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Abstract

Search-based methods for hard combinatorial optimization are often guided by
heuristics. Tuning heuristics in various conditions and situations is often time-
consuming. In this paper, we propose NeuRewriter that learns a policy to
pick heuristics and rewrite the local components of the current solution to itera-
tively improve it until convergence. The policy factorizes into a region-picking
and a rule-picking component, each parameterized by a neural network trained
with actor-critic methods in reinforcement learning. NeuRewriter captures the
general structure of combinatorial problems and shows strong performance in
three versatile tasks: expression simplification, online job scheduling and vehi-
cle routing problems. NeuRewriter outperforms the expression simplification
component in Z3 [15]; outperforms DeepRM [33] and Google OR-tools [19] in
online job scheduling; and outperforms recent neural baselines [35, 29] and Google
OR-tools [19] in vehicle routing problems. 2

1 Introduction

Solving combinatorial problems is a long-standing challenge and has a lot of practical applications
(e.g., job scheduling, theorem proving, planning, decision making). While problems with specific
structures (e.g., shortest path) can be solved efficiently with proven algorithms (e.g, dynamic program-
ming, greedy approach, search), many combinatorial problems are NP-hard and rely on manually
designed heuristics to improve the quality of solutions [1, 40, 27].

Although it is usually easy to come up with many heuristics, determining when and where such
heuristics should be applied, and how they should be prioritized, is time-consuming. It takes
commercial solvers decades to tune to strong performance in practical problems [15, 44, 19].

To address this issue, previous works use neural networks to predict a complete solution from scratch,
given a complete description of the problem [50, 33, 29, 21]. While this avoids search and tuning, a
direct prediction could be difficult when the number of variables grows.

Improving iteratively from an existing solution is a common approach for continuous solution spaces,
e.g, trajectory optimization in robotics [34, 47, 31]. However, such methods relying on gradient
information to guide the search, is not applicable for discrete solution spaces due to indifferentiablity.

To address this problem, we directly learn a neural-based policy that improves the current solution by
iteratively rewriting a local part of it until convergence. Inspired by the problem structures, the policy
is factorized into two parts: the region-picking and the rule-picking policy, and is trained end-to-end
with reinforcement learning, rewarding cumulative improvement of the solution.

We apply our approach, NeuRewriter, to three different domains: expression simplification, online
job scheduling, and vehicle routing problems. We show that NeuRewriter is better than strong
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heuristics using multiple metrics. For expression simplification, NeuRewriter outperforms the
expression simplification component in Z3 [15]. For online job scheduling, under a controlled setting,
NeuRewriter outperforms Google OR-tools [19] in terms of both speed and quality of the solution,
and DeepRM [33], a neural-based approach that predicts a holistic scheduling plan, by large margins
especially in more complicated setting (e.g., with more heterogeneous resources). For vehicle routing
problems, NeuRewriter outperforms two recent neural network approaches [35, 29] and Google
OR-tools [19]. Furthermore, extensive ablation studies show that our approach works well in different
situations (e.g., different expression lengths, non-uniform job/resource distribution), and transfers
well when distribution shifts (e.g., test on longer expressions than those used for training).
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Figure 1: The framework of our neural rewriter. Given the current state (i.e., solution to the optimization
problem) st, we first pick a region ωt by the region-picking policy πω(ωt|st), and then pick a rewriting rule ut

using the rule-picking policy πu(ut|st[ωt]), where πu(ut|st[ωt]) gives the probability distribution of applying
each rewriting rule u ∈ U to the partial solution. Once the partial solution is updated, we obtain an improved
solution st+1 and repeat the process until convergence.

2 Related Work

Methods. Using neural network models for combinatorial optimization has been explored in the last
few years. A straightforward idea is to construct a solution directly (e.g., with a Seq2Seq model) from
the problem specification [50, 6, 33, 28]. However, such approaches might meet with difficulties if
the problem has complex configurations, as our evaluation indicates. In contrast, our paper focuses
on iterative improvement of a complete solution.

Trajectory optimization with local gradient information has been widely studied in robotics with
many effective techniques [34, 9, 51, 47, 32, 31]. For discrete problems, it is possible to apply
continuous relaxation and apply gradient descent [10]. In contrast, we learn the gradient from
previous experience to optimize a complete solution, similar to data-driven descent [49] and synthetic
gradient [26].

At a high level, our framework is closely connected with the local search pipeline. Specifically, we
can leverage our learned RL policy to guide the local search, i.e., to decide which neighbor solution
to move to. We will demonstrate that in our evaluated tasks, our approach outperforms several local
search algorithms guided by manually designed heuristics, and softwares supporting more advanced
local search algorithms, i.e., Z3 [15] and OR-tools [19].

Applications. For expression simplification, some recent work use deep neural networks to discover
equivalent expressions [11, 2, 52]. In particular, [11] trains a deep neural network to rewrite algebraic
expressions with supervised learning, which requires a collection of ground truth rewriting paths, and
may not find novel rewriting routines. We mitigate these limitations using reinforcement learning.

Job scheduling and resource management problems are ubiquitous and fundamental in computer
systems. Various work have studied these problems from both theoretical and empirical sides [8, 20,
3, 42, 48, 33, 13]. In particular, a recent line of work studies deep reinforcement learning for job
scheduling [33, 13] and vehicle routing problems [29, 35].

Our approach is tested on multiple domains with extensive ablation studies, and could also be extended
to other closely related tasks such as code optimization [41, 12], theorem proving [25, 30, 4, 24],
text simplification [14, 37, 18], and classical combinatorial optimization problems beyond routing
problems [16, 28, 7, 50, 27], e.g., Vertex Cover Problem [5].

3 Problem Setup
Let S be the space of all feasible solutions in the problem domain, and c : S → R be the cost
function. The goal of optimization is to find arg mins∈S c(s). In this work, instead of finding a
solution from scratch, we first construct a feasible one, then make incremental improvement by
iteratively applying local rewriting rules to the existing solution until convergence. Our rewriting
formulation is especially suitable for problems with the following properties: (1) a feasible solution
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is easy to find; (2) the search space has well-behaved local structures, which could be utilized to
incrementally improve the solution. For such problems, a complete solution provides a full context
for the improvement using a rewriting-based approach, allowing additional features to be computed,
which is hard to obtain if the solution is generated from scratch; meanwhile, different solutions might
share a common routine towards the optimum, which could be represented as local rewriting rules.
For example, it is much easier to decide whether to postpone jobs with large resource requirements
when an existing job schedule is provided. Furthermore, simple rules like swapping two jobs could
improve the performance.

Formally, each solution is a state, and each local region and the associated rewriting rule is an action.

Optimization as a rewriting problem. Let U be the rewriting ruleset. Suppose st is the current
solution (or state) at iteration t. We first compute a state-dependent region set Ω(st), then pick
a region ωt ∈ Ω(st) using the region-picking policy πω(ωt|st). We then pick a rewriting rule ut
applicable to that region ωt using the rule-picking policy πu(ut|st[ωt]), where st[ωt] is a subset
of state st. We then apply this rewriting rule ut ∈ U to st[ωt], and obtain the next state st+1 =
f(st, ωt, ut). Given an initial solution (or state) s0, our goal is to find a sequence of rewriting steps
(s0, (ω0, u0)), (s1, (ω1, u1)), ..., (sT−1, (ωT−1, uT−1)), sT so that the final cost c(sT ) is minimized.

To tackle a rewriting problem, rule-based rewriters with manually-designed rewriting routines have
been proposed [23]. However, manually designing such routines is not a trivial task. An incomplete
set of routines often leads to an inefficient exhaustive search, while a set of kaleidoscopic routines is
often cumbersome to design, hard to maintain and lacks flexibility.

In this paper, we propose to train a neural network instead, using reinforcement learning. Recent
advance in deep reinforcement learning suggests the potential of well-trained models to discover
novel effective policies, such as demonstrated in Computer Go [43] and video games [36]. Moreover,
by leveraging reinforcement learning, our approach could be extended to a broader range of problems
that could be hard for rule-based rewriters and classic search algorithms. For example, we can design
the reward to take the validity of the solution into account, so that we can start with an infeasible
solution and then move towards a feasible one. On the other hand, we can also train the neural
network to explore the connections between different solutions in the search space. In our evaluation,
we demonstrate that our approach (1) mitigates laborious human efforts, (2) discovers novel rewriting
paths from its own exploration, and (3) finds better solution to optimization problem than the current
state-of-the-art and traditional heuristic-based software packages tuned for decades.

4 Neural Rewriter Model
In the following, we present the design of our rewriting model, i.e., NeuRewriter. We first provide
an overview of our model framework, then present the design details for different applications.

4.1 Model Overview
Figure 1 illustrates the overall framework of our neural rewriter, and we describe the two key
components for rewriting as follows. More details can be found in Appendix C.

Score predictor. Given the state st, the score predictor computes a score Q(st, ωt) for every
ωt ∈ Ω(st), which measures the benefit of rewriting st[ωt]. A high score indicates that rewriting
st[ωt] could be desirable. Note that Ω(st) is a problem-dependent region set. For expression
simplification, Ω(st) includes all sub-trees of the expression parse trees; for job scheduling, Ω(st)
covers all job nodes for scheduling; and for vehicle routing, it includes all nodes in the route.

Rule selector. Given st[ωt] to be rewritten, the rule-picking policy predicts a probability distribution
πu(st[ωt]) over the entire ruleset U , and selects a rule ut ∈ U to apply accordingly.

4.2 Training Details
Let (s0, (ω0, u0)), ..., (sT−1, (ωT−1, uT−1)), sT be the rewriting sequence in the forward pass.

Reward function. We define r(st, (ωt, ut)) as r(st, (ωt, ut)) = c(st)− c(st+1), where c(·) is the
task-specific cost function in Section 3.

Q-Actor-Critic training. We train the region-picking policy πω and rule-picking policy πu simulta-
neously. For πω(ωt|st; θ), we parameterize it as a softmax of the underlying Q(st, ωt; θ) function:

πω(ωt|st; θ) =
exp(Q(st, ωt; θ))∑
ωt

exp(Q(st, ωt; θ))
(1)
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Figure 2: The instantiation of NeuRewriter for different domains: (a) expression simplification; (b) job
scheduling; and (c) vehicle routing. In (a), st is the expression parse tree, where each square represents a node
in the tree. The set Ω(st) includes every sub-tree rooted at a non-terminal node, from which the region-picking
policy selects ωt ∼ πω(ωt|st)) to rewrite. Afterwards, the rule-picking policy predicts a rewriting rule ut ∈ U ,
then rewrites the sub-tree ωt to get the new tree st+1. In (b), st is the dependency graph representation of
the job schedule. Each circle with index greater than 0 represents a job node, and node 0 is an additional one
representing the machine. Edges in the graph reflect job dependencies. The region-picking policy selects a
job ωt to re-schedule from all job nodes, then the rule-picking policy chooses a moving action ut for ωt, then
modifies st to get a new dependency graph st+1. In (c), st is the current route, and ωt is the node selected to
change the visit order. Node 0 is the depot, and other nodes are customers with certain resource demands. The
region-picking policy and the rule-picking policy work similarly to the job scheduling ones.

and instead learn Q(st, ωt; θ) by fitting it to the cumulative reward sampled from the current policies
πω and πu:

Lω(θ) =
1

T

T−1∑

t=0

(
T−1∑

t′=t

γt
′−tr(s′t, (ω

′
t, u
′
t))−Q(st, ωt; θ))

2 (2)

Where T is the length of the episode (i.e., the number of rewriting steps), and γ is the decay factor.

For rule-picking policy πu(ut|st[ωt];φ), we employ the Advantage Actor-Critic algorithm [45]
with the learned Q(st, ωt; θ) as the critic, and thus avoid boot-strapping which could cause sample
insufficiency and instability in training. This formulation is similar in spirit to soft-Q learning [22].
Denoting ∆(st, (ωt, ut)) ≡

∑T−1
t′=t γ

t′−tr(s′t, (ω
′
t, u
′
t))−Q(st, ωt; θ) as the advantage function, the

loss function of the rule selector is:

Lu(φ) = −
T−1∑

t=0

∆(st, (ωt, ut)) log πu(ut|st[ωt];φ) (3)

The overall loss function is L(θ, φ) = Lu(φ)+αLω(θ), where α is a hyper-parameter. More training
details can be found in Appendix D.

5 Applications
In the following sections, we discuss the application of our rewriting approach to three different
domains: expression simplification, online job scheduling, and vehicle routing. In expression
simplification, we minimize the expression length using a well-defined semantics-preserving rewriting
ruleset. In online job scheduling, we aim to reduce the overall waiting time of jobs. In vehicle routing,
we aim to minimize the total tour length.

5.1 Expression Simplification

We first apply our approach to expression simplification domain. In particular, we consider expressions
in Halide, a domain-specific language for high-performance image processing [39], which is widely
used at scale in multiple products of Google (e.g., YouTube) and Adobe Photoshop. Simplifying
Halide expressions is an important step towards the optimization of the entire code. To this end, a rule-
based rewriter is implemented for the expressions, which is carefully tuned with manually-designed
heuristics. The grammar of the expressions considered in the rewriter is specified in Appendix A.1.
Notice that the grammar includes a more comprehensive operator set than previous works on finding
equivalent expressions, which consider only boolean expressions [2, 17] or a subset of algorithmic
operations [2]. The rewriter includes hundreds of manually-designed rewriting templates. Given an
expression, the rewriter checks the templates in a pre-designed order, and applies those rewriting
templates that match any sub-expression of the input.

After investigating the rewriting templates in the rule-based rewriter, we find that a large number of
rewriting templates enumerate specific cases for an uphill rule, which lengthens the expression first
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and shortens it later (e.g., “min/max” expansion). Similar to momentum terms in gradient descent for
continuous optimization, such rules are used to escape a local optimum. However, they should only
be applied when the initial expression satisfies certain pre-conditions, which is traditionally specified
by manual design, a cumbersome process that is hard to generalize.

Observing these limitations, we hypothesize that a neural network model has the potential of doing a
better job than the rule-based rewriter. In particular, we propose to only keep the core rewriting rules
in the ruleset, remove all unnecessary pre-conditions, and let the neural network decide which and
when to apply each rewriting rule. In this way, the neural rewriter has a better flexibility than the
rule-based rewriter, because it can learn such rewriting decisions from data, and has the ability of
discovering novel rewriting patterns that are not included in the rule-based rewriter.

Ruleset. We incorporate two kinds of templates from Halide rewriting ruleset. The first kind is
simple rules (e.g., v − v → 0), while the second one is the uphill rules after removing their manually
designed pre-conditions that do not affect the validity of the rewriting. In this way, a ruleset with
|U| = 19 categories is built. See Appendix B.1 for more details.

Model specification. We use expression parse trees as the input, and employ the N-ary Tree-LSTM
designed in [46] as the input encoder to compute the embedding for each node in the tree. Both the
score predictor and the rule selector are fully connected neural networks, taken the LSTM embeddings
as the input. More details can be found in Appendix C.1.

5.2 Job Scheduling Problem

We also study the job scheduling problem, using the problem setup in [33].

Notation. Suppose we have a machine with D types of resources. Each job j is specified as vj =
(ρj , Aj , Tj), where the D-dimensional vector ρj = [ρjd] denotes the required portion 0 ≤ ρjd ≤ 1
of the resource type d, Aj is the arrival timestep, and Tj is the duration. In addition, we define Bj as
the scheduled beginning time, and Cj = Bj + Tj as the completion time.

We assume that the resource requirement is fixed during the entire job execution, each job must run
continuously until finishing, and no preemption is allowed. We adopt an online setting: there is a
pending job queue that can hold at most W jobs. When a new job arrives, it can either be allocated
immediately, or be added to the queue. If the queue is already full, to make space for the new job, at
least one job in the queue needs to be scheduled immediately. The goal is to find a time schedule for
every job, so that the average waiting time is as short as possible.

Ruleset. The set of rewriting rules is to re-schedule a job vj and allocate it after another job vj′
finishes or at its arrival time Aj . See Appendix B.2 for details of a rewriting step. The size of the
rewriting ruleset is |U| = 2W , since each job could only switch its scheduling order with at most W
of its former and latter jobs respectively.

Representation. We represent each schedule as a directed acyclic graph (DAG), which describes the
dependency among the schedule time of different jobs. Specifically, we denote each job vj as a node
in the graph, and we add an additional node v0 to represent the machine. If a job vj is scheduled
at its arrival time Aj (i.e., Bj = Aj), then we add a directed edge 〈v0, vj〉 in the graph. Otherwise,
there must exist at least one job vj′ such that Cj′ = Bj (i.e., job j starts right after job j′). We add an
edge 〈vj′ , vj〉 for every such job vj′ to the graph. Figure 2(b) shows the setting, and we defer the
embedding and graph construction details to Appendix C.2.

Model specification. To encode the graphs, we extend the Child-Sum Tree-LSTM architecture
in [46], which is similar to the DAG-structured LSTM in [53]. Similar to the expression simplification
model, both the score predictor and the rule selector are fully connected neural networks, and we
defer the model details to Appendix C.2.

5.3 Vehicle Routing Problem

In addition, we evaluate our approach on vehicle routing problems studied in [29, 35]. Specifically,
we focus on the Capacitated VRP (CVRP), where a single vehicle with limited capacity needs to
satisfy the resource demands of a set of customer nodes. To do so, we construct multiple routes
starting and ending at the depot, i.e., node 0 in Figure 2(c), so that the resources delivered in each
route do not exceed the vehicle capacity, while the total route length is minimized.
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We represent each vehicle routing problem as a sequence of the nodes visited in the tour, and use a
bi-directional LSTM to embed the routes. The ruleset is similar to the job scheduling, where each
node can swap with another node in the route. The architectures of the score predictor and rule
selector are similar to job scheduling. More details can be found in Appendix C.3.

6 Experiments
We present the evaluation results in this section. To calculate the inference time, we run all algorithms
on the same server equipped with 2 Quadro GP100 GPUs and 80 CPU cores. Only 1 GPU is used
when evaluating neural networks, and 4 CPU cores are used for search algorithms. We set the
timeout of search algorithms to be 10 seconds per instance. All neural networks in our evaluation are
implemented in PyTorch [38].

6.1 Expression Simplification

Setup. To construct the dataset, we first generate random pipelines using the generator in Halide,
then extract expressions from them. We filter out those irreducible expressions, then split the rest into
8/1/1 for training/validation/test sets respectively. See Appendix A.1 for more details.

Metrics. We evaluate the following two metrics: (1) Average expression length reduction, which is
the length reduced from the initial expression to the rewritten one, and the length is defined as the
number of characters in the expression; (2) Average tree size reduction, which is the number of nodes
decreased from the initial expression parse tree to the rewritten one.

Baselines. We examine the effectiveness of NeuRewriter against two kinds of baselines. The first
kind of baselines are heuristic-based rewriting approaches, including Halide-rule (the rule-based
Halide rewriter in Section 3) and Heuristic-search, which applies beam search to find the
shortest rewriting with our ruleset at each step. Note that NeuRewriter does not use beam search.

In addition, we also compare our approach with Z3, a high-performance theorem prover developed
by Microsoft Research [15]. Z3 provides two tactics to simplify the expressions: Z3-simplify
performs some local transformation using its pre-defined rules, and Z3-ctx-solver-simplify
traverses each sub-formula in the input expression and invokes the solver to find a simpler equivalent
one to replace it. This search-based tactic is able to perform simplification not included in the Halide
ruleset, and is generally better than the rule-based counterpart but with more computation. For
Z3-ctx-solver-simplify, we set the timeout to be 10 seconds for each input expression.

Results. Figure 3a presents the main results. We can notice that the performance of Z3-simplify
is worse than Halide-rule, because the ruleset included in this simplifier is more restricted than
the Halide one, and in particular, it can not handle expressions with “max/min/select” operators.
On the other hand, NeuRewriter outperforms both the rule-based rewriters and the heuristic
search by a large margin. In particular, NeuRewriter could reduce the expression length and
parse tree size by around 52% and 59% on average; compared to the rule-based rewriters, our model
further reduces the average expression length and tree size by around 20% and 15% respectively.
We observe that the main performance gain comes from learning to apply uphill rules appropriately
in ways that are not included in the manually-designed templates. For example, consider the
expression 5 ≤ max(max(v0, 3) + 3,max(v1, v2)), which could be reduced to True by expanding
max(max(v0, 3) + 3,max(v1, v2)) and max(v0, 3). Using a rule-based rewriter would require the
need of specifying the pre-conditions recursively, which becomes prohibitive when the expressions
become more complex. On the other hand, heuristic search may not be able to find the correct order
of expanding the right hand size of the expression when more “min/max” are included, which would
make the search less efficient.

Furthermore, NeuRewriter also outperforms Z3-ctx-solver-simplify in terms of both
the result quality and the time efficiency, as shown in Figure 3a and Table 1a. Note that the
implementation of Z3 is in C++ and highly optimized, while NeuRewriter is implemented in
Python; meanwhile, Z3-ctx-solver-simplify could perform rewriting steps that are not
included in the Halide ruleset. More results can be found in Appendix G.

Generalization to longer expressions. To measure the generalizability of our approach, we construct
4 subsets of the training set: Train≤20, Train≤30, Train≤50 and Train≤100, which only include
expressions of length at most 20, 30, 50 and 100 in the full training set. We also build Test>100, a
subset of the full test set that only includes expressions of length larger than 100. The statistics of
these datasets can be found in Appendix A.1.
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Figure 3: Experimental results of the expression simplification problem. In (b), we train NeuRewriter on
expressions of different lengths (described in the brackets).
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Figure 4: Experimental results of the job scheduling problem varying the following aspects: (a) the number of
resource types D; (b) job frequency; (c) resource distribution; (d) job length. For NeuRewriter, we describe
training job distributions in the brackets. Workloads in (a) are with steady job frequency, non-uniform resource
distribution, and non-uniform job length. In (b), (c) and (d), D = 20. In (b) and (c), we omit the comparison
with some approaches because their results are significantly worse; for example, the average slowdown of EJF
is 14.53 on the dynamic job frequency, and 11.06 on the uniform resource distribution. More results can be
found in Appendix E.
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NeuRewriter outperforms multiple baselines and previous works [29, 35]. More results can be found in
Appendix F. (b) We evaluate the generalization performance of NeuRewriter on problems from different
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We present the results of training our model on different datasets above in Figure 3b. Even trained on
short expressions, NeuRewriter is still comparable with the Z3 solver. Thanks to local rewriting
rules, our approach can generalize well even when operating on very different data distributions.

6.2 Job Scheduling Problem

Setup. We randomly generate 100K job sequences, and use 80K/10K/10K for training, validation
and testing. Typically each job sequence includes ∼ 50 jobs. We use an online setting where jobs
arrive on the fly with a pending job queue of length W = 10. Unless stated otherwise, we generate
initial schedules using Earliest Job First (EJF), which can be constructed with negligible overhead.

When the number of resource types D = 2, we follow the same setup as in [33]. The maximal job
duration Tmax = 15, and the latest job arrival time Amax = 50. With larger D, except changing the
resource requirement of each job to include more resource types, other configurations stay the same.

Metric. Following DeepRM [33], we use the average job slowdown ηj ≡ (Cj −Aj)/Tj ≥ 1 as our
evaluation metric. Note that ηj = 1 means no slow down.

Job properties. To test the stability and generalizability of NeuRewriter, we change job properties
(and their distributions): (1) Number of resource types D: larger D leads to more complicated
scheduling; (2) Average job arrival rate: the probability that a new job will arrive, Steady job
frequency sets it to be 70%, and Dynamic job frequency means the job arrival rate changes randomly
at each timestep; (3) Resource distribution: jobs might require different resources, where some are
uniform (e.g., half-half for resource 1 and 2) while others are non-uniform (see Appendix A.2 for
the detailed description); (4) Job lengths: Uniform job length: length of each job in the workload is
either [10, 15] (long) or [1, 3] (short), and Non-uniform job length: workload has both short and long
jobs. We show that NeuRewriter is fairly robust under different distributions. When trained on
one distribution, it can generalize to others without performance collapse.

We compare NeuRewriter with three kinds of baselines.

Baselines on Manually designed heuristics: Earliest Job First (EJF) schedules each job in the
increasing order of their arrival time. Shortest Job First (SJF) always allocates the shortest job
in the pending job queue at each timestep, which is also used as a baseline in [33]. Shortest First
Search (SJFS) searches over the shortest k jobs to schedule at each timestep, and returns the optimal
one. We find that other heuristic-based baselines used in [33] generally perform worse than SJF,
especially with large D. Thus, we omit the comparison.

Baselines on Neural network. We compare with DeepRM [33], a neural network also trained with
RL to construct a solution from scratch.

Baselines on Offline planning. To measure the optimality of these algorithms, we also take an offline
setting, where the entire job sequence is available before scheduling. Note that this is equivalent
to assuming an unbounded length of the pending job queue. With such additional knowledge, this
setting provides a strong baseline. We tried two offline algorithms: (1) SJF-offline, which is
a simple heuristic that schedules each job in the increasing order of its duration; and (2) Google
OR-tools [19], which is a generic toolbox for combinatorial optimization. For OR-tools, we set the
timeout to be 10 seconds per workload, but we find that it can not achieve a good performance even
with a larger timeout, and we defer the discussion to Appendix E.

Results on Scalability. As shown in Figure 4a, NeuRewriter outperforms both heuristic algo-
rithms and the baseline neural network DeepRM. In particular, while the performance of DeepRM
and NeuRewriter are similar when D = 2, with larger D, DeepRM starts to perform worse than
heuristic-based algorithms, which is consistent with our hypothesis that it becomes challenging to
design a schedule from scratch when the environment becomes more complex. On the other hand,
NeuRewriter could capture the bottleneck of an existing schedule that limits its efficiency, then
progressively refine it to obtain a better one. In particular, our results are even better than offline
algorithms that assume the knowledge of the entire job sequence, which further demonstrates the
effectiveness of NeuRewriter. Meanwhile, we present the running time of OR-tools, DeepRM and
NeuRewriter in Table 1b. We can observe that both DeepRM and NeuRewriter are much more
time-efficient than OR-tools; on the other hand, the running time of NeuRewriter is comparable
to DeepRM, while achieving much better results. More discussion can be found in Appendix E.

Results on Robustness. As shown in Figure 4, NeuRewriter excels in almost all different job
distributions, except when the job lengths are uniform (short or long, Figure 4d), in which case
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Time (s)
Z3-solver 1.375

NeuRewriter 0.159

(a)

Time (s)
OR-tools 10.0
DeepRM 0.020

NeuRewriter 0.037

(b)

VRP20 VRP50 VRP100
OR-tools 0.010 0.053 0.231

Nazari et al. 0.162 0.232 0.445
AM 0.036 0.168 0.720

NeuRewriter 0.133 0.211 0.398

(c)
Table 1: Average runtime (per instance) of different solvers (OR-tools [19] and the tactic
Z3-ctx-solver-simplify of Z3 [15]) and RL-based approaches (NeuRewriter, DeepRM [33], Nazari
et al. [35] and AM [29]) over the test set of: (a) expression simplification; (b) job scheduling; (c) vehicle routing.

existing methods/heuristics are sufficient. This shows that NeuRewriter can deal with complicated
scenarios and is adaptive to different distributions.

Results on Generalization. Furthermore, NeuRewriter can also generalize to different distribu-
tions than those used in training, without substantial performance drop. This shows the power of
local rewriting rules: using local context could yield more generalizable solutions.

6.3 Vehicle Routing Problem

Setup and Baselines. We follow the same training setup as [29, 35] by randomly generating vehicle
routing problems with different number of customer nodes and vehicle capacity. We compare with
two neural network approaches, i.e., AM [29] and Nazari et al. [35], and both of them train a neural
network policy using reinforcement learning to construct the route from scratch. We also compare
with OR-tools and several classic heuristics studied in [35].

Results. We first demonstrate our main results in Figure 5a, where we include the variant of each
baseline that performs the best, and defer more results to Appendix F. Note that the initial routes
generated for NeuRewriter are even worse than the classic heuristics; however, starting from
such sub-optimal solutions, NeuRewriter is still able to iteratively improve the solutions and
outperforms all the baseline approaches on different problem distributions. In addition, for VRP20
problems, we can compute the exact optimal solutions, which provides an average tour length of 6.10.
We observe that the result of NeuRewriter (i.e., 6.16) is the closest to this lower bound, which
also demonstrates that NeuRewriter is able to find solutions with better quality.

We also compare the runtime of the most competitive approaches in Table 1c. Note that the OR-Tools
solver for vehicle routing problems is highly tuned and implemented in C++, while the RL-based
approaches in comparison are implemented in Python. Meanwhile, following [35], to report the
runtime of RL models, we decode a single instance at a time, thus there is potential room for
speed improvement by decoding multiple instances per batch. Nevertheless, we can still observe
that NeuRewriter achieves a better balance between the result quality and the time efficiency,
especially with a larger problem scale.

Results on Generalization. Furthermore, in Figure 5b, we show that NeuRewriter can generalize
to different problem distributions than training ones. In particular, they still exceed the performance
of the classic heuristics, and are sometimes comparable or even better than the OR-tools. More
discussion can be found in Appendix F.

7 Conclusion

In this work, we propose to formulate optimization as a rewriting problem, and solve the problem
by iteratively rewriting an existing solution towards the optimum. We utilize deep reinforcement
learning to train our neural rewriter. In our evaluation, we demonstrate the effectiveness of our neural
rewriter on multiple domains, where our model outperforms both heuristic-based algorithms and
baseline deep neural networks that generate an entire solution directly.

Meanwhile, we observe that since our approach is based on local rewriting, it could become time-
consuming when large changes are needed in each iteration of rewriting. In extreme cases where
each rewriting step needs to change the global structure, starting from scratch becomes preferrable.
We consider improving the efficiency of our rewriting approach and extending it to more complicated
scenarios as future work.
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