
Approach Time (s)
Z3 (solver) 1.375

NeuRewriter 0.159

(a)

Approach Time (s)
OR-tools 10.0
DeepRM 0.020

NeuRewriter 0.037

(b)

VRP20 VRP50 VRP100
OR-tools 0.010 0.053 0.231

Nazari et al. 0.162 0.232 0.445
AM 0.036 0.168 0.720

NeuRewriter 0.133 0.211 0.398

(c)

Table 1: Average running time over the test set of: (a) expression simplification; (b) job scheduling; (c) vehicle routing.

We thank all reviewers for valuable and encouraging comments!1

Main Contributions. We demonstrate that a neural network-based policy can be trained with RL to replace laborious2

work of tuning heuristics, and in specific problems (expression simplification, job scheduling and vehicle routing),3

outperforms extensive baselines including (1) common heuristics; (2) heuristics-guided search; (3) software (Halide4

and Z3 in Expression simplification, OR-tools in Job scheduling and Vehicle routing); and (4) previous deep models.5

Our policy is factorized into region-picking and rule-picking components to decide where and which rewriting rule6

to apply. Meanwhile, our method demonstrates strong generalizability when the model is evaluated on different data7

distributions than the training one, suggesting the power of leveraging local structures.8

Method Applicability and Limitation. We agree that our approach demonstrates its greatest strengths when the9

problems have well-behaved local structures in the search space. We have briefly mentioned the assumptions (e.g., Line10

67-77). Based on suggestions from R2 and R3, we will revise our paper to provide a clearer and more formal discussion11

of the applicable range of problems and the underlying assumptions of our approach.12

Note that our method can be applied even if a feasible solution is hard to find: we can start with an infeasible solution,13

then move towards a feasible one by using the reduction of infeasibility (e.g., more constraints are satisfied) as the14

reward in RL. The method can also be applied to situations with sparse reward, since Q(st, ωt; θ) is trained supervisedly15

with the accumulated reward in each rewriting trajectory. The learned policy is also not blindly driven by short-term16

reward. For example, in expression simplification, the model learns to properly apply a few uphill rules to make the17

expression longer (and receive negative rewards), before reaching a solution with a high reward (Line 231-238).18

Although the proposed method is mainly evaluated on combinatorial optimization, it can be extended to other rewriting19

problems, e.g., equational theorem proving solvable by rewriting-based systems [1, 3], and we leave it as future work.20

Reviewer 1. See Table 1 for the average running time per problem instance. We have described the details of time21

calculation in our submission (Line 200-204, 223 and 283-285). Note that the implementation of Z3 and OR-tools22

are in C++, while NeuRewriter and RL baselines are in Python. Still, we can observe that our approach achieves a23

better balance between the time-efficiency and the result quality. For expression simplification and job scheduling,24

NeuRewriter is even more time-efficient than Z3 and OR-tools. Meanwhile, the time-efficiency of NeuRewriter is25

comparable or better than RL baselines, while achieving better results. We will provide more discussion in our revision.26

Reviewer 2. We agree that at a high level, our framework is closely connected with the local search pipeline. Specifically,27

we can leverage our learned RL policy to guide the local search, i.e., to decide which neighbor solution to move to.28

We have compared with several approaches using local search guided by manually designed heuristics, e.g., Heuristic29

Search for expression simplification (Line 215-216), Random CW for vehicle routing (Figure 5 in page 6), and30

softwares supporting more advanced local search algorithms (Z3 and OR-tools), and we demonstrate that our approach31

outperforms these baselines in our tasks. We will further highlight this connection in our revision.32

The region-picker πω is parameterized by a Q-function and is similar in spirit to soft-Q learning [2]. We learn Q33

function directly from the final rewards of the trajectory in a supervised manner, and thus avoid boot-strapping which34

could cause sample insufficiency and instability in training. We have also tried the bootstrapping estimation (e.g., n-step35

TD), and the results are not better.36

Reviewer 3. See above for applicability of the proposed method. We will definitely release the code in the final version.37
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