Bayesian Layers: A Module for
Neural Network Uncertainty

Dustin Tran Michael W. Dusenberry Mark van der Wilk Danijar Hafner
Google Brain Google Brain* Prowler.io Google Brain

Abstract

We describe Bayesian Layers, a module designed for fast experimentation with
neural network uncertainty. It extends neural network libraries with drop-in re-
placements for common layers. This enables composition via a unified abstraction
over deterministic and stochastic functions and allows for scalability via the under-
lying system. These layers capture uncertainty over weights (Bayesian neural nets),
pre-activation units (dropout), activations (“stochastic output layers™), or the func-
tion itself (Gaussian processes). They can also be reversible to propagate uncer-
tainty from input to output. We include code examples for common architectures
such as Bayesian LSTMs, deep GPs, and flow-based models. As demonstration,
we fit a 5-billion parameter “Bayesian Transformer” on 512 TPUv2 cores for un-
certainty in machine translation and a Bayesian dynamics model for model-based
planning. Finally, we show how Bayesian Layers can be used within the Edward2
language for probabilistic programming with stochastic processes. !

lstm = ed.layers.LSTMCellReparameterization(512)
output_layer = tf.keras.layers.Dense(10)

def loss_fn(features, labels, dataset_size):

state = lstm.get_initial_state(features) @

nll = 0.

for t in range(features.shape[1]): @
net, state = lstm(features[:, t], state) @
logits = output_layer(net)
nll += tf.reduce_mean(

—_—P

tf.nn.softmax_cross_entropy_with_logits( s
labels[:, t], logits)) W,n h,

kl = sum(lstm.losses) / dataset_size by .,
return nll + kl

Figure 1: Bayesian RNN (Fortunato et al., 2017).  Figure 2: Graphical model depiction. Default
Bayesian Layers integrates easily into existing arguments specify learnable distributions over
workflows (here, a custom loss function followed the LSTM’s weights and biases; we apply a de-
by any training loop). Keras’ model.fit is also terministic output layer.

supported. See Appendix A for comparisons to

a vanilla TensorFlow, Edwardl, and Pyro imple-

mentation.

*Work done during Google Al residency.
'All code is available at https://github.com/google/edward?2 as part of the edward2 namespace.
Code snippets assume import edward2 as ed; import tensorflow as tf; tensorflow==2.0.0.
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1 Introduction

The rise of Al accelerators such as TPUs lets us utilize computation with 106 FLOP/s and 4 TB
of memory distributed across hundreds of processors (Jouppi et al., 2017). In principle, this lets us
fit probabilistic models at many orders of magnitude larger than state of the art. We are particu-
larly inspired by research on uncertainty-aware functions: priors and algorithms for Bayesian neural
networks (e.g., Wen et al., 2018; Hafner et al., 2019), scaling up Gaussian processes (e.g., Sal-
imbeni and Deisenroth, 2017; John and Hensman, 2018), and expressive distributions via invertible
functions (e.g., Rezende and Mohamed, 2015).

Unfortunately, while research with uncertainty-aware functions are not limited by hardware, they
are limited by software. Modern systems approach this by inventing a probabilistic programming
language which encompasses all computable probability models as well as a universal inference
engine (Goodman et al., 2012; Carpenter et al., 2016) or with composable inference (Tran et al.,
2016; Bingham et al., 2019; Probtorch Developers, 2017). Alternatively, the software may use high-
level abstractions in order to specify and fit specific model classes with a hand-derived algorithm
(GPy, 2012; Vanhatalo et al., 2013; Matthews et al., 2017). These systems have all met success, but
they tend to be monolothic in design. This prevents research flexibility such as utilizing low-level
communication primitives to truly scale up models to billions of parameters, or in composability
with the rich abstractions from neural network libraries.

Most recently, Edward2 provides lower-level flexibility by enabling arbitrary numerical ops with ran-
dom variables (Tran et al., 2018). However, it remains unclear how to leverage random variables for
uncertainty-aware functions. For example, current practices with Bayesian neural networks require
explicit network computation and variable management (Tran et al., 2016) or require indirection by
intercepting weight instantiations of a deterministic layer (Bingham et al., 2019). Both designs are in-
flexible for many real-world uses in research (see details in Section 1.1). In practice, researchers often
use the lower numerical level—without a unified design for uncertainty-aware functions as there are
for deterministic neural networks. This forces researchers to reimplement even basic methods such
as Bayes by Backprop (Blundell et al., 2015)—Iet alone build on more complex baselines.

Contributions. This paper describes Bayesian Layers, an extension of neural network libraries which
contributes one idea: instead of only deterministic functions as “layers”, enable distributions over
functions. Bayesian Layers does not invent a new language. It inherits neural network semantics
to specify uncertainty models as a composition of layers. Each layer may capture uncertainty over
weights (Bayesian neural nets), pre-activation units (dropout), activations (“stochastic output lay-
ers”), or the function itself (Gaussian processes). They can also be reversible layers that propagate
uncertainty from input to output. Bayesian Layers can be used inside typical machine learning work-
flows (Figure 1) as well as inside a probabilistic programming language (Section 2.5).

To the best of our knowledge, Bayesian Layers is the first to: propose a unifying design across
uncertainty-aware functions; design uncertainty as part of existing deep learning semantics; and
demonstrate practical uncertainty examples on complex environments. We include code examples
for common architectures such as Bayesian LSTMs, deep GPs, and flow-based models. We also
fit a 5-billion parameter “Bayesian Transformer” on 512 TPUV2 cores for uncertainty in machine
translation and a Bayesian dynamics model for model-based planning.

1.1 Related Work

There have been many software developments for distributions over functions. Our work takes classic
inspiration from Radford Neal’s software in 1995 to enable flexible modeling with both Bayesian neu-
ral nets and GPs (Neal, 1995). Modern software typically focuses on only one of these directions. For
Bayesian neural nets, researchers have commonly coupled variational sampling in neural net layers
(e.g., code from Gal and Ghahramani (2016); Louizos and Welling (2017)). For Gaussian processes,
there have been significant developments in libraries (Rasmussen and Nickisch, 2010; GPy, 2012;
Vanhatalo et al., 2013; Matthews et al., 2017; Al-Shedivat et al., 2017; Gardner et al., 2018), although
flexible composability in the spirit of deep learning libraries remained a challenge.

Perhaps most similar to our work, Aboleth (Aboleth Developers, 2017) features variational BNNs
and GPs. They uses a different design than Bayesian Layers, which we believe results in a less flex-
ible framework that makes it more challenging to use for research. For example, their BNNs do not



support non-Gaussian priors or posterior approximations, different estimators, or probabilistic pro-
gramming with a model-inference separation; their GPs only support random feature approximations;
and they create a new neural network language instead of build on an existing one.

A closely related concept is MXFusion’s probabilistic module (Dai et al., 2018), a module which im-
plements a set of random variables alongside a dedicated inference algorithm. This has remarkable
similarity to the way composing layers in Bayesian Layers ties estimation with the model specifica-
tion (e.g., variational inference with deep GPs). Unlike MXFusion, Bayesian Layers enables a higher
degree of compositionality to form the overall model, ultimately exploiting conditional independence
relationships where, e.g., variational inference can be written as a series of layer-wise integral esti-
mation problems. For example, deep GPs with variational inference in MXFusion involve a custom
class whereas Bayesian Layers simply composes variational GP layers.

Another related concept is Pyro’s random module (Bingham et al., 2019), a design pattern which lifts
deterministic neural layers to Bayesian ones. This is done with effect handlers which replace weight
instantiations with a Pyro primitive (typically sample on a distribution). Pyro’s random module is
effective for implementing Bayes by Backprop (Blundell et al., 2015), but it does not enable more
recent estimators which avoid the high variance of weight sampling such as local reparameteriza-
tion (Kingma et al., 2015), Flipout (Wen et al., 2018), and deterministic variational inference (Wu
et al., 2018). More importantly, the random module focuses strictly on weight uncertainty whereas
Bayesian Layers provides a unifying design across distribution over functions where uncertainty may
exist anywhere in the computation—whether it be the weights, pre-activation units, activations, func-
tion, or propagating uncertainty from input to output.

Another related thread are probabilistic programming languages which build on the semantics of an
existing functional programming language. Examples include HANSEI on OCaml, Church on Lisp,
and Hakaru on Haskell (Kiselyov and Shan, 2009; Goodman et al., 2012; Narayanan et al., 2016).
Neural network libraries can be thought of as a (fairly simple) functional programming language,
with limited higher-order logic and a type system of (finite lists of) n-dimensional arrays. Similar to
these works, Bayesian Layers augments the host language with methods for stochasticity.

2 Bayesian Layers

In neural network libraries, architectures decompose as a composition of “layer” objects as the core
building block (Collobert et al., 2011; Al-Rfou et al., 2016; Jia et al., 2014; Chollet, 2016; Chen et al.,
2015; Abadi et al., 2015; S. and N., 2016). These layers capture both the parameters and computation
of a mathematical function into a programmable class.

In our work, we extend layers to capture “distributions over functions”, which we describe as a layer
with uncertainty about some state in its computation—be it uncertainty in the weights, pre-activation
units, activations, or the entire function. Each sample from the distribution instantiates a different
function, e.g., a layer with a different weight configuration.

2.1 Bayesian Neural Network Layers

The Bayesian extension of any deterministic layer is to place a prior distribution over its weights and
biases. Bayesian neural networks have been to help address important challenges such as indicating
model misfit (Dusenberry et al., 2019), generalization to out of distribution examples (Louizos and
Welling, 2017), balancing exploration and exploitation in sequential decision-making (Hafner et al.,
2019), and transferring knowledge across a collection of datasets (Nguyen et al., 2017). Bayesian
neural net layers require several considerations. Figure 1 implements a Bayesian RNN; Appendix B
implements a Bayesian CNN (ResNet-50).

Computing the integral We need to compute often-intractable integrals over weights and biases 6.
Consider for example two cases, the variational objective for training and the approximate predictive
distribution for testing,

ELBO() = [ 4(6)logp(y | fo(x))d6 — KL [q(6) | (6)].

aly | %) = / 1O)p(y | fo(x)) db.



class DenseReparameterization(tf.keras.layers.Dense):
"""Variational Bayesian dense layer."""
def __init__(

self, if FLAGS.be_bayesian:

units, Conv2D = ed.layers.Conv2DFlipout
activation=None, else:

use_bias=True, Conv2D = tf.keras.layers.Conv2D
kernel_initializer='trainable_normal’,

bias_initializer="'zero', model = tf.keras.Sequential([
kernel_regularizer='normal_kl_divergence', Conv2D(32, 5, 1, padding='same'),
bias_regularizer=None, tf.keras.layers.BatchNormalization(),
activity_regularizer=None, tf.keras.layers.Activation('relu'),
xkkwargs) : Conv2D(32, 5, 2, padding='same'),
super (DenseReparameterization, tf.keras.layers.BatchNormalization(),

self).__init__(..., xxkwargs)

Figure 3: Bayesian layers are modularized to D

fit existing neural net semantics of initializ- Figure 4: Bayesian Layers are drop-in re-
ers, regularizers, and layers as they deem fit. placements for their deterministic counter-
Here, a Bayesian layer with reparameterization  parts.

(Kingma and Welling, 2014; Blundell et al.,

2015) is the same as its deterministic implemen-

tation. The only change is the default for ker—

nel_{initializer,regularizer}; no addi-

tional methods are added.

Here, x may be a real-valued tensor as input features, y may be a vector-valued output for each data
point, and the function f encompasses the overall network as a composition of layers.

To enable different methods to estimate these integrals, we implement each estimator as its own
Layer. The same Bayesian neural net can use entirely different computational graphs depending
on the estimation (and therefore entirely different code). For example, sampling from ¢(6) with
reparameterization and running the deterministic layer computation is a generic way to evaluate layer-
wise integrals (Kingma and Welling, 2014) and is used in Edward and Pyro. Alternatively, one could
approximate the integral deterministically (Wu et al., 2018), and having the flexibility to vary the
estimator as we do in Bayesian Layers is important when fitting the models in practice.

Signature We’d like to have the Bayesian extension of a deterministic layer retain its manda-
tory constructor arguments as well as its type signature of tensor-dimensional inputs and tensor-
dimensional outputs. This enables compositionality, letting one easily combine deterministic and
stochastic layers (Figure 4; Laumann and Shridhar (2018)). For example, a dense (feedforward)
layer requires a units argument determining its output dimensionality; a convolutional layer also
includes kernel _size.

Distributions over parameters To specify distributions, a natural idea is to overload the existing
parameter initialization arguments in a Layer’s constructor; in Keras, it is kernel_initializer
and bias_initializer. These arguments are extended to accept callables that take metadata
such as input shape and return a distribution over the parameter. Distribution initializers may carry
trainable parameters, each with their own initializers.

For the distribution abstraction, we use Edward RandomVariables (Tran et al., 2018). Layers per-
form forward passes using deterministic ops and the RandomVariables. The default initializer
represents a trainable approximate posterior in a variational inference scheme (Figure 3). By con-
vention, it is a fully factorized normal distribution with a reasonable initialization scheme, but note
Bayesian Layers supports arbitrarily flexible posterior approximations.’

Distribution regularizers The variational training objective requires the evaluation of a KL term,
which penalizes deviations of the learned ¢(6) from the prior p(6). Similar to distribution initializers,

2 The only requirement for a distribution initializer is to return a sample (or most broadly, a Tensor of com-
patible shape and dtype). There is no restriction of independence across layers or tractable densities; hierarchical
variational models (Ranganath et al., 2016) and implicit posteriors (Pawlowski et al., 2017) are compatible.



we overload the existing parameter regularization arguments in a layer’s constructor; in Keras, it is
kernel_regularizer and bias_regularizer (Figure 3). These arguments are extended to
accept callables that take in the kernel or bias RandomVariables and return a scalar Tensor. By
default, we use a KL divergence toward the standard normal distribution, which represents the penalty
term common in variational Bayesian neural network training.

Importantly, note that Bayesian Layers does not have explicit notions for “prior” and “posterior”.
Instead, the layer reflects the actual computation within an algorithm and overloads existing semantics
such as “initialization” (now the variational posterior) and “regularization” (now a KL divergence
toward the prior). This is a tradeoff we made deliberately in that we lose separation of model and
inference, but we benefit from the rich composability of network layers and integration with third-
party libraries. (However, see Section 2.5 for how we might keep the separation if desired.)

2.2 Gaussian Process Layers

As opposed to representing distributions over functions through the weights, Gaussian processes rep-
resent distributions over functions by specifying the value of the function at different inputs. Recent
advances have made Gaussian process inference computationally similar to Bayesian neural networks
(Hensman et al., 2013). We only require a method to sample the function value at a new input, and
evaluate KL regularizers. This allows GPs to be placed in the same framework as above.® Figure 5
implements a deep GP.

Computing the integral Each Gaussian process prior in a model is represented as a separate Layer,
which can be composed together. GaussianProcess implements exact (but expensive) condition-
ing. Approximations are given in the form of SparseGaussianProcess for inducing points (lead-
ing to Salimbeni and Deisenroth (2017)) and RandomFourierFeatures for finite trigonometric
basis function approximations (used by Cutajar et al. (2017)). Both these approximations allow sam-
pling from the predictive distribution of the function at particular inputs, which can be used for
obtaining an unbiased estimate of the ELBO.

Signature For the equivalent deterministic layer, maintain its mandatory arguments as well as
tensor-dimensional inputs and outputs. For example, units in a Gaussian process layer determine
the GP’s output dimensionality, where ed. layers.GaussianProcess(32) is the Bayesian non-
parametric extension of tf.keras. layers.Dense(32). Instead of an activation function ar-
gument, GP layers have mean and covariance function arguments which default to the zero function
and squared exponential kernel respectively. Any state in the layer’s computational graph may be
trainable such as kernel hyperparameters or inputs and outputs that the function conditions on.

Distribution regularizers We use defaults which reflect each inference method’s standard for
training, e.g., no regularizer for exact GPs, a KL divergence regularizer on the inducing output distri-
bution for sparse GPs, and a KL regularizer on weights for random projection approximations.

2.3 Stochastic Output Layers

In addition to uncertainty over the mapping defined by a layer, we may want to simply add stochas-
ticity to the output. These outputs have a tractable distribution, and we often would like to access
its properties: for example, auto-encoding with stochastic encoders and decoders (Figure 6); or a
dynamics model whose network output is a discretized mixture density (Appendix C).*

Signature To implement stochastic output layers, we perform deterministic computations given a
tensor-dimensional input and return a RandomVariable. Because RandomVariables are Tensor-
like objects, one can operate on them as if they were Tensors: composing stochastic output layers is
valid. In addition, using such a layer as the last one in a network allows one to compute properties
such as a network’s entropy or likelihood given data.

Stochastic output layers typically don’t have mandatory constructor arguments. An optional units
argument determines its output dimensionality (operated on via a trainable linear projection); the
default maintains the input shape and has no such projection.

*More broadly, these ideas extend to stochastic processes. Figure 8 uses a Poisson process.
* In previous figures, we used loss functions such as mean_squared_error. With stochastic output layers,
we can replace them with a layer returning the likelihood and calling 1og_prob.



model = tf.keras.Sequential([
tf.keras.layers.Flatten(),
ed.layers.SparseCGaussianProcess(
units=256, num_inducing=512),
ed.layers.SparseCGaussianProcess(
units=256, num_inducing=512),
ed.layers.SparseCGaussianProcess(
units=10, num_inducing=512),
D
def loss_fn(features, labels):
predictions = model(features)
nll = tf.reduce_mean(
tf.math.squared_difference(
labels, predictions.mean())
kl = sum(model.losses)
return nll + kl/dataset_size

Figure 5: Three-layer deep GP with vari-
ational inference (Salimbeni and Deisen-
roth, 2017; Damianou and Lawrence,
2013). We apply it for regression given
batches of spatial inputs and vector-valued
outputs. We flatten inputs to use the de-
fault squared exponential kernel; this nat-
urally extends to pass in a more sophisti-
cated kernel function.

Conv2D = functools.partial(
tf.keras.layers.Conv2D,
padding="'same', activation='relu')

Deconv2D = functools.partial(
tf.keras.layers.Conv2DTranspose,
padding="'same', activation='relu")

encoder = tf.keras.Sequential([
Conv2D(128, 5, 1),
Conv2D(128, 5, 2),
Conv2D(512, 7, 1, padding='valid'),
ed.layers.Normal (name='latent_code'),
i)
decoder = tf.keras.Sequential([
Deconv2D(256, 7, 1, padding='valid'),
Deconv2D(128, 5, 2),
Deconv2D(128, 5, 1),
Conv2D(3%256, 5, 1, activation=None),
tf.keras.layers.Reshape([256, 256, 3, -1]),
ed.layers.Categorical (name="'1image'),
i)
def loss_fn(features):
encoding = encoder ( features)
nll = —-decoder(encoding).log_prob(features)
kl = encoding.kl_divergence(
ed.Normal(@., 1.))
return tf.reduce_mean(nll + kl)

Figure 6: A variational auto-encoder for compress-
ing 256x256x3 ImageNet into a 32x32x3 latent code.

Stochastic output layers are a natural approach for
specifying stochastic encoders and decoders, and uti-

lizing their log-probability or KL divergence.
model = tf.keras.Sequential([ & &P y g

ed.layers.RealNVP(ed.layers.MADE([512, 512])),
ed.layers.RealNVP(ed.layers.MADE( [512, 512], order='right-to-left')),
ed.layers.RealNVP(ed.layers.MADE([512, 512])),

D

def loss_fn(features):
base = ed.Normal(loc=tf.zeros([batch_size, 32%x32%3]), scale=1.)
outputs = model(base)
return -tf.reduce_sum(outputs.distribution.log_prob(features))

Figure 7: A flow-based model for image generation (Dinh et al., 2017).

2.4 Reversible Layers

With random variables in layers, one can naturally capture invertible neural networks which propa-
gate uncertainty from input to output. This allows one to perform transformations of random vari-
ables, ranging from simple transformations such as for a log-normal distribution or high-dimensional
transformations for flow-based models. We recommend using these layers when generative modeling
with normalizing flows (Dinh et al., 2017) or understanding how networks make predictions (Jacob-
sen et al., 2018).

We make two considerations to design reversible layers:

Inversion Invertible neural networks are not possible with current libraries. A natural idea is to
design a new abstraction for invertible functions such as TensorFlow’s Bijectors (Dillon et al., 2017).
Unfortunately, this prevents interoperability with existing layer and model abstractions. Instead, we
simply overload the notion of a “layer” by adding an additional method reverse which performs
the inverse computation of its call and optionally log_det_jacobian. A higher-order layer called
ed.layers.Reverse takes a layer as input and returns another layer swapping the forward and
reverse computation; by ducktyping, the reverse layer raises an error only during its call if reverse



def posterior():

def model(input_shape): """Approximate posterior of rate function.

"""Spatial point process.""" rate = tf.keras.Sequential([

rate = tf.keras.Sequential(] ed.layers.SparseGaussianProcess(
ed.layers.GaussianProcess(64) units=64, num_inducing=512),
ed.layers.GaussianProcess(input_shape) ed. layers.SparseGaussianProcess(
tf.keras.layers.Activation('softplus'), units=1, num_inducing=512),

1) tf.keras.layers.Activation('softplus'),

return ed.layers.PoissonProcess(rate) 1)

return rate

Figure 8: Cox process with a deep GP prior and a sparse GP posterior approximation. Unlike
previous examples, using Bayesian Layers in a probabilistic programming language allows for a clean
separation of model and inference, as well as more flexible inference algorithms.

is not implemented. Avoiding a new abstraction both simplifies usage and also makes reversible
layers compatible with other higher-order layers such as tf.keras.Sequential, which returns a
composition of a sequence of layers.

Propagating Uncertainty As with other deterministic layers, reversible layers take a tensor-
dimensional input and return a tensor-dimensional output. In order to propagate uncertainty from
input to output, reversible layers may also take a RandomVariable as input and return a trans-
formed RandomVariable determined by its call, reverse, and log_det_jacobian.’ Figure 7
implements RealNVP (Dinh et al., 2017), which is a reversible layer parameterized by another net-
work (here, MADE (Germain et al., 2015)). These ideas also extend to reversible networks that
enable backpropagation without storing intermediate activations in memory during the forward pass
(Gomez et al., 2017).

2.5 Probabilistic Programming with Bayesian Layers

So far, the framework we laid out tightly integrates deep Bayesian modelling into existing ecosystems,
but we have deliberately limited our scope. In particular, our layers tie the model specification to
the inference algorithm (typically, variational inference). A core assumption for this to work is the
modularization of inference per layer. This makes iterative procedures which depend on the full
parameter space, such as Markov chain Monte Carlo, difficult to fit within the framework (but note,
e.g., variational distributions with correlations across layers is possible because the layer integrals
decompose conditionally).

Figure 8 shows that one can utilize Bayesian Layers in the Edward2 probabilistic programming lan-
guage for more flexible modeling and inference. It does this by first specifying the prior generative
process in the model program; any layers with approximations are moved into a separate program,
the approximate posterior.® We could use, e.g., expectation propagation (Bui et al., 2016), which is
possible with Edward2’s tracing mechanism to manipulate the individual random variables within the
model and posterior. Importantly, Bayesian Layers provides modeling semantics to enable arbitrary
and scalable probabilistic programming in function space.

3 Experiments

We described a design for uncertainty models built on top of neural network libraries. In experiments,
we aim to illustrate one point: Bayesian Layers is efficient and makes possible new model classes
that haven’t been tried before (in either scale or flexibility). The first experiment is machine transla-
tion, where training a model-parallel Bayesian model requires compatibility with Mesh TensorFlow’s
low-level communication operations. The second experiment is model-based reinforcement learn-
ing, where using a Bayesian dynamics model requires finetuning model updates across sequences of
posterior actions using the TF Agents API (Guadarrama et al., 2018).

SWe implement ed . layers . Discretize this way in Appendix C. It takes a continuous RandomVariable
as input and returns a transformed variable with probabilities integrated over bins.

8 Above we used GaussianProcess for function priors. To specify function priors with Bayesian neural
net layers, set the initializer to return the desired weight prior and remove the default regularizer.

o
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Figure 9: Bayesian Transformer implemented with model parallelism ranging from 8 TPUv2 shards
(core) to 512. As desired, the model’s training performance scales linearly as the number of cores
increases. It achieves the same BLEU score while also being well-calibrated.
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Figure 10: Results of the Bayesian PlaNet agent. The score shows the task median performance over

5 seeds and 10 episodes each, with percentiles 5 to 95 shaded. Our Bayesian version of the method
reaches the same task performance. The graph of the weight KL shows that the weight posterior
learns a non-trivial function. The open-loop video predictions show that the agent can accurately
make predictions into the future for 50 time steps.

3.1 Model-Parallel Bayesian Transformer for Machine Translation

We implemented a “Bayesian Transformer” for the WMT14 EN-FR translation task. Using Mesh
TensorFlow (Shazeer et al., 2018), we took a 2.8 billion parameter Transformer which reports a
state-of-the-art BLEU score of 43.9. We then augmented the model by being Bayesian over the
attention layers (using a stochastic layer with the Flipout estimator) and being Bayesian over the
feedforward layers (using a stochastic layer with the local reparameterization estimator). Figure 9
shows that we can fit models with over 5-billion parameters (roughly twice as many due to a mean
and standard deviation parameter), utilizing up to 2500 TFLOPs on 512 TPUv2 cores. Training time
for the deterministic Transformer takes roughly 13 hours; the Bayesian Transformer takes 16 hours
and 2 extra gb per TPU.

In attempting these scales, we were able to reach state-of-the-art BLEU scores while achieving
lower calibration error according to the sequence-level calibration error metric (Kumar and Sarawagi,
2019). This suggests the Bayesian Transformer better accounts for predictive uncertainty given that
the dataset is actually fairly small given the size of the model.

3.2 Bayesian Dynamics Model for Model-Based Reinforcement Learning

In reinforcement learning, uncertainty estimates can allow for directed exploration, safe exploration,
and robust control. Still relatively few works leverage deep Bayesian models for control (Gal et al.,
2016; Azizzadenesheli et al., 2018). We argue that this might be because implementing and train-
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Figure 11: We use the Bayesian PlaNet agent to predict the true velocities of the reinforcement
learning environment from its encoded latent states. Compared to Figure 7 of Hafner et al. (2018),
Bayesian PlaNet appears to capture more information about the environment in the latent codes re-
sulting in more precise velocity predictions.

ing these models can be difficult and time consuming. To demonstrate our module, we implement
Bayesian PlaNet, based on the work of Hafner et al. (2018). The original PlaNet agent learns a latent
dynamics model as a sequential VAE on image observations. A sample-based planner then searches
for the most promising action sequence in the latent space of the model.

We extend this agent by changing the feedforward layers of the transition function to their Bayesian
counterparts, DenseReparameterization. Bayesian PlaNet reaches a score of 614 on the cheetah
task, matching the performance of the original agent (Figure 10). Training time for the deterministic
dynamics model takes 20 hours, 8 gb; the Bayesian dynamics model takes 22 hours; 8 gb. We monitor
the KL divergence of the weight posterior to verify that the model indeed learns a non-trivial belief.
The result opens up many potential benefits for exploration and robust control; see Figure 11 for an
example. It also demonstrates that incorporating uncertainty into agents can be straightforward given
the right composability of software abstractions.

4 Discussion

We described Bayesian Layers, a module designed for fast experimentation with neural network un-
certainty. By capturing uncertainty-aware functions, Bayesian Layers lets one naturally experiment
with and scale up Bayesian neural networks, GPs, and flow-based models.

In future work, we are applying Bayesian Layers in our methodological and applied research, fur-
ther expanding its support and examples. We are also exploring the use of uncertainty models in
healthcare production systems, where the goal is to improve clinical decision-making by providing
Al-guided clinical tools and diagnostics.

In Bayesian Layers, we encapsulated probabilistic notions as part of existing neural network abstrac-
tions such as layers, initializers, and regularizers. One question is whether this should also be done for
other deep learning abstractions such as optimizers. Stochastic gradient MCMC easily fits on top of
gradient-based optimizers by adding noise, as well as certain variational inference algorithms (Zhang
et al., 2017; Khan et al., 2018). Further understanding this space, and how it interacts with proba-
bilistic layers both in flexibility and inductive biases, is a potentially interesting direction.
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