
We thank all reviewers for their time and comments. Here are some general responses followed by individual ones.1

Section A: Related Work. In response to Reviewer 4’s interpretation, we’ll first contrast our work with Gelada’s2

work and ACE (Imani et al 2019), which will be included in the final version of the paper. Our work relates to Gelada’s3

work by borrowing their covariate shift (cγ̂). However, how we use cγ̂ is different. Q-learning is a semi-gradient method4

and they reweigh the semi-gradient update with cγ̂ directly. If we would similarly reweigh the policy gradient update in5

ACE, it would just be an actor-critic analogue of Gelada’s Q-learning approach as Reviewer 1 suggested. However, this6

reweighed ACE will no longer follow the policy gradient of objective Jµ, yielding instead a “policy semi-gradient”. In7

our work, we define a new objective with cγ̂ and derive policy gradients for this new objective. The resulting algorithm8

still belongs to policy gradient methods. However, we then need to deal with ∇cγ̂ , i.e., compute the policy gradient9

of a distribution. This has not been done in RL and cannot be handled by ACE. ACE is only a special case of our10

work with γ̂ = 0 where ∇cγ̂ disappears. In the on-policy setting, we do not need such gradients due to some algebraic11

manipulation, which does not work for the off-policy setting. Therefore, ACE uses the sampling distribution dµ instead12

of an on-policy distribution to get around this issue. To the best of our knowledge, we are the first to address this issue13

(computing policy gradients of a distribution) directly with a novel emphatic trace (F (2)
t in our paper). Furthermore,14

our experiments are much more involved than ACE: Imani et al. evaluated ACE on several handcrafted simple MDPs15

with linear function approximation, while we scale up both ACE and GeoffPAC to Mujoco with networks.16

Section B: TD3. We will include a comparison with TD3 in the next version of the paper as shown by Figure 1.17

Somewhat surprisingly, TD3 does not work better than DDPG in our setup. We took the TD3 implementation directly18

from the author’s GitHub and report the evaluation performance of the target policy. Using the author’s original19

parameters, in particular an initialization with 104 random actions, we reproduced the reported results. However, in our20

setup all 106 samples are drawn from the random sampling policy µ, and in this setting TD3 fails dramatically. This21

may indicate that TD3 overfits to the common DDPG training setup and emphasizes the difficulty of our experimental22

setting due to the high degree of off-policy samples.23

Section C: Objectives. In contrast to Reviewer 5’s interpretation that Jπ is similar to Jµ, we will clarify that for24

off-policy training, the execution of π is imaginary in both objectives. After we run µ till the chain mixes, we continue25

to run µ, during which time we evaluate vπ(s) (using off-policy methods) with states sampled from dµ. The policy π is26

therefore never directly executed. Due to function approximation, we cannot maximize vπ(s) for all states and have to27

trade off. Jµ prefers to maximize vπ(s) for those states that are often visited by µ, while Jπ prefers states that are often28

visited by π, same as what we prefer in on-policy continuing setting. As state visitation under µ and π can be arbitrarily29

different, so does Jµ and Jπ .30

Reviewer 1: (i) See Section A. (ii) Like Gelada and Bellemare (2019), we use a uniformly random behavior policy31

to emphasize the importance for correcting the discrepancy between dπ and dµ. When µ is changed, we may need to32

change γ̂ adaptively according to the similarity between π and µ, which we shall investigate in future work.33

Reviewer 3: The comparison with TD3 in Section B reveals how much modern OPPG algorithms rely on sufficiently34

recent on-policy sampling. When the difference between µ and π is large,we would therefore expect GOPPG to improve35

OPPG algorithms. It would also be possible to include other OPPG improvements into Geoff-PAC, e.g., a V-trace critic36

or LSTM networks from IMPALA. Additionally, as DDPG often outperforms OffPAC, we would expect a deterministic37

GeoffPAC to outperform vanilla GeoffPAC as well. We’ll connect GOPPG and OPPG more explicitly and investigate38

GeoffPAC and DDPG with the same architecture and computation resources in the final version of the paper.39

Reviewer 4: (Originality) See Section A. (Computation) We use a novel emphatic trace (F (2)
t in L194) to estimate40

g(s) incrementally, which is theoretically supported by Proposition 1. Because we store trajectories in our replay buffer,41

the sampled data from the buffer can be easily used to compute this trace. We’ll clarify this in the final version.42

Reviewer 5: (Objectives) See Section C. Furthermore, µ and π are not transient policies before the MDP gets steady.43

They assign different weights to different states and are never forgotten even after the MDP converges. We will clarify44

this explicitly in the final version. (Performance) The cited paper shows indeed better performance but with a trained45

expert as the behavior policy. This setup is much easier than sampling from a uniformly random policy µ. As our above46

comparison with TD3 in Section B demonstrates, off-policy methods are extremely sensitive to the behavior policy, and47

the two setups are therefore not directly comparable.48

Figure 1: A comparison with TD3. We only run TD3 for 106 steps in Swimmer due to time limit. Curves are averaged
over 10 random seeds and shadowed regions indicate standard errors. Dashed line is a random policy.


