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Abstract

The goal of this paper is to design image classification systems that, after an initial
multi-task training phase, can automatically adapt to new tasks encountered at test
time. We introduce a conditional neural process based approach to the multi-task
classification setting for this purpose, and establish connections to the meta-learning
and few-shot learning literature. The resulting approach, called CNAPS, comprises
a classifier whose parameters are modulated by an adaptation network that takes the
current task’s dataset as input. We demonstrate that CNAPS achieves state-of-the-
art results on the challenging META-DATASET benchmark indicating high-quality
transfer-learning. We show that the approach is robust, avoiding both over-fitting
in low-shot regimes and under-fitting in high-shot regimes. Timing experiments
reveal that CNAPS is computationally efficient at test-time as it does not involve
gradient based adaptation. Finally, we show that trained models are immediately
deployable to continual learning and active learning where they can outperform
existing approaches that do not leverage transfer learning.

1 Introduction

We consider the development of general purpose image classification systems that can handle tasks
from a broad range of data distributions, in both the low and high data regimes, without the need for
costly retraining when new tasks are encountered. We argue that such systems require mechanisms
that adapt to each task, and that these mechanisms should themselves be learned from a diversity of
datasets and tasks at training time. This general approach relates to methods for meta-learning [1, 2]
and few-shot learning [3]. However, existing work in this area typically considers homogeneous task
distributions at train and test-time that therefore require only minimal adaptation. To handle the more
challenging case of different task distributions we design a fully adaptive system, requiring specific
design choices in the model and training procedure.

Current approaches to meta-learning and few-shot learning for classification are characterized by two
fundamental trade-offs. (i) The number of parameters that are adapted to each task. One approach
adapts only the top, or head, of the classifier leaving the feature extractor fixed [4, 5]. While useful in
simple settings, this approach is prone to under-fitting when the task distribution is heterogeneous
[6]. Alternatively, we can adapt all parameters in the feature extractor [7, 8] thereby increasing
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Figure 1: (a) Probabilistic graphical model detailing the CNP [13] framework. (b) Computational diagram
depicting the CNAPS model class. Red boxes imply parameters in the model architecture supplied by adaptation
networks. Blue shaded boxes depict the feature extractor and the gold box depicts the linear classifier.

fitting capacity, but incurring a computation cost and opening the door to over-fitting in the low-shot
regime. What is needed is a middle ground which strikes a balance between model capacity and
reliability of the adaptation. (ii) The adaptation mechanism. Many approaches use gradient-based
adaptation [7, 9]. While this approach can incorporate training data in a very flexible way, it is
computationally inefficient at test-time, may require expertise to tune the optimization procedure,
and is again prone to over-fitting. Conversely, function approximators can be used to directly map
training data to the desired parameters (we refer to this as amortization) [5, 10]. This yields fixed-cost
adaptation mechanisms, and enables greater sharing across training tasks. However, it may under-fit
if the function approximation is not sufficiently flexible. On the other hand, high-capacity function
approximators require a large number of training tasks to be learned.

We introduce a modelling class that is well-positioned with respect to these two trade-offs for the
multi-task classification setting called Conditional Neural Adaptive Processes (CNAPs).2 CNAPs
directly model the desired predictive distribution [11, 12], thereby introducing a conditional neural
processes (CNPs) [13] approach to the multi-task classification setting. CNAPS handles varying
way classification tasks and introduces a parametrization and training procedure enabling the model
to learn to adapt the feature representation for classification of diverse tasks at test time. CNAPS
utilize 1) a classification model with shared global parameters and a small number of task-specific
parameters. We demonstrate that by identifying a small set of key parameters, the model can balance
the trade-off between flexibility and robustness. ii) A rich adaptation neural network with a novel
auto-regressive parameterization that avoids under-fitting while proving easy to train in practice with
existing datasets [6]. In Section 5 we evaluate CNAPS. Recently, Triantafillou et al. [6] proposed
META-DATASET, a few-shot classification benchmark that addresses the issue of homogeneous train
and test-time tasks and more closely resembles real-world few-shot multi-task learning. Many of the
approaches that achieved excellent performance on simple benchmarks struggle with this collection
of diverse tasks. In contrast, we show that CNAPS achieve state-of-the-art performance on the
META-DATASET benchmark, often by comfortable margins and at a fraction of the time required by
competing methods. Finally, we showcase the versatility of the model class by demonstrating that
CNAPS can be applied “out of the box” to continual learning and active learning.

2 Model Design

We consider a setup where a large number of training tasks are available, each composed of a set of
inputs  and labels y. The data for task 7 includes a context set D™ = {(7, y7)})~,, with inputs

n=1>
and outputs observed, and a target set {(x7*, y7*)}7 | for which we wish to make predictions (y™

are only observed during training). CNPs [13] construct predictive distributions given * as:
p(y*la",0,D7) = p(y*[a”, 0,97 = by (D7) . (D

Here 0 are global classifier parameters shared across tasks. )7 are local task-specific parameters,
produced by a function 1) (+) that acts on D7. 1)4(-) has another set of global parameters ¢ called
adaptation network parameters. 6 and ¢ are the learnable parameters in the model (see Figure 1a).

2Source code available at https://github.com/cambridge-mlg/cnaps.
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(a) A FiLM layer. (b) A ResNet basic block with FiLM layers.

Figure 2: (Left) A FILM layer operating on convolutional feature maps indexed by channel ch. (Right) How a
FiLM layer is used within a basic Residual network block [14].

CNAPs is a model class that specializes the CNP framework for the multi-task classification setting.
The model-class is characterized by a number of design choices, made specifically for the multi-task
image classification setting. CNAPS employ global parameters 0 that are trained offline to capture
high-level features, facilitating transfer and multi-task learning. Whereas CNPs define 9™ to be a
fixed dimensional vector used as an input to the model, CNAPS instead let )™ be specific parameters
of the model itself. This increases the flexibility of the classifier, enabling it to model a broader range
of input / output distributions. We discuss our choices (and associated trade-offs) for these parameters
below. Finally, CNAPS employ a novel auto-regressive parameterization of 94 (-) that significantly
improves performance. An overview of CNAPS and its key components is illustrated in Figure 1b.

2.1 Specification of the classifier: global 8 and task-specific parameters 1"

We begin by specifying the classifier’s global parameters 8 followed by how these are adapted by the
local parameters /7.

Global Classifier Parameters. The global classifier parameters will parameterize a feature extractor
fe(x) whose output is fed into a linear classifier, described below. A natural choice for fg(-) in the
image setting is a convolutional neural network, e.g., a ResNet [14]. In what follows, we assume that
the global parameters 0 are fixed and known. In Section 3 we discuss the training of 6.

Task-Specific Classifier Parameters: Linear Classification Weights. The final classification layer
must be task-specific as each task involves distinguishing a potentially unique set of classes. We
use a task specific affine transformation of the feature extractor output, followed by a softmax. The
task-specific weights are denoted 17, € R4 *C" (suppressing the biases to simplify notation), where
dy is the dimension of the feature extractor output fg(x) and C7 is the number of classes in task 7.

Task-Specific Classifier Parameters: Feature Extractor Parameters. A sufficiently flexible
model must have capacity to adapt its feature representation fg(-) as well as the classification
layer (e.g. compare the optimal features required for ImageNet versus Omiglot). We therefore
introduce a set of local feature extractor parameters 7%, and denote fg(-) the unadapted feature

extractor, and fg(-;9}) the feature extractor adapted to task 7.

It is critical in few-shot multi-task learning to adapt the feature extractor in a parameter-efficient
manner. Unconstrained adaptation of all the feature extractor parameters (e.g. by fine-tuning [9])
gives flexibility, but it is also slow and prone to over-fitting [6]. Instead, we employ linear modulation
of the convolutional feature maps as proposed by Perez et al. [15], which adapts the feature extractor
through a relatively small number of task specific parameters.

A Feature-wise Linear Modulation (FiLM) layer [15] scales and shifts the 7" unadapted feature map
fi in the feature extractor FILM( fi; 77, 87) = ~7 fi + 57 using two task specific parameters, 7/ and
B7 . Figure 2a illustrates a FiLM layer operating on a convolutional layer, and Figure 2b illustrates
how a FiLM layer can be added to a standard Residual network block [14]. A key advantage of
FiLLM layers is that they enable expressive feature adaptation while adding only a small number of
parameters [15]. For example, in our implementation we use a ResNetl18 with FiLM layers after
every convolutional layer. The set of task specific FILM parameters (¢} = {77, B7}) constitute
fewer than 0.7% of the parameters in the model. Despite this, as we show in Section 5, they allow the
model to adapt to a broad class of datasets.
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Figure 3: Implementation of functional representation of the class-specific parameters 1/.,. In this parameteriza-
tion, 1)y, are the linear classification parameters for class ¢, and ¢., are the learnable parameters.

2.2 Computing the local parameters via adaptation networks

The previous sections have specified the form of the classifier p (y*|x*, 0,47) in terms of the global
and task specific parameters, 8 and " = {1/)}, 17 }. The local parameters could now be learned
separately for every task 7 via optimization. While in practice this is feasible for small numbers
of tasks (see e.g., [16, 17]), this approach is computationally demanding, requires expert oversight
(e.g. for tuning early stopping), and can over-fit in the low-data regime.

Instead, CNAPS uses a function, such as a neural network, that takes the context set D" as an input
and returns the task-specific parameters, 1™ = 14 (D7). The adaptation network has parameters
¢ that will be trained on multiple tasks to learn how to produce local parameters that result in
good generalisation, a form of meta-learning. Sacrificing some of the flexibility of the optimisation
approach, this method is comparatively cheap computationally (only involving a forward pass through
the adaptation network), automatic (with no need for expert oversight), and employs explicit parameter
sharing (via ¢) across the training tasks.

Adaptation Network: Linear Classifier Weights. CNAPS represents the linear classifier weights
7, as a parameterized function of the form 97, = 1,,(D7; ¢, Py, 0), denoted 4, (D7) for brevity.
There are three challenges with this approach: first, the dimensionality of the weights depends on the
task (b7, is a matrix with a column for each class, see Figure 3) and thus the network must output
parameters of different dimensionalities; second, the number of datapoints in D7 will also depend
on the task and so the network must be able to take inputs of variable cardinality; third, we would
like the model to support continual learning. To handle the first two challenges we follow Gordon
et al. [5]. First, each column of the weight matrix is generated independently from the context points
from that class 1], = [, (D]), ..., % (DZ)], an approach which scales to arbitrary numbers
of classes. Second, we employ a permutation invariant architecture [18, 19] for 1), (-) to handle the
variable input cardinality (see Appendix E for details). Third, as permutation invariant architectures
can be incrementally updated [20], continual learning is supported (as discussed in Section 5).

Intuitively, the classifier weights should be determined by the representation of the data points
emerging from the adapted feature extractor. We therefore input the adapted feature representation
of the data points into the network, rather than the raw data points (hence the dependency of 1), on
15 and ). To summarize, 1,,(-) is a function on sets that accepts as input a set of adapted feature
representations from D7, and outputs the M column of the linear classification matrix, i.e.,

ww (D:7 ¢w71/’f, 9) = ww ({fﬂ (me wf) ‘mm S DTvym = C}; ¢w) . (2)
Here ¢,, are learnable parameters of 1), (+). See Figure 3 for an illustration.

Adaptation Network: Feature Extractor Parameters. CNAPS represents the task-specific feature
extractor parameters @DJC, comprising the parameters of the FiILM layers 4" and 37 in our imple-
mentation, as a parameterized function of the context-set D7. Thus, 9 ¢ (50 75 0) is a collection of
functions (one for each FiLM layer) with parameters ¢ ¢, many of which are shared across functions.
We denote the function generating the parameters for the i FiLM layer dz} (+) for brevity.

Our experiments (Section 5) show that this mapping requires careful parameterization. We propose a
novel parameterization that improves performance in complex settings with diverse datasets. Our
implementation contains two components: a task-specific representation that provides context about
the task to all layers of the feature extractor (denoted z(), and an auto-regressive component that
provides information to deeper layers in the feature extractor concerning how shallower layers have
adapted to the task (denoted z}g). The input to the ¥’ (-) network is z; = (2§, zAg)- 2G is computed
for every task 7 by passing the inputs 7, through a global set encoder g with parameters in ¢ .
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Figure 4: Implementation of the feature-extractor: an independently learned set encoder g provides a fixed
context that is concatenated to the (processed) activations of & from the previous ResNet block. The inputs
zi = (2§, zjr) are then fed to 2% (-), which outputs the FILM parameters for layer 7. Green arrows correspond

to propagation of auto-regressive representations. Note that the auto-regressive component z4g is computed by
processing the adapted activations { fg(a; 1} )} of the previous convolutional block.
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Figure 5: Adaptation network ¢y. Ryip;chn and Rgib;cn denote a vector of regularization weights that are
learned with an /5 penalty.

To adapt the [ layer in the feature extractor, it is useful for the system to have access to the
representation of task-relevant inputs from layer [ — 1. While z¢ could in principle encode how layer
I — 1 has adapted, we opt to provide this information directly to the adaptation network adapting layer
[ by passing the adapted activations from layer [ — 1. The auto-regressive component z4 is computed
by processing the adapted activations of the previous convolutional block with a layer-specific set
encoder (except for the first residual block, whose auto-regressive component is given by the un-
adapted initial pre-processing stage in the ResNet). Both the global and all layer-specific set-encoders
are implemented as permutation invariant functions [18, 19] (see Appendix E for details). The full

parameterization is illustrated in Figure 4, and the architecture of w}() networks is illustrated in
Figure 5.

3 Model Training

The previous section has specified the model (see Figure 1b for a schematic). We now describe how
to train the global classifier parameters € and the adaptation network parameters ¢ = {¢, ¢, }.

Training the global classifier parameters 6. A natural approach to training the model (originally
employed by CNPs [13]) would be to maximize the likelihood of the training data jointly over 8 and
¢. However, experiments (detailed in Appendix D.3) showed that it is crucially important to adopt a
two stage process instead. In the first stage, 0 are trained on a large dataset (e.g., the training set of
ImageNet [21, 6]) in a full-way classification procedure, mirroring standard pre-training. Second, 0
are fixed and ¢ are trained using episodic training over all meta-training datasets in the multi-task
setting. We hypothesize that two-stage training is important for two reasons: (i) during the second
stage, ¢ are trained to adapt fg(-) to tasks 7 by outputting 7. As 0 has far more capacity than 7,
if they are trained in the context of all tasks, there is no need for 17 to adapt the feature extractor,

resulting in little-to-no training signal for ¢ ; and poor generalisation. (ii) Allowing 6 to adapt during



Faster at Test-Time Figure 6: Model design space. The y-axis repre-
sents the number of task-specific parameters |7 |.

% Al o ginetune (9] MAML[7]  Meta-LSTM [22] - Increasing |7 | increases model flexibility, but also
£ Z  the propensity to over-fit. The x-axis represents the
& Chasier Residual CNAPs, é complexity of the mechanism used to adapt the task-
€ Tond o QP RE momMil, |5 specific parameters to training data 4(D7). On the
g it cavia s, S right are amortized approaches (i.e. using fixed func-
& ) VERSA [5], tions). On the left is gradient-based adaptation. Mixed
R B e S L approaches lie between. Computational efficiency in-
= T T T T creases to the right. Flexibility increases to the left,
Multi-step Gradient Few-step Gradient ~ Semi-Amortized Amortized but Wlth lt Over_ﬁttlng and need fOr hand tuning.

Adaptation Mechanism (D7)

the second phase violates the principle of “train as you test”, i.e., when test tasks are encountered,
0 will be fixed, so it is important to simulate this scenario during training. Finally, fixing 8 during
meta-training is desireable as it results in a dramatic decrease in training time.

Training the adaptation network parameters ¢. Following the work of Garnelo et al. [13], we
train ¢ with maximum likelihood. An unbiased stochastic estimator of the log-likelihood is:

1

*T

where {y7,x*7, D7} ~ P, with P representing the data distribution (e.g., sampling tasks and
splitting them into disjoint context (D7) and target data { (=7, y*7)}* ). Maximum likelihood
training therefore naturally uses episodic context / target splits often used in meta-learning. In our
experiments we use the protocol defined by Triantafillou et al. [6] and META-DATASET for this

sampling procedure. Algorithm A.1 details computation of the stochastic estimator for a single task.

4 Related Work

Our work frames multi-task classification as directly modelling the predictive distribution
p(y*|x*, ¥ (D7)). The perspective allows previous work [7, 5, 15, 22, 16, 17,23, 4, 6, 24, 9, 25, 26]
to be organised in terms of i) the choice of the parameterization of the classifier (and in particular the
nature of the local parameters), and ii) the function used to compute the local parameters from the
training data. This space is illustrated in Figure 6, and further elaborated upon in Appendix B.

One of the inspirations for our work is conditional neural processes (CNPs) [13]. CNPs directly model
the predictive distribution p(y*|x*,1»(D7)) and train the parameters using maximum likelihood.
Whereas previous work on CNPs has focused on homogeneous regression and classification datasets
and fairly simple models, here we study multiple heterogeneous classification datasets and use a
more complex model to handle this scenario. In particular, whereas the original CNP approach to
classification required pre-specifying the number of classes in advance, CNAPS handles varying way
classification tasks, which is required for e.g. the meta-dataset benchmark. Further, CNAPS employs
a parameter-sharing hierarchy that parameterizes the feature extractor. This contrasts to the original
CNP approach that shared all parameters across tasks, and use latent inputs to the decoder to adapt to
new tasks. Finally, CNAPS employs a meta-training procedure geared towards learning to adapt
to diverse tasks. Similarly, our work can be viewed as a deterministic limit of ML-PIP [5] which
employs a distributional treatment of the local-parameters ).

A model with design choices closely related to CNAPS is TADAM [27]. TADAM employs a
similar set of local parameters, allowing for adaptation of both the feature extractor and classification
layer. However, it uses a far simpler adaptation network (lacking auto-regressive structure) and
an expensive and ad-hoc training procedure. Moreover, TADAM was applied to simple few-shot
learning benchmarks (e.g. CIFAR100 and mini-ImageNet) and sees little gain from feature extractor
adaptation. In contrast, we see a large benefit from adapting the feature extractor. This may in part
reflect the differences in the two models, but we observe that feature extractor adaptation has the
largest impact when used to adapt to different datasets and that two stage training is required to see
this. Further differences are our usage of the CNP framework and the flexible deployment of CNAPS
to continual learning and active learning (see Section 5).



5 Experiments and Results

The experiments target three key questions: (i) Can CNAPS improve performance in multi-task
few-shot learning? (ii) Does the use of an adaptation network benefit computational-efficiency and
data-efficiency? (iii) Can CNAPS be deployed directly to complex learning scenarios like continual
learning and active learning? The experiments use the following modelling choices (see Appendix E
for full details). While CNAPS can utilize any feature extractor, a ResNet18 [14] is used throughout to
enable fair comparison with Triantafillou et al. [6]. To ensure that each task is handled independently,
batch normalization statistics [28] are learned (and fixed) during the pre-training phase for 6. Actual
batch statistics of the test data are never used during meta-training or testing.

Few Shot Classification. The first experiment tackles a demanding few-shot classification chal-
lenge called META-DATASET [6]. META-DATASET is composed of ten (eight train, two test) image
classification datasets. The challenge constructs few-shot learning tasks by drawing from the follow-
ing distribution. First, one of the datasets is sampled uniformly; second, the “way” and “shot” are
sampled randomly according to a fixed procedure; third, the classes and context / target instances are
sampled. Where a hierarchical structure exists in the data (ILSVRC or OMNIGLOT), task-sampling
respects the hierarchy. In the meta-test phase, the identity of the original dataset is not revealed
and the tasks must be treated independently (i.e. no information can be transferred between them).
Notably, the meta-training set comprises a disjoint and dissimilar set of classes from those used for
meta-test. Full details are available in Appendix C.1 and [6].

Triantafillou et al. [6] consider two stage training: an initial stage that trains a feature extractor in a
standard classification setting, and a meta-training stage of all parameters in an episodic regime. For
the meta-training stage, they consider two settings: meta-training only on the META-DATASET version
of ILSVRC, and on all meta-training data. We focus on the latter as CNAPS rely on training data
from a variety of training tasks to learn to adapt, but provide results for the former in Appendix D.1.
We pre-train 8 on the meta-training set of the META-DATASET version of ILSVRC, and meta-train
¢ in an episodic fashion using all meta-training data. We compare CNAPS to models considered
by Triantafillou et al. [6], including their proposed method (Proto-MAML) in Table 1. We meta-test
CNAPS on three additional held-out datasets: MNIST [29], CIFAR10 [30], and CIFAR100 [30]. As
an ablation study, we compare a version of CNAPS that does not make use of the auto-regressive
component z 4 g, and a version that uses no feature extractor adaptation. In our analysis of Table 1, we
distinguish between two types of generalization: (i) unseen tasks (classes) in meta-training datasets,
and (ii) unseen datasets.

Unseen tasks: CNAPS achieve significant improvements over existing methods on seven of the
eight datasets. The exception is the TEXTURES dataset, which has only seven test classes and
accuracy is highly sensitive to the train / validation / test class split. The ablation study demonstrates
that removing zar from the feature extractor adaptation degrades accuracy in most cases, and that
removing all feature extractor adaptation results in drastic reductions in accuracy.

Unseen datasets: CNAPs-models outperform all competitive models with the exception of FINE-
TUNE on the TRAFFIC SIGNS dataset. Removing zar from the feature extractor decreases accuracy
and removing the feature extractor adaptation entirely significantly impairs performance. The degra-
dation is particularly pronounced when the held out dataset differs substantially from the dataset used
to pretrain 6, e.g. for MNIST.

Note that the superior results when using the auto-regressive component can not be attributed to
increased network capacity alone. In Appendix D.4 we demonstrate that CNAPS yields superior
classification accuracy when compared to parallel residual adapters [17] even though CNAPS requires
significantly less network capacity in order to adapt the feature extractor to a given task.

Additional results: Results when meta-training only on the META-DATASET version of ILSVRC
are given in Table D.3. In Appendix D.2, we visualize the task encodings and parameters, demon-
strating that the model is able to learn meaningful task and dataset level representations and parame-
terizations. The results support the hypothesis that learning to adapt key parts of the network is more
robust and achieves significantly better performance than existing approaches.



CNAPs CNAPs

Dataset Finetune MatchingNet ProtoNet fo-MAML Proto-MAML CNAPs
(no ) MmozAR)
ILSVRC [21] 431+ 1.1 36.1 £1.0 445+ 1.1 324£1.0 479 + 1.1 438+ 1.0 513+ 1.0 523+1.0
Omniglot [31] 711+ 1.4 783 £+ 1.0 79.6 + 1.1 719+ 1.2 829 £ 09 60.1 £+ 1.3 88.0 + 0.7 88.4 £+ 0.7
Aircraft [32] 720 £ 1.1 69.2 + 1.0 71.1 £ 0.9 528 +£0.9 742 + 0.8 53.0 £ 0.9 76.8 £ 0.8 80.5 £ 0.6
Birds [33] 598 £1.2 56.4 £+ 1.0 67.0 + 1.0 472+ 1.1 70.0 + 1.0 557 £ 1.0 714 + 0.9 7221+ 09
Textures [34] 69.1 £0.9 61.8 +0.7 652408 56.7 0.7 67.9 0.8 60.5+0.8 625+ 0.7 583407
Quick Draw [35] 470+ 1.2 60.8 £ 1.0 64.9 + 0.9 505+ 1.2 66.6 + 0.9 58.1 £ 1.0 71.9 + 0.8 725+ 0.8
Fungi [36] 382+ 1.0 337+ 1.0 403 £ 1.1 21.0£ 1.0 420+ 1.1 28.6 £ 0.9 46.0 + 1.1 474 + 1.0
VGG Flower [37] 853+ 0.7 819+ 0.7 86.9 + 0.7 709 £ 1.0 88.5 + 0.7 753 +£0.7 89.2 + 0.5 86.0 £ 0.5
" TrafficSigns 387 ~ 667 £ 1.2 ~ 5564+ 1.0 ~ 465£10  342+13 T 523E£101° T550£09° 60.1E£09 602£09

MSCOCO [39] 352+ 1.1 28.8 + 1.0 399+ 1.1 241+ 1.1 413+ 1.0 412+ 1.0 42,0+ 1.0 42,6 + 1.1
MNIST [29] 76.0 £ 0.8 88.6 0.5 92.7 + 0.4
CIFAR10 [30] 61.5 + 0.7 60.0 + 0.8 61.5 + 0.7
CIFAR100 [30] 448 +£1.0 48.1 + 1.0 50.1 + 1.0

Table 1: Few-shot classification results on META-DATASET [6] using models trained on all training datasets. All
figures are percentages and the + sign indicates the 95% confidence interval over tasks. Bold text indicates the
scores within the confidence interval of the highest score. Tasks from datasets below the dashed line were not
used for training. Competing methods’ results from [6].
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Figure 7: Comparing CNAPS to gradient based feature extractor adaptation: accuracy on 5-way classification
tasks from withheld datasets as a function of processing time. Dot size reflects shot number (1 to 25 shots).

FiLM Parameter Learning Performance: Speed-Accuracy Trade-off. CNAPS generate FiLM
layer parameters for each task 7 at test time using the adaptation network ¢(D7). It is also possible
to learn the FiLM parameters via gradient descent (see [16, 17]). Here we compare CNAPS to this
approach. Figure 7 shows plots of 5-way classification accuracy versus time for four held out data
sets as the number of shots was varied. For gradient descent, we used a fixed learning rate of 0.001
and took 25 steps for each point. The overall time required to produce the plot was 1274 and 7214
seconds for CNAPS and gradient approaches, respectively, on a NVIDIA Tesla P100-PCIE-16GB
GPU. CNAPS is at least 5 times faster at test time than gradient-based optimization requiring only a
single forward pass through the network while gradient based approaches require multiple forward
and backward passes. Further, the accuracy achieved with adaptation networks is significantly higher
for fewer shots as it protects against over-fitting. For large numbers of shots, gradient descent catches
up, albeit slowly.

Complex Learning Scenarios: Continual Learning. In continual learning [40] new tasks appear
over time and existing tasks may change. The goal is to adapt accordingly, but without retaining old
data which is challenging for artificial systems. To demonstrate the the versatility CNAPS we show
that, although it has not been explicitly trained for continual learning, we are able to apply the same
model trained for the few-shot classification experiments (without the auto-regressive component) to
standard continual learning benchmarks on held out datasets: Split MNIST [41] and Split CIFAR100
[42]. We modify the model to compute running averages for the representations of both 147, and '«,b}
(see Appendix F for further details), in this way it performs incremental updates using the new data
and the old model, and does not need to access old data. Figure 8 (left) shows the accumulated multi-
and single-head [42] test accuracy averaged over 30 runs (further results and more detailed figures are
in Appendix G). Figure 8 (right) shows average results at the final task comparing to SI [41], EWC
[43], VCL [44], and Riemannian Walk [42].

Figure 8 demonstrates that CNAPS naturally resists catastrophic forgetting [43] and compares
favourably to competing methods, despite the fact that it was not exposed to these datasets during
training, observes orders of magnitude fewer examples, and was not trained explicitly to perform
continual learning. CNAPS performs similarly to, or better than, the state-of-the-art Riemannian
Walk method which departs from the pure continual learning setting by maintaining a small number
of training samples across tasks. Conversely, CNAPS has the advantage of being exposed to a larger
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Figure 8: Continual learning classification results on Split MNIST and Split CIFAR100 using a model trained
on all training datasets. (Left) The plots show accumulated accuracy averaged over 30 runs for both single-
and multi-head scenarios. (Right) Average accuracy at final task computed over 30 experiments (all figures are
percentages). Errors are one standard deviation. Additional results from [42, 45].
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Figure 9: Accuracy vs active learning iterations for held-out classes / languages. (Top) CNAPS and (bottom)
prototypical networks. Error shading is one standard error. CNAPS achieves better accuracy than prototypical
networks and improvements over random acquisition, whereas prototypical networks do not.

range of datasets and can therefore leverage task transfer. We emphasize that this is not meant to be
an “apples-to-apples” comparison, but rather, the goal is to demonstrate the out-of-the-box versatility
and strong performance of CNAPS in new domains and learning scenarios.

Complex Learning Scenarios: Active Learning. Active learning [46, 47] requires accurate data-
efficient learning that returns well-calibrated uncertainty estimates. Figure 9 compares the perfor-
mance of CNAPS and prototypical networks using two standard active learning acquisition functions
(variation ratios and predictive entropy [46]) against random acquisition on the FLOWERS dataset and
three representative held-out languages from OMNIGLOT (performance on all languages is presented
in Appendix H). Figure 9 and Appendix H show that CNAPS achieves higher accuracy on average
than prototypical networks. Moreover, CNAPS achieves significant improvements over random
acquisition, whereas prototypical networks do not. These tests indicates that CNAPS is more accurate
and suggest that CNAPS has better calibrated uncertainty estimates than prototypical networks.

6 Conclusions

This paper has introduced CNAPS, an automatic, fast and flexible modelling approach for multi-
task classification. We have demonstrated that CNAPS achieve state-of-the-art performance on the
META-DATASET challenge, and can be deployed “out-of-the-box” to diverse learning scenarios such
as continual and active learning where they are competitive with the state-of-the-art. Future avenues
of research are to consider the exploration of the design space by introducing gradients and function
approximation to the adaptation mechanisms, as well as generalizing the approach to distributional
extensions of CNAPS [48, 49].
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