
1. [ALL] As R3 appreciates, our paper is mainly theoretical in nature and the focus has been to present a correct1

and theoretically sound methodology. We believe that the beauty of our theory is that we establish a connection2

between the notion of rank-2 succinct representation, and Fourier transformation of a set function. We show3

that Fourier coefficients for sets of size 3 or bigger are 0. Moreover, for terminal nodes only singleton sets of4

the parents have non-zero Fourier coefficients. This connection not only allows us to differentiate between5

terminal and non-terminal nodes but also enables us to identify parents of terminal nodes.6

2. [R1] Regarding “plots are noisy and don’t really support well the claim that the algorithm recovers the true7

structure as the amount of data/queries increases” - The experiments provided in our paper validate our theory.8

Check the sharp jump in Figure 2 which is expected based on Theorem 3. Similarly, Figure 3 shows that9

Markov blanket can be recovered with sufficient number of observational data. Some variance in the plots10

is expected as experiments are conducted for multiple networks. In point 8, we provide more experimental11

evidence to further validate our theoretical contribution.12

3. [R2] On Motivation. Learning structure of Bayesian network from data, in its general form, is provably13

NP-hard [Chickering, 1996, Learning Bayesian Networks Is NP-Complete]. If P 6=NP, then it is absolutely14

necessary to exploit further structure of NP-hard problems to solve them in polynomial time and samples.15

For instance, consider succinctness assumptions in other problems: low rankness in matrix completion or16

sparsity in compressive sensing. We consider Bayesian network with nodes having potentially complicated17

probability tables which can be succinctly represented as a sum of small and less complicated probability18

tables (Lines 52-57, 100-108 ). We consider the case where the smaller tables depend only on the node and19

one parent (rank-2 case). Assumption 3 ensures that such a succinct representation is possible (check point20

4 for a practical example). Assumption 1 is reminiscent of (but not equivalent to) the interventional setting21

(Lines 130-132). Assumption 1 could be seen as an interactive query and in special settings (but not always),22

one could think of it as expert knowledge.23

4. [R2] A particular example used in practice. The combinational stochastic logic gates[Mansinghka et al,24

2008, Stochastic digital circuits for probabilistic inference] are heavily used in digital hardware. Consider this25

simple Θ-gate which can be easily represented as a rank-2 CPT, i.e., P (Z|X,Y ) = Qz(Z) + Qzx(Z,X) +26

Qzy(Z, Y ) where Qz(Z) = 0,∀Z ∈ {0, 1} and tables Qzx and Qzy are shown below.
X Y P (Z = 0 | X,Y ) P (Z = 1 | X,Y )
0 0 1 0
1 0 0.5 0.5
0 1 0.5 0.5
1 1 0 1

(a) Θ-gate truth table

X = 0 X = 1
Z = 0 0.5 0
Z = 1 0 0.5

(b) Qzx

Y = 0 Y = 1
Z = 0 0.5 0
Z = 1 0 0.5

(c) Qzy
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5. [R2, R3] Our theory works for any general rank-k CPTs. Rank-2 is only used for clarity. For rank-k CPTs,28

we differentiate terminal and non-terminal nodes by looking at non-zero terms in f̂i(B) for some |B| = k29

(Assumptions 3, 4 and Theorems 1, 2, 3 are updated accordingly).30

6. [R2] Reviewer 2 has asked to present a case where Assumption 4 is violated. Assumption 4 does not hold only31

when non-terminal nodes are rank-2 (or rank-k) with respect to their Markov blankets (Take A(i) = MB(i) in32

Eq (1)). This condition may occur for a node with just one parent and one child (and no other parent of the33

child).34

7. [R2] Extending theory to discrete variables. We chose binary variables for ease of presentation, our results35

easily extend to discrete variables. The most crucial part of the theory is to map P(Xr = xr|Xr̄ = xr̄) to a36

set function. Assume that every variable can take 4 values. We encode them as: 00, 01, 10, 11. We choose37

a set S ⊆ {1, · · · , 2n} and assign variable Xi a 2-bit value xi. The first bit of xi is 1 if 2i − 1 ∈ S and the38

second bit of xi is 1 if 2i ∈ S. The rest of the theory follows once we have this map in place.39

8. [R1, R3] Experimental results. 1. We see a trend similar to Figure 2 of our paper for bigger networks.
Control Parameter # Queries Precision Recall

-2 37 55 % 82 %
-1.5 118 91% 96 %

-1 374 93 % 93 %

(a) n = 50 nodes

Control Parameter # Queries Precision Recall
-2 71 84% 96%

-1.5 227 89% 97%
-1 719 99.5% 99 %

(b) n = 100 nodes
40

2. A baseline comparison: on 20 nodes network, our method (precision 95%, recall 95%) with 300 queries41

outperforms state-of-the-art MMHC method (precision 86%, recall 86%) and greedy (precision 80%, recall42

82%) with 100000 samples. 3. Using recovered Markov blanket (Figure 3, 20 nodes), we can recover DAG43

with 95% precision and 95% recall.44

9. [R2, R3] Formatting errors will be corrected in the final version.45


