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Abstract

This paper establishes that optimistic algorithms attain gap-dependent and non-
asymptotic logarithmic regret for episodic MDPs. In contrast to prior work,
our bounds do not suffer a dependence on diameter-like quantities or ergodic-
ity, and smoothly interpolate between the gap dependent logarithmic-regret, and

the O(VH SAT)-minimax rate. The key technique in our analysis is a novel
“clipped” regret decomposition which applies to a broad family of recent opti-
mistic algorithms for episodic MDPs.

1 Introduction

Reinforcement learning (RL) is a powerful paradigm for modeling a learning agent’s interactions
with an unknown environment, in an attempt to accumulate as much reward as possible. Because
of its flexibility, RL can encode such a vast array of different problem settings - many of which are
entirely intractable. Therefore, it is crucial to understand what conditions enable an RL agent to
effectively learn about its environment, and to account for the success of RL methods in practice.

In this paper, we consider tabular Markov decision processes (MDPs), a canonical RL setting where
the agent seeks to learn a policy mapping discrete states © € S to one of finitely many actions a € A,
in an attempt to maximize cumulative reward over an episode horizon H. We shall study the regret
setting, where the learner plays a policy 7y for a sequence of episodes k = 1, ..., K, and suffers a
regret proportional to the average sub-optimality of the policies 71, ..., 7Tk.

In recent years, the vast majority of literature has focused on obtaining minimax regret bounds that
match the worst-case dependence on the number states |S|, actions |.4|, and horizon length H;
namely, a cumulative regret of \/ H|S||A|T, where T = K H denotes the total number of rounds of
the game [1]. While these bounds are succinct and easy to interpret, they paint an overly pessimistic
account of the complexity of these problems, and do not elucidate the favorable structural properties
of which a learning agent can hope to take advantage.

The earlier literature, on the other hand, establishes a considerable more favorable regret of the
form C'log T', where C' is an instance-dependent constant given in terms of the sub-optimality gaps
associated with each action at a given state, defined as

gapoo(x, a) = Vﬂ-* (:E) - Qﬂ* (l’, a)? (1)

where V™" and Q™" denote the value and @ functions for an optimal policy 7*, and the subscript-oo
denotes these bounds hold for a non-episodic, infinite horizon setting. Depending on the constant
C, the regret C'logT can yield a major improvement over the v/7 minimax scaling. Unfortu-
nately, these analyses are asymptotic in nature, and only take effect after a large number of rounds,
depending on other potentially-large, highly-conservative, or difficult-to-verify problem-dependent
quantities such as hitting times or measures of uniform ergodicity [8, 13, 10].
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To fully account for the empirical performance of RL algorithms, we seek regret bounds which
take advantage of favorable problem instances, but apply in finite time and for practically realistic
numbers of rounds 7.

Contributions: As a first step in this direction, [14] introduced a novel algorithm called EULER,
which enjoys reduced dependence on the episode horizon H for favorable instances, while main-
taining the same worst-case dependence for other parameters in their analysis as in [1].

In this paper, we take the next step by demonstrating that a common class of algorithms for solving
MDPs, based on the optimism principle, attains gap-dependent, problem-specific bounds similar to
those previously found only in the asymptotic regime. For concreteness, we specialize our analysis
to a minor modification of the EULER algorithm we call StrongEuler; as we explain in Section 3,
our analysis extends more broadly to other optimistic algorithms as well. We show that

* For any episodic MDP M, StrongEuler enjoys a high probability regret bound of Crq log(1/4)
for all rounds 7" > 1, where the constant C'y, depends on the sub-optimality gaps between actions
at different states, as well as the horizon length, and contains an additive almost-gap-independent
term that scales as AS?poly(H) (Corollary 2.1).

Unlike previous gap-dependent regret bounds,

* The constant C'y( does not suffer worst-case dependencies on other problem dependent quantities
such as mixing times, hitting times or measures of ergodicity. However, the constant Cyq does
take advantage of benign problem instances (Definition 2.2).

* The regret bound of Caqlog(1/6) is valid for any total number of rounds 7' > 1. Selecting
d = 1/T, this implies a non-asymptotic expected regret bound of C'rq log T"'.

* The regret of StrongEuler interpolates between instance-dependent regret C'aq logI" and mini-

max regret O(y/H|S[[A[T), the latter of which may be sharper for smaller 7" (Theorem 2.4).
Following [14], this dependence on H may also be refined for benign instances.

Lastly, while the StrongEuler algorithm affords sharper regret bounds than past algorithms, our
analysis techniques extend more generally to other optimism based algorithms:

* We introduce a novel “clipped” regret decomposition (Proposition 3.1) which applies to a broad
family of optimistic algorithms, including the algorithms analyzed in [14, 6, 5, 9, 1].

* Following our analysis of StrongEuler, the clipped regret decomposition can establish analogous
gap-dependent log T-regret bounds for many of the algorithms mentioned above.

What is C'n? In many settings, we show that C'x4 is dominated by an analogue to the sum over
the reciprocals of the gaps defined in (1). This is known to be optimal for non-dynamic MDP
settings like contextual bandits, and we prove a lower bound (Proposition 2.2) which shows that this
is unimprovable for general MDPs as well. Furthermore, building on [14], we show this adapts to
problems with additional structure, yielding, e.g., a horizon H-free bound for contextual bandits.

However, our gap-dependent bound also suffers from a certain dependence on the smallest nonzero
gap gap,;, (see Definition 2.1), which may dominate in some settings. We prove a lower
bound (Theorem 2.3) which shows that optimistic algorithms in the recent literature - including
StrongEuler - necessarily suffer a similar term in their regret. We believe this insight will motivate
new algorithms for which this dependence can be removed, leading to new design principles and
actionable insights for practitioners. Finally, our regret bound incurs an (almost) gap-independent
burn-in term, which is standard for optimistic algorithms, and which we believe is an exciting direc-
tion of research to remove.

Altogether, we believe that the results in our paper serve as a preliminary but significant step to
attaining sharp, instance-dependent, and non-asymptotic bounds for tabular MDPs, and hope that
our analysis will guide the design of future algorithms that attain these bounds.

1.1 Related Work

Like the multi-armed bandit setting, regret bounds for MDP algorithms have been characterized both
in gap-independent forms that rely solely on S := |S|, A := | A|, H, T, and in gap-dependent forms

1By this, we mean that for any fixed T > 1, one can attain C'a( log T regret. Extending the bound to
anytime regret is left to future work



which take into account the gaps (1), as well as other instance-specific properties of the rewards and
transition probabilities.

Finite Sample Bounds, Gap-Independent Bounds: A number of notable recent works give undis-
counted regret bounds for finite-horizon, tabular MDPs, nearly all of them relying on the principle
of optimism which we describe in Section 3 [4, 1, 5, 9, 14]. Many of the more recent works [1, 14, 6]
attain a regret of v/ H S AT, matching the known lower bound of v/ HS AT established in [11, 8, 4].
As mentioned above, the EULER algorithm of [14] attains the minimax rates and simultaneously en-
joys a reduced dependence on H in benign problem instances, such as the contextual bandits setting
where the transition probabilities do not depend on the current state or learners actions, or when the
total cumulative rewards over any roll-out are bounded by 1 in magnitude.

Diameter Dependent Bounds: In the setting of infinite horizon MDPs with discounted regret,
many previous works have established logarithmic regret bounds of the form C'(M)log T, where
C(M) is a constant depending on the underlying MDP. Notably, [8] give an algorithm which attains

a (5(\/ D252 AT) gap-independent regret, and an 6( D;i “A log(T")) gap-dependent regret bound,

where gap, is the difference between the mean infinite-horizon reward of 7, and the next-best
stationary policy, and where D denotes the maximum expected traversal time between any two
states x, 2, under the policy which attains the minimal traversal time between those two states.
We note that if gap__(z,a) denotes the sub-optimality of any action a at state  as in (1), then
gap, < min, ,gap.. (x,a). The bounds in this work, on the other hand, depend on an average
over inverse gaps, rather than a worst case. Moreover, the diameter D can be quite large when there
exist difficult-to-access states. We stress that the bound due to [8] is non-asympotic, but the bound
in terms of gap, dependences other worst-case quantities measuring ergodicity.

Asymptotic Bounds: Prior to [8], and building on the bounds of [3], [13] presented bounds in
terms of a diameter-related quantity D > D, which captures the minimal hitting time between
states when restricted to optimal policies. [13] prove that their algorithm enjoys a regret’ of

2 (s.0)€CRIT gapDi(zxa) log(T") asymptotically in 7" where CRIT contains those sub-optimal state-

action pairs (x,a) such that a can be made to the the unique, optimal action at = by replacing
p(s’|s, a) with some other vector on the S-simplex. Recently, [10] present per-instance lower bounds
for both structured and unstructured MDPs, which apply to any algorithm which enjoys sub-linear
regret on any problem instance, and an algorithm which matches these bounds asymptotically. This
bound replaces D? with H?, where H denotes the range of the bias functions, an analogue of H
for the non-episodic setting [2]. We further stress that whereas the logarithmic regret bounds of [8]
hold for finite time with polynomial dependence on the problem parameters, the number of episodes
needed for the bounds of [3, 13, 10] to hold may be exponentially large, and depend on additional,
pessimistic problem-dependent quantities (e.g. a uniform hitting time in Proposition 29 in [12]).

Novelty of this work: The major contribution of our work is showing problem-dependent log(7T")
regret bounds which 1) attain a refined dependence on the gaps, as in [13], ii) apply in finite time
after a burn-in time only polynomial in S, A, H and the gaps, iii) depend only on H and not on
the diameter D (and thus, are not adversely affected by difficult to access states), and iv) smoothly

interpolate between log 1" regret and the minimax v H .S AT rate attained by [1] et seq.

1.2 Problem Setting, Notation, and Organization

Episodic MDP: A stationary, episodic MDP is a tuple M := (S, A, H,r,p, po, R), where for
each z € S,a € A we have that R(x,a) € [0,1] is a random reward with expectation r(z, a),
p: S x A — AS denotes transition probabilities, py € AS is an initial distribution over states,
and H is the horizon, or length of the episode. A policy 7 is a sequence of mappings 75, : S — A.
For our given MDP M, we let E™ and P™ denote the expectation and probability operator with
respect to the law of sequence (z1,a1),...,(xy,an), where 1 ~ pg, ap, = 7p(xph), The1 ~

p(zh, ar). We define the value of mas VJ :=E7™ [Zthl r(zh, ah)} andfor h € [H]and z € S,
Vi(z) :=E7 [Zﬁzh r(zp,aq) | zp = x} which we identify with a vector in RS. We define

the associated Q-function Q™ : S x A — R, Qf(z,a) := r(x,a) —|—p(x,a)TV}{+1, so that

D2sA
min(s)a) cCRIT 82P (%,a)

2[13] actually presents a bound of the form log(T') but it is straightforward to extract

the claimed form from the proof.



Qf (z,mh(z)) = VJ(z). We denote the ser of optimal policies 7* := argmax, V{, and let
i (z) = {a : mp(x) = a,m € 1} denote the set of optimal actions. Lastly, given any optimal
m € 7*, we introduce the shorthand V}; = V7 and Q} = QJ, where we note that even when 7 is
not unique, V7 and Q7 do not depend on the choice of optimal policy.

Episodic Regret: We consider a game that proceeds in rounds k£ = 1,..., K, where at each state
an algorithm Alg selects a policy 7, and observes a roll out (x1,a1),...,(zg,ay) ~ P™. The

goal is to minimize the cumulative simple regret, defined as Regret ;- := Zle Vi — Vir.

Notation and Organization: For n € N, we define [n] = {1, ...,n}. For two expressions f, g that
are functions of any problem-dependent variables of M, we say f < g (f 2 g, respectively) if there
exists a universal constant ¢ > 0 independent of M such that f < cg (f > cg, respectively). <
will denote an informal, approximate inequality. Section 2 presents our main results, and Section 3
sketches the proof and highlights the novelty of our techniques. All references to the appendix refer
to the appendix of the supplement. All formal proofs, and many rigorous statement of results, are
deferred to the appendix, whose organization and notation are described at length in Appendix A.

1.3 Optimistic Algorithms

Lastly, we introduce optimistic algorithms which select a policy which is optimal for an over-
estimated, or optimistic, estimate of the true Q-function, Q*.

Definition 1.1 (Optimistic Algorithm). We say that an algorithm Alg satisifes optimism if, for each
round k € [K] and stage h € [H], it constructs an optimistic Q-function Qy, ;,(z,a) and policy

T = (W’Lh) satisfying Va,a : Qg q(x,a) = 0, Qk’h(;v,a)iz Q;‘L(x,i), and 7 p(z) €
argmax, Qy, (v, a). The associated optimistic value function is Vi, ,(z) := Qy, (@, T n (7).

We shall colloquially refer to an algorithm as optimistic if it satsifies optimism with high prob-
ability. Optimism has become the dominant approach for learning finite-horizon MDPs, and all
recent low-regret algorithms are optimistic [5, 6, 1, 14, 9]. In model-based algorithms, the overesti-
mates Qy, ;, are constructed recursively as Qy, , (2, a) = i (z, a) + pr(z,a) " Vi g1 + b n(, a),
where 7 (z,a) and py(x,a) are empirical estimates of the mean rewards and transition probabil-
ities, and by, 5 (x,a) > 0 is a confidence bonus designed to ensure that Q,, , (z,a) > Q*(z,a).
Letting ng(x, a) denote the total number of times a given state-action pair is visited, a simple bonus
b, ) =/ TEECAEELD
[1]. This leads to an episodic regret bound of v/ H2SAT, a factor of v/H greater than the minimax
rate. More refined bonuses based on the “Bernstein trick” achieve the optimal H-dependence [1],
and the EULER algorithm of [14] adopts further refinements to replace worst-case H dependence
with more adaptive quantities. The StrongEuler algorithm considered in this work applies similarly
adaptive bonuses, but our analysis extends to all aforementioned bonus configurations. We remark
that there are also model-free optimistic algorithms based on Q-learning (see, e.g. [9]) that construct
overestimates in a slightly different fashion. While our main technical contribution, the clipped re-
gret decomposition (Proposition 3.1), applies to all optimistic algorithms, our subsequent analysis is
tailored to model-based approaches, and may not extend straightforwardly to Q-learning methods.

suffices to induce optimism, yielding the UCBVI-CH algorithm of

2 Main Results

Logarithmic Regret for Optimistic Algorithms: We now state regret bounds that describe the per-
formance of StrongEuler, an instance of the model-based, optimistic algorithms described above.
StrongEuler is based on carefully selected bonuses from [14], and formally instantiated in Algo-
rithm | in Appendix E. We emphasize that other optimistic algorithms enjoy similar regret bounds,
but we restrict our analysis to StrongEuler to attain the sharpest H-dependence.The key quantities
at play are the suboptimality-gaps between the Q-functions:

Definition 2.1 (Suboptimality Gaps). For h € [H], define the stage-dependent suboptimality gap
gap,(z,a) = Vi(z) — Qf(x,a), as well as the minimal stage-independent gap gap(z,a) =
miny, gap, (z, @), and the minimal gap gap,;, := min, , ,{gap,(z, a) : gap, (z,a) > 0}.

Note that any optimal a* € 77 (z) satisfies the Bellman equation QJ (z,a*) = max, Q} (z,a)=
Vi (x), and thus gap, (z,a*) = 0 iff a* € 7} (z). Following [14], we consider two illustrative
benign problem settings which afford an improved dependence on the horizon H:



Definition 2.2 (Benign Settings). We say that an MDP M is a contextual bandit instance if
p(z’|x, a) does not depend on x or a. An MDP M has G-bounded rewards if, for any policy T,

Zthl R(zp,ar) < G holds with probability 1 over trajectories ((zp, an)) ~ P™.

Lastly, we define Z, as the set of pairs (z, a) for which a is optimal at = for some stage h € [H]:
Zopt = {(z,a) : Jh € [H| witha € 77(x)} and its complement Zgp, := S x A — Z,,;. Note
that typically |Zope|S H|S| or even | Zop: | |S| (see Remark B.2 in the appendix). We now state
our first result, which gives a gap-dependent regret bound that scales as log(1/d) with probability
at least 1 — §. The result is a consequence of a more general result stated as Theorem 2.4, itself a
simplified version of more precise bounds stated in Appendix B.1.

Corollary 2.1. Fix 6 € (0,1/2), and let A = |A|, S = |S|, M = (SAH)?. Then with probability
at least 1 — ¢, StrongEuler run with confidence parameter § enjoys the following regret bound for
all K > 1:

o3 MT 03|z, MT
Regret ;- < Z log + | Zopt| lo
(e, BP@a) 70 83Pnin 0
MH MT
+ H*SA(SV H)log log = (2)

min
Moreover, if M is either a contextual bandits instance, or has G-bounded rewards for G < 1, then
the factors of H3on the first line can be sharped to H. In addition, if M is a contextual bandits
instance, the factor of H?3 in the first term (summing over (z,a) € Zgw) can be sharped to 1.

Setting 6 = 1/T and noting that Zszl Vi — V{* < KH = T with probability 1 (recall R(x,a) €

[0, 1]), we see that the expected regret E[Zle V§ — Vi*] can be bounded by replacing 1/0 with
T in right hand side of the inequality (2); this yields an expected regret that scales as log 7T'.

Three regret terms: The first term in Corollary 2.1 reflects the sum over sub-optimal state-action
pairs, which a lower bound (Proposition 2.2) shows is unimprovable in general. In the infinite
horizon setting, [10] gives an algorithm whose regret is asymptotically bounded by an analogue of
this term. The third term characterizes the burn-in time suffered by nearly all model-based finite-time
analyses and is the number of rounds necessary before standard concentration of measure arguments
kick in. The second term is less familiar and is addressed in Section 2.2 below.

H dependence:Comparing to known results from the infinite-horizon setting, one expects the op-
timal dependence of the first term on the horizon to be H 2. However, we cannot rule out that
the optimal dependence is H® for the following three reasons: (i) the infinite-horizon analogues
D, D, H (Section 1.1) are not directly comparable to the horizon H; (ii) in the episodic setting, we
have a potentially different value function V7, for each h € [H], whereas the value functions of the
infinite horizon setting are constant across time; (iii) the 72 may be unavoidable for non-asymptotic
(in T') bounds, even if H? is the optimal asymptotic dependence after sufficient burn-in (possibly
depending on diameter-like quantities). Resolving the optimal H dependence is left as future work.
We also note that for contextual bandits, we incur no H dependence on the first term; and thus the
first term coincides with the known asymptotically optimal (in 7"), instance-specific regret [7].

Guarantees for other optimistic algorithms: To make the exposition concrete, we only provide
regret bounds for the StrongEuler algorithm. However, the “gap-clipping” trick (Proposition 3.1)
and subsequent analysis template described in Section 3.1 can be applied to obtain similar bounds
for other recent optimistic algorithms, as in [1, 5, 14, 6.’

2.1 Sub-optimality Gap Lower Bound

Our first lower bound shows that when the total number of rounds 7' = K H is large, the first term
of Corollary 2.1 is unavoidable in terms of regret. Specifically, for every possible choice of gaps,
there exists an instance whose regret scales on the order of the first term in (2).

Following standard convention in the literature, the lower bound is stated for algorithms which have
sublinear worst case regret. Namely, we say than an algorithm Alg is a-uniformly good if, for any
MDP instance M, there exists a constant C 4 > 0 such that E*[Regret ;] < CpyK® for all K.*

3To achieve logarithmic regret, some of these algorithms require a minor modification to their confidence
intervals; otherwise, the gap-dependent regret scales as log® T'. See Appendix E for details.
*We may assume as well that Alg is allowed to take the number of episodes K as a parameter.



Proposition 2.2 (Regret Lower Bound). Let S > 2, and A > 2, and let {Ay o} ac)5x4] C
(0, H/8) denote a set of gaps. Then, for any H > 1, there exists an MDP M with states S = [S+2),
actions A = [A], and H stages, such that,

gapl(x7a) = Aw,av Vo € [S},a cA
gap,(z,a) >1/2, Vxe{S+1,5+2},ac A-{1},

and any a-uniformly good algorithm satisfies

EM t H?
lim % >(1-a) 3 4
K—o0 og 2, a:gap, (z,a) >0 gapl(xa Cl)

The above proposition is proven in Appendix H, using a construction based on [4]. For simplicity,
we stated an asymptotic lower bound. We remark that if the constant Cnq is poly(|S], |.A|, H), then
one can show that the above asymptotic bound holds as soon as K > (|S||.A|H/gap,)°/(1=)),
where gap, := {mingap,(z,a) : gap,(z,a) > 0}. More refined non-asymptotic regret bounds
can be obtained by following [7].

2.2 Why the dependence on gap,;,?

ithout the second term, Corollary 2.1 would only suffer one factor of 1/gap,;, due to the sum
over state-actions pairs (z, a) € Zg,, (Wwhen the minimum is achieved by a single pair). However, as
remarked above, | Z:| typically scales like |S| and therefore the second term scales like |S|/gapy;,.
with a dependence on 1/gap,;, that is at least a factor of |S| more than we would expect. Here, we
show that |S|/gap,;, is unavoidable for the sorts of optimistic algorithms that we typically see in
the literature; a rigorous proof is deferred to Appendix G.

Theorem 2.3 (Informal Lower Bound). Fix § € (0,1/8). For universal constants cy,ca, C3,Cq,
if e € (0,c1), and S satisfies calog(e™1/5) < S < cze=1/log(e71/6), there exists an MDP
with |S|= S, |A|= 2 and horizon H = 2, such that exactly one state has a sub-optimality
gap of gap,;, = € and all other states have a minimum sub-optimality gap gap,(z,a) >

1/2. For this MDP, Zh,w,a:gaph(a;,a)>0 m < S+ ga;m but all existing optimistic algo-

rithms for finite-horizon MDPs which are 6-correct suffer a regret of at least —> log(1/8) 2

83Ppin
Z log(1/6) + Slog(1/6)
h,z,a:gap,, (z,a)>0 gap,, (z,a) 83Pyin

with probability at least 1 — c40.

The particular instance described in Appendix G that witnesses this lower bound is instructive be-
cause it demonstrates a case where optimism results in over-exploration.

2.3 Interpolating with Minimax Regret for Small T’
We remark that while the logarithmic regret in Corollary 2.1 is non-asymptotic, the expression can be

loose for a number of rounds 7" that is small relative to the sum of the inverse gaps. Our more general
result interpolates between the log T' gap-dependent and /T gap-independent regret regimes.

Theorem 2.4 (Main Regret Bound for StrongEuler). Fix § € (0,1/2), and let A = |A], S = |S],
M = (SAH)2. Futher, define for all ¢ > 0 the set Zgp(€) = {(7,a) € Zop : gap(r,a) <
€}. Then with probability at least 1 — 6, StrongEuler run with confidence parameter 6 enjoys the
following regret bound for all K > 2:

Regretyc < i {y/|Zen(0|Ff Tos o M)+ Y-
(w,a)ezsub\zsub(ﬁ)

H3
+min{\/|Zopt|HT(logT) log %, | Zopt| . log (A/{ST)}

min

HS

7 log (M) }

gap(z,a

+ H'SA(SV H) minlog% {log ¥7 log gﬁin}

< \/HSATlog(T) log(%) + H*SA(S Vv H)log? % ,

where the second inequality follows from the first with max{max,|Zsu(€)|, | Zopt|} < SA. More-
over, if M is an instance of contextual bandits, then the factors of H under the square roots can be
refined to a 1, and if M has < 1-bounded rewards, then these same factors of H can be replaced by
a 1/H. In both settings, logarithmic terms can be refined as in Corollary 2.1.



By the same argument as above, Theorem 2.4 with § = 1/7" implies an expected regret scaling like

gap-dependent log T" or worst-case vV H S AT'. In Appendix B.1, we state a more refined bound given
in terms of the reward bound G, and the maximal variance of any state-action pair (Theorem B.2).

3 Gap-Dependent bounds via ‘clipping’

In this section, we (i) introduce the key properties of optimistic algorithms, (ii) explain existing
approaches to the analysis of such algorithms, and (iii) introduce the “clipping trick”, and sketch
how this technique yields gap-dependent, non-asymptotic bounds.

Definition 3.1 (Optimistic Surplus). Given an optimistic algorithm Alg, we define the (optimistic)
surplus By p(x,a) = Qyp(x,a) — r(z,a) — p(x,a) " Vi ntr.  Alg is strongly optimistic if
Ei n(z,a) > 0forall k > 1, and (z, a, h) € S x A x [H], which implies that Alg is also optimistic.

While the nomenclature “suplus” is unique to our work, surplus-like terms arise in many prior regret
analyses [5, 14]. The notion of strong optimism is novel to this work, and facilitates a sharper H-
dependence in contextual bandit setting of Definition 2.2; intuitively, strong optimism means that
the Q-function Q;, 5, at stage h over-estimates Qj, more than Qy, 5, ; does Qj ;, ;.

The Regret Decomposition for Optimistic Algorithms: Under optimism alone, we can see that
for any h and any a* € 7*(z),

vk,h(‘x) = mgx@wl(x, a) 2> Qk,h(xva*) 2 QZ(J?, a'*) = VZ(.I),
and therefore, we can bound the sub-optimality of 7, as V§ — V{* <V o — V[*,

We can decompose the regret further by introducing the following notation: we let wy, p(x,a) =
P™[(zp,ar) = (z,a)] denote the probability of visiting = and playing a at time h in episode
k. A standard regret decomposition (see e.g. Lemma E.15 [5]) then shows that for a trajec-
tory (zn, an)ily. Vio — Vir = E™ [0 Ben(zn,an)] = Sy Y o Wi (7, a)Epp(z, a),
yielding a regret bound of

K

> Vi Vik <

k=1

K H
Vho — ng < Z Z Zwk,h(x, a)EML(a:, a).

1 k=1h=1 z,a

M=

>
Il

Existing Analysis of MDPs: We begin by sketching the flavor of minimax analyses. Intro-

ducing the notation ng(z,a) := {Ftimes (z, a) is visited before episode k}, existing analyses
carefully manipulate the surpluses Ej, ,(x,a) to show that Zle Y waWhn(T,0)Eg p(z,a) S
Zle Y oraWhn(T, a)giM + lower order terms, where typically C' s = poly(H,log(T/s).

v nk(z,a)

Finally, they replace ny(x, a) with an “idealized analogue”, Ty (z, a) := Zle ZhH:1 win(z,a):=

Z?:l w;(x,a), where we introduce w;(z,a) := Zthl wj.n(z,a) denote the expected number of
visits of (z,a) at episode j. Letting {Fy} denote the filtration capturing all events up to the end
episode k, we see that E[fi,(x,a) — Tig—1|Fk—1] = wi(z, a), and thus by standard concentration
arguments (see Lemma B.7, or Lemma 6 in [6]), Tix(x, a) and ng(x, a) are within a constant factor
of each other for all k such that 7i;(x, a) is sufficiently large. Hence, by replacing n(z,a) with

7 (z, a), we have (up to lower order terms)

K K =
Om
E Vi —-Vir < E E wi(x, a) —==—=—= + lower order terms. 3)
k=1 z,0 k=1 V ’I’Lk(.l?, Cl)

A /SAK poly(H) bound is typically concluded using a careful application of Cauchy-Schwartz,
and an integration-type lemma (e.g., Lemma C.1). An analysis of this flavor is used in Appendix B.4.

On the other hand, one can exactly establish the identity Vj — Vg k =
Yowa Zle wi.n(x,a)gap, (x, a). Then one can achieve a gap dependent bound as soon
as one can show that the algorithm ceases to select suboptimal actions a at (x, h) after sufficiently
large T. Crucially, determining if action a is (sub)optimal at (x, h) requires precise knowledge
about the value function at other states in the MDP at future stages A’ > h. This difficulty is
why previous gap-dependent analyses appeal to diameter or ergodicity assumptions, which ensure
sufficient uniform exploration of the MDP to reason about the value function at subsequent stages.



3.1 The Clipping Trick

We now introduce the “clipping trick”, a technique which merges both the minimax analysis in terms
of the surpluses Ey, 5 (z,a), and the gap-dependent strategy, which attempts to control how many
times a given suboptimal action is selected. Core to our analysis, define the clipping operator

clip [z | €] = al{z > €},

for all z, e > 0. We can now state our first main technical result, which states that the sub-optimality
V§ — V{* can be controlled by a sum over surpluses which have been clipped to zero whenever
they are sufficiently small.

8Py, \, 82P (%,a) ; P e
= vV =L, Then, if Ty is induced by an optimistic

Proposition 3.1. Let gap, (z,a) :=
algorithm with surpluses Ej, j,(x, a),
H
Vi —V{iE < 2e Z Z‘-%,h(% a) clip [Eg p(z, a) | gap, (z,a)] .
h=1 z,a
If the algorithm is strongly optimistic, and M is a contextual bandits instance, we can replace
gap;, (¢, a) with gapy (v, a) := Eaggn v ERufn0),

The above proposition is a consequence of a more general bound, Theorem B.3, given in Ap-
pendix B. Unlike gap-dependent bounds that appeal to hitting-time arguments, we do not reason
about when a suboptimal action a will cease to be taken. Indeed, an algorithm may still choose a
suboptimal action a even if the surplus Ey, j,(x, a) is small, because future surpluses may be large.
Instead, we argue in two parts:

1. A sub-optimal action a ¢ w7} (x) is taken only if Q, ,(z,a) > Q}(x,a*) for some
a* € m;(z), or equivalently in terms of the surplus, only if Ex 5, (2, a)+p(z,a) " (Vi pi1—
Vin +1) > gapy,(z,a). Thus if Alg selects a suboptimal action, then this is because either
the current surplus Ey, j, (, a) is larger than Q(gap"i}gw’a)), or the expectation over future sur-
pluses, captured by p(z,a) " (Vi nt1 — V% hy1) is larger than (1-O (%))gap,(z, a). In-
tuitively, the first case occurs when (z, a) has not been visited enough times, and the second
when the future state/action pairs have not experienced sufficient visitation. In the first case,
we can clip the surplus at Q(%@ﬂ)); in the second, E 5, (2,a) + p(z,a) " (Vi pi1 —
Vina) < (1+0 (F))p(,a)T (Vs — Vi h+1)s and push the the contribution
of Ey 5 (z,a) into the contribution of future surpluses. This incurs a factor of at most
(14 O (%)) < 1, avoiding an exponential dependence on H.

2. Clipping surpluses for pairs (z, a) for optimal a € 7} (x) requires more care. We intro-
duce “half-clipped” surpluses Ey ,(z,a) := clip [Ex (7, a)| &= where all actions
are clipped at gap,,,/2H, and recursively define value functions V7*(-) correspond-
ing to these clipped surpluses (see Definition D.1). We then show that, for \"/'gk =

Ezrpo [Vl(x)} , we have (Lemma D.2)

Vi = Vit <2(VgE = V).

This argument is based on carefully analyzing when 7, 5, first recommends a suboptimal
action 7y, 5, (z) ¢ 7*(x), and showing that when this occurs, Vi — V* is roughly lower
bounded by gamem times the probability of visiting a state = where 7, j,(x) plays subopti-

mally. We can then subtract off &= from all the surplus terms at the expense of at most

halving the suboptimality, and using the fact Ey, ;, — &b < clip [Ej, | &= | concludes
the bound. This step is crucial, because it allows us to clip the surpluses even at pairs (x, a)
where a € 7} (z) is the optimal action. We note that in the formal proof of Proposition 3.1,

this half-clipping precedes the clipping of suboptimal actions described above.

Unfortunately, the first step involving the half-clipping is rather coarse, and leads to S/gap,;, term
in the final regret bound. As argued in Theorem 2.3, this is unavoidable for existing optimistic
algorithms, and suggests that Proposition 3.1 cannot be significantly improved in general.



3.2 Analysis of StrongEuler

Recall that StrongEuler is precisely described by Definition 1.1 up to our particular choice of con-
fidence intervals defined (see Algorithm 1 in Appendix E). We now state a surplus bound (proved
in Appendix F) that holds for these particular choice of confidence intervals, and which ensures that
the strong optimism criterion of Definition 1.1 is satisfied:

Proposition 3.2 (Surplus Bound for Strong Euler (Informal)). Let M = SAH, and define the
variances Vary . . = Var[R(z,a)] + Vary wp(z.a)[Vi1(2')]. Then, with probability at least
1 —4/2, the following holds for all (x,a) € S x A, h € [H] and k > 1,

Vary log(Mng(z,a)/d
0 < Egp(z,a) S \/ bz, 108(Mn(7, 0) /) + lower order terms.

ng(x,a)

Bledd (I a)

We emphasize that Proposition 3.2, and its formal analogue Proposition B.4 in Appendix B.2, are the
only part of the analysis that relies upon the particular form of the StrongEuler confidence intervals;
to analyze other model-based optimistic algorithms, one would simply establish an analogue of this
proposition, and continue the analysis in much the same fashion. While Q-learning [9] also satisfies
optimism, it induces a more intricate surplus structure, which may require a different analysis.

Recalling the clipping from Proposition 3.1, we begin the gap-dependent bound
with ZkK:1V6 = Vo' S X iaknwkn(z,a)clip [Egn(z,a) | gapy,(z, a)l. Neglect-
ing lower order terms, Proposition 3.2 ensures that this is approximately less than
> wakh Whh (2, a)clip B}sa}ld(x,aﬂgéph(x,a)}. Introduce the minimal (over h)

clipping-gaps gap(r,a) := miny,gip(z,a) > % and maximal variances

Vary , := maxy,Vary , . We can then render B}f}d(x,a) < f(nk(z,a)), where f(u) <

T,a

clip [\/%Var;a log(Mu/d) | gap(x, a)] Recalling the approximation ng(z,a) =~ T7ig(x,a)
described above, we have, to first order,

ZVO ViE S Z wip(z,a) clip [Blead(x,a) |géph(x,a)]

k=1 x,a,k,h
5 Z wk(xaa)f(nk(xaa)) S Z wk(x,a)f(ﬁk(x,a)),
z,a,k z,a,k
where we recall the expected visitations wy(z,a) := Zthl win(x,a). Since Tg(z,a) =

25:1 w;(z,a), we can regard the above as an integral of the function f(u) (see Lemma C.1),

with respect to the density wi(z, a). Evaluating this integral (Lemma B.9) yields (up to lower order
terms)

K HVar*  log 4T HVar} log

VEi-Vi" 2 ) ——
]; 0 0 N;mlnhgaphxa Nzgapxa \/gapmln

Finally, bounding Var} , < H? and splitting the bound into the states Zqp, := {(x,a) : gap(z,a) >
0} and Zope = {(x,a) : gap(x,a) = 0} recovers the first two terms in Corollary 2.1. In benign
instances (Definition 2.2) , we can bound Varj, . , < 1, improving the H-dependence. In contextual

bandits, we save an addition H factor via gap, (x,a) 2 (gap,;,/H) V gap(z, a). The interpolation
with the minimax rate in Theorem 2.4 is decribed in greater detail in Appendix B.4.
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