y))
through gradient descent accounts for solving the problem min,c p f (x) using Riemannian gradient
descent for a certain metric on M induced by ¢.

Proof. See[Appendix B} o
This result tells us that, if ¢ is a diffeomorphism, ¢ will not add local minima or saddle points. It
will simply act as a change of metric on the manifold. This already explains the good behavior of the
tanh and sigmoid functions present in an LSTM or GRU in the context of gating.

At first sight, the situation of ¢ being a diffeomorphism seems too restrictive for general manifolds.
We now introduce two parametrizations that are diffeomorphisms in almost all the manifoldE]

4.1 The Riemannian trivialization

Consider now the Riemannian exponential map. By the Hopf-Rinow theorem, it is surjective whenever
(M, g) is connected and complete. As such, in these cases, for any point p € M, the Riemannian
exponential map exp »,,: Tp M (= R™) — M is an example of a trivialization.

Geometric intuition about the Riemannian trivialization. A direct corollary of Gauss’ lemma
says that the metric induced by the exponential parametrization exp , ,, is a first order approximation
to the metric on the manifold around the point p [Petersen, 2016, Lemma 5.5.7]. In other words, the
Riemannian trivialization changes the metric into a new one with the square of the distance to p for
points near p.

Let us now look at the behavior of the Riemannian trivialization in global terms.

Theorem 4.4 (Properties of the Riemannian trivialization). Let (M, g) be a connected, complete
Riemannian manifold. Fix a point p € M. Let U, C T, M be the largest radially convex open
neighborhood of zero on which exp 4 , is a diﬁ‘eomorphis then, exp M,p(U p) =M.

Furthermore, define the cut locus in TyM as C, = U\U,. If V. € T,M is another open
neighborhood of the origin that contains a point in Cy, then exp q ,, is not a diffeomorphism on V.

Proof. See Section 5.7.3 in [Petersenl 2016]]. O]
combined with[Theorem 4.3tell us that there exists a radially convex neighborhood of

zero on which exp 4 ,, acts as a change of metric, and that exp , ,, stops being a diffeomorphism in
the boundary—and hence, can add minima or saddle points at these points. As the image of U, is
the whole M, if we write C), := exp  ,,(C}), we have that M decomposes in the disjoint union of
expy ,(Up) and Cy. The set C, is called the cut locus at p.

The cut locus is a remarkably slippery object of study given that, in general, it is not differentiable.

Nonetheless, we can still measure the relative size of this set in a topological sense, by means of the
Hausdorff dimension.

“This is taken with respect to the canonical Borel measure on the manifold induced by the metric.
* A more formal way to define it would be U, := {v € T, M| exp, (tv) is length minimizing for ¢ € [0, 1]}.



Theorem 4.5 (Itoh and Tanakal [1998]). Let M be a connected and complete Riemannian manifold

of dimension n. For a point p € M the Hausdorff dimension of C'p is either 0 or n — 1, and the
Hausdorff dimension of C), is an integer less than n.

Putting this result in the more familiar language of measures, we can argue that, although the cut
locus can introduce problems in practice, the problematic set is not too large

Corollary 4.6. C'p has Lebesgue measure zero on T, M.

Proof. By the definition of Hausdorff dimension, a set of dimension n — 1 has n-Hausdorff measure
0. Finally, just note that the n-Hausdorff measure is a multiple of the Lebesgue measure. O

4.2 The Lie trivialization

We now introduce a useful trivialization for Lie groups and other matrix manifolds. Recall that for
a Lie group G we define its Lie algebra as the tangent space to the identity element g := T.G. In
Lie group theory there is a canonical trivialization given by the Lie exponential. For matrix Lie
groups, which are the groups that we are interested in, the Lie exponential is exactly the exponential
of matrices. We will denote the exponential of a matrix A as exp(A) or e for short.

For connected and compact Lie groups—e.g., SO(n), U(n), SU(n), Sp(n)—this map is surjective
and it coincides with the Riemannian trivialization at the identity for a suitable metric. If it is not
surjective, we can still use it as a trivialization of the image of g under exp. In[Section 6.2 we explain
how to use the exponential parametrization in the whole Lie group, even when it is not surjective.
Trivializations of this form for compact Lie groups were already studied in |Lezcano-Casado and
Martinez-Rubiol [2019]].

The following theorem is a generalization for matrix Lie groups of a classic result.

Theorem 4.7 (Properties of the Lie exponential). Let G be a matrix Lie group, the Lie exponential
is a diffeomorphism on the set U = {A € g | [Im(\;(A4))| < 7} with A\;(A) the eigenvalues.

Proof. See O

This result is the counterpart of for the Lie trivialization on general matrix Lie groups.
The boundary of this set has similar properties as those of the cut locus for the Riemannian trivial-
ization for groups like GL(n) or SO(n)P| As such, this trivialization presents the same problem as
the Riemannian trivialization: It works as a change of metric for points that are close to the identity
matrix, but it creates local minima and saddle points on some points of the manifold, which we might
encounter as the optimization method progresses.

S Dynamic Trivializations

In the last section, we have seen rather general families of trivializations that cover most of the
manifolds used in practice. We have seen how these trivializations act as a change of metric around
the initial point—p in the case of the Riemannian trivialization and the identity matrix in the case
of the Lie trivialization—but we have also shown that the optimization process can be affected as it
deviates from the initial point.

Note that, in the case of the exponential trivialization, we have a map from any tangent space of M
onto M, but we are just using one of them as a trivialization. We can leverage the structure of 7'M in
order to solve the problem that the trivializations introduced above. Instead of always using exp x(
we can use it just for K optimization steps and then change p to the point on which we find ourselves
on the manifold after those K steps. This idea is formalized in the following algorithm.

“The analogous result for C}, with respect to the Borel measure induced by the volume form is also true.
5The constant 7 is tight for matrix manifolds that contain matrices with eigenvalues that are 273 apart. For
these manifolds, the matrix exponential fails to be a diffeomorphism on some points of the boundary of U.
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Figure 1: Example of the trivialization and dynamic trivialization procedure for K = 4.

Algorithm 5.1 (Dynamic trivialization through retractions). Given a retraction r, an integer
K > 0or K = oo, and a starting point py, the dynamic trivialization induced by r is defined as the
sequence of problems indexed by i = 0,1, . ..
min Tp,
velhm f(rp: ()

where pi11 =1y, (yi.x) € M, and y; j, € Ty, M fork =1,..., K, is a sequence of approximations
given by a Euclidean optimization algorithm—e.g., SGD, ADAM, ADAGRAD, RMSPROP, ... —applied
to the i-th problem with starting point y; o = 0. We say that p; is the basis at step 1.

Remark. Note that in this case we have dropped the condition of r,: T, M — M being surjective.
This is because, as long as M is connected, we can still reach any point in M in the optimization
process by changing the basis of the dynamic trivialization whenever K < oo.

This procedure has two interesting limit cases.

Generalization of trivializations. For K = oo, i.e., no change of basis, it reduces to the trivializa-
tion algorithms described in with the trivialization 7, provided that r, is surjective.

Generalization of Riemannian gradient descent. In the case K = 1, we are changing the basis
of the trivialization on every step. When the optimization process used to generate the iterates y; j
is regular SGD, this method recovers exactly stochastic Riemannian gradient descent using r as a
retraction. For this, just note that by the chain rule and the definition of a retraction

d(forp)o = (df)r, 0 ° (drp,)o = (df)r, ) = (df)p;-
From this it follows that
V(forp)(0)=Vf(p)
so the update rule simplifies for a learning rate 7 > 0 can be rewritten as
yii=-nVf(pi)  pit1=rp,(=nVf(pi))

and p;; are exactly the iterates given by doing Riemannian stochastic gradient descent along the
retraction 7.

In particular, we have proved that for = exp , we recover stochastic Riemannian gradient descent.
As such, we can see dynamic trivializations as an interpolation between the trivialization method
using exp ,, and stochastic Riemannian gradient descent.

More interesting is perhaps the case when we use a different optimizer to generate the iterates y; 1.
In this case, dynamic trivializations yield a natural generalization to manifolds of the algorithm used
to generate the iterates, i.e., ADAM, ADAGRAD, RMSPROP, efc.

6 Gradient Computations and Examples

The last missing piece needed to implement dynamic trivializations is the explicit computation of
their gradients. We will do so for the two families presented above.



6.1 The matrix exponential

We first look at the matrix exponential. This function not only defines the Lie trivialization, but it is
also essential to compute the Riemannian exponential in many matrix manifolds (cf.,[Appendix E). In
order to implement the dynamic trivialization algorithm within the context of first-order methods we
need an approximation of the trivialization map and its gradient.

The current fastest machine-precision approximation to the matrix exponential was formulated in |Al+
Mohy and Higham|[2009b]. On the other hand, it is not clear how to compute the gradient of this
parametrization. The following proposition settles this problem.

Proposition 6.1 (Gradient of the exponential parametrization). Let f: R™"*"™ — R be a function
defined on matrices, and let exp be the matrix exponential, we have that

V(f o exp)(A) = (dexp)ar (VF(e)).

Proof. See O

This proposition together with the approximation algorithm for d exp presented in |Al-Mohy and
Higham| [2009a] allows us to approximate to machine-precision this gradient.

This formula readily allows for the implementation of the Riemannian dynamic trivialization on many

matrix manifolds. We give examples of some of these in[Appendix E]

6.2 Lie exponential for matrix Lie groups

The Lie exponential on a Lie group G is just defined on the Lie algebra g = 7.G. On matrix Lie
groups, we can identify any tangent space of G with g. Explicitly, if A € TG, then B~'A € g.
Furthermore, if we choose a left-invariant metric on the Lie group, we can then use left multiplication
to map the result exp(B ’1121) to a neighborhood of B. In symbols, we can define

expp: IpG - G
A Bexp(B7'A)

We give the gradient of this parametrization in[Corollary D.3] This function constitutes a dynamic
trivialization on any connected matrix Lie group, like, for example, SO(n), U(n), SL(n), or GL* (n).

6.3 Other retractions

Sometimes one cannot afford to approximate the exponential exactly, as it can be very costly. In this
case, the standard alternative are retractions |Boumal et al.|[2016]].

Cayley map. This is one of the most well known retractions to optimize over SO(n) (cf., |Absil
et al. [2009], [Helfrich et al.|[2018]])

cay: Skew(n) — SO(n)
A (I+A4)1-A)71

This can be made into a dynamic retraction using the same trick as we did with the exponential,
considering cay g(A) = B cay(B~!A), for B € SO(n), A € T SO(n).

Projectors. Another common retraction used in matrix manifolds M C R™*" is the one given
by Ty (z + v) forz € M, v € T, M and 7 the projection from R™*" onto M. For example,
for M = SO(n), we have that for a matrix B € R™"*"™ with SVD decomposition B = UXVT, its
projection onto SO(n) is given by T5o(n)(B) = UVTEI with gradient computed in Kenney and Laub
[1991} Eq. 2.18].

We workout more useful examples for common manifolds in

SFormally, TSo(n) is well-defined for matrices such that det B > 0, that is, Tso(n) : GL*(n) — SO(n).
Note that this function is not a diffeomorphism but a submersion. [Theorem 4.3|can be extended to this case.



Table 1: Best test accuracy at MNIST and Table 2: Test MSE at the end of the epoch with

P-MNIST. the lowest validation MSE for the TIMIT task.
MODEL N MNIST  P-MNIST MODEL N VAL. MSE  TEST MSE
DTRIV1 170 98.3 95.2 DTRIV1 224 6.55 6.54
DTRIV100 170 98.2 95.1 DTRIV100 224 4.80 4.77
DTRIVoO 170 98.1 95.0 DTRIV0oO 224 4.75 4.71
EXPRNN 170 98.0 94.9 EXPRNN 224 5.34 5.30
SCORNN 170 97.2 94.8 SCORNN 224 9.26 8.50
SCURNN 116 97.6 94.9 SCURNN 128 9.42 7.23
LSTM 128 81.9 79.5 LSTM 84 15.42 14.30
RGD 116 94.7 92.5 RGD 128 15.07 14.58
DTRIV1 360 98.4 96.3 DTRIV1 322 4.56 4.55
DTRIV100 360 98.8 96.4 DTRIV100 322 3.80 3.76
DTRIVoO 360 98.9 96.5 DTRIVoO 322 3.39 3.76
EXPRNN 360 98.4 96.2 EXPRNN 322 4.42 4.38
SCORNN 360 98.1 95.9 SCORNN 322 8.48 7.82
SCURNN 250 98.3 96.2 LSTM 120 13.93 12.95
LSTM 256 88.8 88.8 RGD 192 15.10 14.50
RGD 256 96.1 93.9 DTRIVI 425  4.21 417
DTRIV1 512 98.7 96.7 DTRIV100 425 2.02 1.99
DTRIV100 512 99.1 96.7 DTRIVoO 425 2.00 1.97
DTRIVoO 512 99.0 96.8 EXPRNN 425 5.52 5.48
EXPRNN 512 98.7 96.6 SCORNN 425 7.97 7.36
SCORNN 512 98.2 96.5 SCURNN 258 4.40 3.39
LSTM 512 91.9 91.8 LSTM 158 13.66 12.62
RGD 512 97.3 94.7 RGD 256 14.96 14.69

7 Experiments

In this section, we assess the effectiveness of dynamic trivializations (DTRIV) in the context of
orthogonal optimization. We test the framework with the basis changed every K = 1,100, co steps.

We compare it against the most performant previous approaches presented for this task in the
context of orthogonal optimization and a vanilla LSTM. These approaches are orthogonal exponential
trivialization [EXPRNN |[Lezcano-Casado and Martinez-Rubio, [2019]], orthogonal and unitary Cayley
trivializations [SCORNN / SCURNN [Helfrich et al., 2018, Maduranga et al., [2018]], and Riemannian
gradient descent [RGD [Wisdom et al., 2016].

The architecture on which we are testing the dynamic trivialization is the same as in the papers above:
A vanilla RNN with an orthogonal layer parametrized using the Lie trivialization (cf.,

hiy1 = o(expg(A)h + Txp11).

The update procedure for B was described in|Algorithm 5.1 (/K = 1, 100, c0).

Remark. Note that RGD is equivalent to DTRIV1 together with the optimizer SGD. Furthermore,
EXPRNN is equivalent DTRIVoo only that EXPRNN has the basis on the identity matrix and DTRIVoo
has the basis on the matrix to which it is initialized.

We test this architecture on two different tasks that have become the standard to test the performance of
RNNs in the context of long-term recall and long-term memory, namely the pixel-by-pixel MNIST and
the TIMIT dataset [[Arjovsky et al.l 2016} [Henaff et al., 2016, Mhammedi et al., 2017, |Helfrich et al.,
2018, Maduranga et al.|[2018 [Lezcano-Casado and Martinez-Rubio} 2019]. We do not present results
for the copying problem, as task is too simple to draw any meaningful conclusions, as explained
in Henaff et al.[[2016]. E]

We detail all the hyperparameters and set-up in[Appendix F| The code and instructions to replicate
these experiments can be found in

https://github.com/Lezcano/expRNN

"For reference, dynamic trivializations are also able to converge to the correct answer stably, as EXPRNN.


https://github.com/Lezcano/expRNN

7.1 Pixel-by-pixel MNIST

This task consists of classifying the hand-written images of numbers in the MNIST dataset [LeCun
and Cortes}, 2010|] by processing them as a sequence pixel-by-pixel. Each image has 28 x 28 pixels,
so the sequences are of length 784. The unpermuted task (MNIST) processes the row-by-row flattened
image, the permuted task (P-MNIST) samples a permutation of size 784 at the beginning and then
uses it to permute all the images after flattening them. This task was introduced in|Le et al.|[2015].

Table 1|is structured so that architectures with the same number of parameters are compared together.
As we can see, the addition of any dynamic trivialization to the Lie parametrization improves the
results on this experiment by 0.4% out of the 1.3% possible in the largest size. Moreover, it always
improves the previous results, suggesting that it is always a better option to use dynamic trivializations
rather than just plain trivializations. In general, we saw that DTRIV100 and DTRIVoo gave the highest
stability and the best results across the experiments.

7.2 TIMIT speech dataset

The TIMIT dataset [S Garofolo et al., |1992] is a set of variable-length real-world speech recordings.
These recordings are first downsampled to 8kHz and then transformed into log-magnitudes via a
short-time Fourier transform, giving sequences of 129 complex numbers per step, and a variable
length between 61 and 490. The task consists of predicting the next log-magnitude given the previous
ones. This experiment was introduced in Wisdom et al.[[2016].

In this experiment we see a similar behavior of the dynamic trivializations as the one already seen in
the MNIST and P-MNIST experiments. It also happens in this experiment that DTRIV100 and DTRIVoo
always improve the performance of their static counterparts with base at the identity and of RGD.

In the experiments in SCURNN they explicitly mention that they are computing the MSE without
discarding the zeros used to pad the variable-length sequences [Maduranga et al.,|2018]]. As such,
when computing the MSE, they are dividing by an incorrect number—the longest element in the batch
times the elements in the batch—rather than by the correct one—the sum of the lengths of all the
elements in the batch. We computed the correct validation and test loss in [Table 2}

8 Conclusion and Future Work

In this paper we have presented a novel way to perform optimization on manifolds that combines
the strengths of the two most popular optimization techniques used in machine learning and neural
networks—parametrizations and Riemannian gradient descent. We have shown that, by moving the
initial point of the parametrization, as the metric is distorted less from the Euclidean one, we can
achieve an improvement on the convergence of the neural network.

We leave open an interesting line of research based on applying dynamic trivializations to allow
optimization on other interesting manifolds. As a first step in this direction, we detail examples of
some computations for the most common manifolds used in optimization in
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