
We would like to thank the reviewers for their useful, detailed feedback! We will update the paper with the suggested1

minor revisions regarding typos and presentation improvements, and respond to individual reviewers comments below.2

Reviewer #1:3

1. Corollary 1 doesn’t actually imply the consistency proven in Theorem 1, because it only applies to a finite4

number of moment conditions, whereas in Theorem 1 we deal with an infinite number of moment conditions5

and a function space defined by a neural network architecture, which is why proving consistency there is6

important and necessary.7

2. You’re correct that training the adversarial loss function can be finicky, especially if done naively. We find8

that in practice when we include the − 1
4C term inspired by Lemma 1 learning is very stable in particular in9

the low dimensional scenarios, and other tweaks like OAdam and early stopping using our validation scheme10

seem to improve this further.11

3. We agree that some of the prose discussing GMM+NN results is confusing vis-a-vis results in Table 1. We12

will alter this discussion accordingly to more clearly reflect the numbers.13

4. We acknowledge your point about lack of misspecification in DeepIV’s first stage in the low-dim scenarios,14

and so forbidden regression might not be the right explanation for its performance there. However, the DeepIV15

second stage network does have the capacity to fit the problems better than a polynomial. Regarding “full16

training”: we used an existing implementation of DeepIV.17

5. The network architectures and hyperparams were mistakenly omitted from the supplement and will be added.18

Note our code is public. For baseline methods we used the official implementations provided by the authors.19

6. Thanks for catching, we apologize for the typo. Both 0.5’s should be 1’s: X = Z1 + e+ γ.20

7. Yes, test MSE is w.r.t. the “true response” g0 over the X population, as mentioned in 2nd paragraph of Sec 5.21

Reviewer #3:22

1. Good idea. We will use the notation ‖x‖C = xTC−1x.23

2. We will add a proof in the appendix. This is just self-duality of L2.24

3. Regarding line 79, our comment is simply pointing out that standard GMM usually starts from the assumption25

that the moment conditions specify the problem. Indeed, the assumption that a finite number of moment26

conditions identify theta is very strong (too strong) when theta is complex because it easily gives us statistically27

efficient methods for estimating theta if true. We will clarify.28

4. Yes; the limit of θ̃n can be anything. This may seem counterintuitive, but one way of understanding this is that29

having the “correct” limit corresponds to using the optimally weighted norm, whereas having some other limit30

corresponds to some non-optimal norm, but using an non-optimal norm for GMM just means that estimator31

won’t be statistically efficient, not that it won’t be consistent.32

5. All theory in AGMM applies to an a priori fixed finite collection of moment conditions; the only “learning [of]33

moment functions” in AGMM is in a heuristic jitter step added in the experiments. The significant differences34

between DeepGMM and AGMM, other than the drastic difference in performance, are that our method is35

inspired by the statistically efficient optimally weighted GMM with a corresponding regularization term which36

AGMM lacks, that we directly optimize the neural net critic f , and that we do learn a critic from an infinite37

collection rather than using a finite ensemble of critics. We will update this to make it clearer.38

6. Yes; as line 190 says, what we mean is θ̃ is treated as constant. The second term of U in Equation (9) has zero39

partial derivative in θ; so θ̃ does not appear in the θ gradient. We will rephrase to make this clearer.40

7. This means we use fi(Z) = Zi for i = 1, . . . , 784. We’ll add this clarification.41

Reviewer #4:42

1. Identification assumption for neural nets: as referenced in line 161, we can easily relax identification and43

instead converge to some θ satisfying the moment conditions (will clarify this simple extension in the proof).44

Moreover, this immediately gives that even if there are redundancies in that two θs give the same function g45

(e.g., permuting hidden layers), if g ∈ G is identified (i.e., all identified thetas give rise to the same function g),46

we will obtain some parameterization θ of the unique g. It’s a good point so we will add this discussion.47

2. Regarding the − 1
4C(f, f) term, we found that other regularizers/controls on f do not perform well as they48

induce suboptimal weighting that ignores the covariance of the moment conditions for different f, whereas49

our new regularizer, as you write, is motivated by optimal weighting. This a key driver of our improved50

performance over, e.g., AGMM.51

3. The network architectures and learning hyperparams were mistakenly omitted from the supplement and will52

be added. Note our code is public. Re “sufficiently rich” moments for Poly2SLS: since its degree is variable,53

Poly2SLS can be thought of as a sieve as in Newey and Powell [23], giving universal consistency.54

4. We will cite the recent paper you reference on kernelized 2SLS. It wasn’t on our radar (first appearance online55

June 2019). We will also cite the Ravuri et al. paper re future work. Thanks.56


