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Abstract

Key to structured prediction is exploiting the problem’s structure to simplify the
learning process. A major challenge arises when data exhibit a local structure
(i.e., are made “by parts”) that can be leveraged to better approximate the relation
between (parts of) the input and (parts of) the output. Recent literature on signal
processing, and in particular computer vision, shows that capturing these aspects is
indeed essential to achieve state-of-the-art performance. However, in this context
algorithms are typically derived on a case-by-case basis. In this work we propose
the first theoretical framework to deal with part-based data from a general per-
spective and study a novel method within the setting of statistical learning theory.
Our analysis is novel in that it explicitly quantifies the benefits of leveraging the
part-based structure of a problem on the learning rates of the proposed estimator.

1 Introduction

Structured prediction deals with supervised learning problems where the output space is not endowed
with a canonical linear metric but has a rich semantic or geometric structure [5, 29]. Typical
examples are settings in which the outputs correspond to strings (e.g., captioning [19]), images (e.g.,
segmentation [1]), rankings [16, 20], points on a manifold [33], probability distributions [24] or
protein foldings [18]. While the lack of linearity poses several modeling and computational challenges,
this additional complexity comes with a potentially significant advantage: when suitably incorporated
within the learning model, knowledge about the structure allows to capture key properties of the data.
This could potentially lower the sample complexity of the problem, attaining better generalization
performance with less training examples. A natural scenario in this sense is the case where both
input and output data are organized into “parts” that can interact with one another according to a
specific structure. Examples can be found in computer vision (e.g., segmentation [1], localization
[6, 22], pixel-wise classification [41]), speech recognition [4, 40], natural language processing [43],
trajectory planing [31] or hierarchical classification [44].

Recent literature on the topic has empirically shown that the local structure in the data can indeed
lead to significantly better predictions than global approaches [17, 45]. However in practice, these
ideas are typically investigated on a case-by-case basis, leading to ad-hoc algorithms that cannot
be easily adapted to new settings. On the theoretical side, few works have considered less specific
part-based factorizations [12] and a comprehensive theory analyzing the effect of local interactions
between parts within the context of learning theory is still missing.

In this paper, we propose: 1) a novel theoretical framework that can be applied to a wide family of
structured prediction settings able to capture potential local structure in the data, and 2) a structured
prediction algorithm, based on this framework for which we prove universal consistency and general-
ization rates. The proposed approach builds on recent results from the structured prediction literature
that leverage the concept of implicit embeddings [8, 9, 28, 15, 25], also related to [30, 39]. A key
contribution of our analysis is to quantify the impact of the part-based structure of the problem on the
learning rates of the proposed estimator. In particular, we prove that under natural assumptions on
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Figure 1: (Left) Between-locality in a sequence-to-sequence setting: each window (part) yp of the output
sequence y is fully determined by the part xp of the input sequence x, for every p 2 P . (Right) Empirical
within-locality Cp,q of 100 images sampled from ImageNet between a 20⇥ 20 patch q and the central patch p.

the local behavior of the data, our algorithm benefits adaptively from this underlying structure. We
support our theoretical findings with experiments on the task of detecting local orientation of ridges
in images depicting human fingerprints.

2 Learning with Between- & Within-locality

To formalize the concept of locality within a learning problem, in this work we assume that the data is
structured in terms of “parts”. Practical examples of this setting often arise in image/audio or language
processing, where the signal has a natural factorization into patches or sub-sequences. Following
these guiding examples, we assume every input x 2 X and output y 2 Y to be interpretable as a
collection of (possibly overlapping) parts, and denote xp (respectively yp) its p-th part, with p 2 P a
set of part identifiers (e.g., the position and size of a patch in an image). We assume input and output
to share same part structure with respect to P . To formalize the intuition that the learning problem
should interact well with this structure of parts, we introduce two key assumptions: between-locality

and within-locality. They characterize respectively the interplay between corresponding input-output
parts and the correlation of parts within the same input.
Assumption 1 (Between-locality). yp is conditionally independent from x, given xp, moreover the

probability of yp given xp is the same as yq given xq , for any p, q 2 P .

Between-locality (BL) assumes that the p-th part of the output y 2 Y depends only on the p-th part of
the input x 2 X , see Fig. 1 (Left) for an intuition in the case of sequence-to-sequence prediction.
This is often verified in pixel-wise classification settings, where the class yp of a pixel p is determined
only by the sub-image in the corresponding patch xp. BL essentially corresponds to assuming a joint
graphical model on the parts of x and y, where each yp is only connected to xp but not to other parts.

BL motivates us to focus on a local level by directly learning the relation between input-output parts.
This is often an effective strategy in computer vision [22, 45, 17] but intuitively, one that provides
significant advantages only when the input parts are not highly correlated with each other: in the
extreme case where all parts are identical, there is no advantage in solving the learning problem
locally. In this sense it can be useful to measure the amount of “covariance”

Cp,q = Ex S(xp, xq) � Ex,x0 S(xp, x
0

q) (1)

between two parts p and q of an input x, for S(xp, xq) a suitable measure of similarity between parts
(if S(xp, xq) = xpxq, with xp and xq scalars random variables, then Cp,q is the p, q-th entry of the
covariance matrix of the vector (x1, . . . , x|P |) ). Here ExS(xp, xq) and Ex,x0S(xp, x0

q) measure the
similarity between the p-th and the q-th part of, respectively, the same input, and two independent

ones (in particular Cp,q = 0 when the p-th and q-th part of x are independent). In many applications,
it is reasonable to assume that Cp,q decays according to the distance between p and q.
Assumption 2 (Within-locality). There exists a distance d : P ⇥ P ! R and � � 0, such that

|Cp,q| 6 r
2 e��d(p,q)

with r
2

= sup
x,x0

|S(x, x0
)|. (2)

Within-locality (WL) is always satisfied for � = 0. However, when xp is independent of xq , it holds
with � = 1 and d(p, q) = �p,q the Dirac’s delta. Exponential decays of correlation are typically
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observed when the distribution of the parts of x factorizes in a graphical model that connects parts
which are close in terms of the distance d: although all parts depend on each other, the long-range
dependence typically goes to zero exponentially fast in the distance (see, e.g., [26] for mixing
properties of Markov chains). Fig. 1 (Right) reports the empirical WL measured on 100 images
randomly sampled from ImageNet [13]: each pixel (i, j) reports the value of Cp,q of the central
patch p with respect to a 20 ⇥ 20 patch q centered in (i, j). Here S(xp, xq) = x>

p xq. We note that
Cp,q decreases extremely fast as a function of the distance

��p � q
��, suggesting that Assumption 2

holds for a large value of �.

Contributions. In this work we present a novel structured prediction algorithm that adaptively
leverages locality in the learning problem, when present (Sec. 4). We study the generalization
properties of the proposed estimator (Sec. 5), showing that it is equivalent to the state of the art in the
worst case scenario. More importantly, if the locality Assumptions 1 and 2 are satisfied, we prove that
our learning rates improve proportionally to the number |P | of parts in the problem. Here we give an
informal version of this main result, reported in more detail in Thm. 4 (Sec. 5). Below we denote by bf
the proposed estimator, by E(f) the expected risk of a function f : X ! Y and f⇤

= argminf E(f).

Theorem 1 (Informal - Learning Rates & Locality). Under mild assumptions on the loss and the

data distribution, if the learning problem is local (Assumptions 1 and 2), there exists c0 > 0 such that

E
h
E( bf ) � E(f⇤

)

i
6 c0

✓
s

n|P |

◆1/4

, s =
r
2

|P |

|P |X

p,q=1

e��d(p,q), (3)

where the expectation is taken with respect to the sample of n input-output points used to train bf .

In the worst-case scenario � = 0 (no exponential decay of the covariance between parts), the bound
in (3) scales as 1/n1/4 (since s = r

2
|P |) recovering [8], where no structure is assumed on the parts.

However, as soon as � > 0, s can be upper bounded by a constant independent of |P | and thus the
rate scales as 1/(|P |n)

1/4, accelerating proportionally to the number of parts. In this sense, Thm. 1
shows the significant benefit of making use of locality. The following example focuses on the special
case of sequence-to-sequence prediction.
Example 1 (Locality on Sequences). As depicted in Fig. 1, for discrete sequences we can consider

parts (e.g., windows) indexed by P = {1, . . . , |P |}, with d(p, q) = |p � q| for p, q 2 P (see

Appendix K.1 for more details). In this case, Assumption 2 leads to

s 6 2r
2
(1 � e��

)
�1, (4)

which for � > 0 is bounded by a constant not depending on the number of parts. Hence, Thm. 1

guarantees a learning rate of order 1/(n|P |)
1/4

, which is significanlty faster than the rate 1/n1/4
of

methods that do not leverage locality such as [8]. See Sec. 6 for empirical support to this observation.

3 Problem Formulation

We denote by X,Y and Z respectively the input space, label space and output space of a learning
problem. Let ⇢ be a probability measure on X ⇥ Y and 4 : Z ⇥ Y ⇥ X ! R a loss measuring
prediction errors between a label y 2 Y and a output z 2 Z, possibly parametrized by an input x 2 X .
To stress this interpretation we adopt the notation 4(z, y|x). Given a finite number of (xi, yi)

n
i=1

independently sampled from ⇢, our goal is to approximate the minimizer f⇤ of the expected risk

min
f :X!Z

E(f), with E(f) =

Z
4(f(x), y|x) d⇢(x, y). (5)

Loss Made by Parts. We formalize the intuition introduced in Sec. 2 that data are decomposable
into parts: we denote the sets of parts of X,Y and Z by respectively [X], [Y ] and [Z]. These are
abstract sets that depend on the problem at hand (see examples below). We assume P to be a set of
part “indices” equipped with a selection operator X ⇥ P ! [X] denoted (x, p) 7! [x]p (analogously
for Y and Z). When clear from context, we will use the shorthand xp = [x]p. For simplicity, in the
following we will assume P be finite, however our analysis generalizes also to the infinite case (see
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supplementary material). Let ⇡(·|x) be a probability distribution over the set of parts P , conditioned
with respect to an input x 2 X . We study loss functions 4 that can be represented as

4(z, y|x) =

X

p2P

⇡(p|x) Lp(zp, yp| xp). (6)

The collection of (Lp)p2P is a family of loss functions Lp : [Z] ⇥ [Y ] ⇥ [X] ! R, each comparing
the p-th part of a label y and output z. For instance, in an image processing scenario, Lp could
measure the similarity between the two images at different locations and scales, indexed by p. In this
sense, the distribution ⇡(p|x) allows to weigh each Lp differently depending on the application (e.g.,
mistakes at large scales could be more relevant than at lower scales). Various examples of parts and
concrete cases are illustrated in the supplementary material, here we report an extract.
Example 2 (Sequence to Sequence Prediction). Let X = Ak

, Y = Z = Bk
for two sets A, B

and k 2 N a fixed length. We consider in this example parts that are windows of length l 6 k.

Then P = {1, . . . , k � l + 1} where p 2 P indexes the window xp = (x(p), . . . , x(p+l�1)
), with

x 2 X , where we have denoted x(s)
the s-th entry of the sequence x 2 X , analogous definition

for yp, zp. Finally, we choose the loss Lp to be the 0-1 distance between two strings of same length

Lp(zp, yp|x) = 1(zp 6= yp). Finally, we can choose ⇡(p|x) = 1/|P |, leading to a loss function

4(z, y|x) =
1

|P |

P
p2P 1(zp 6= yp), which is common in the context of Conditional Random Fields

(CRFs) [21].

The example above, highlights a tight connection between the framework considerd in this work
and the literature of CRFs. However, we care to stress that the two approaches differ by the way
they interpret the concepts of loss (used to evaluate fitting errors at training time) and the score
functions (used to estimate predictions at inference time). Specifically, while such functions are two
separate entities in CRF settings, they essentially coincide in our framework (i.e. the score is a linear
combination of loss functions). However, as shown in Example 2, the resulting score functions for
both CRFs and our approach have essentially the same structure. Hence they ultimately lead to the
same inference problem [40]. We conclude this section by providing additional examples of loss
functons decomposable into parts.
Remark 1 (Examples of Loss Functions by Parts). Several loss functions used in machine learning

have a natural formulation in terms of (6). Notable examples are the Hamming distance [10, 42, 11],

used in settings such as hierarchical classification [44], computer vision [29, 45, 41] or trajectory

planning [31] to name a few. Also, loss functions used in natural language processing, such as

the precision/recall and F1 score can be written in this form. Finally, we point out that multi-task

learning settings [27] can be seen as problem by parts, with the loss corresponding to the sum of

standard regression/classification loss functions (least-squares, logistic, etc.) over the tasks/parts.

4 Algorithm

In this section we introduce our estimator for structured prediction problems with parts. Our approach
starts with an auxiliary step for dataset generation that explicitly extracts the parts from the data.

Auxiliary Dataset Generation. The locality assumptions introduced in Sec. 2 motivate us to learn the
local relations between individual parts p 2 P of each input-output pair. In this sense, given a training
dataset D = (xi, yi)

n
i=1

a first step would be to extract a new, part-based dataset {(xp, p, yp) | (x, y) 2

D, p 2 P}. However in most applications the cardinality |P | of the set of parts can be very large
(possibly infinite as we discuss in the Appendix) making this process impractical. Instead, we
generate an auxiliary dataset by randomly sub-sampling m 2 N elements from the part-based dataset.
Concretely, for j 2 {1, . . . , m}, we first sample ij according to the uniform distribution Un on
{1, . . . , n}, set �j = xij , sample pj ⇠ ⇡(· | �j) and finally set ⌘j = [yij ]pj . This leads to the
auxiliary dataset D0

= (�j , pj , ⌘j)
m
j=1

, as summarized in the GENERATE routine of Alg. 1.

Estimator. Given the auxiliary dataset, we propose the estimator bf : X ! Z, such that 8x 2 X

bf(x) = argmin
z2Z

X

p2P

mX

j=1

↵j(x, p)

h
⇡(p|x) Lp(zp, ⌘j |xp)

i
. (7)

The functions ↵j : X ⇥ P ! R are learned from the auxiliary dataset and are the fundamental
components allowing our estimator to capture the part-based structure of the learning problem. Indeed,
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<latexit sha1_base64="bo9dss+6DWUHdvNWkVZVuywmJiw=">AAAB6HicbVDLSgNBEOyNrxhfUY96GAyCp7DrJR6DXjwmYB6QLGF20puMmZ1dZmaFsOQLvHhQxKtf4Xd48+anOHkcNLGgoajqprsrSATXxnW/nNza+sbmVn67sLO7t39QPDxq6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/VbD6g0j+WdGSfoR3QgecgZNVaqJ71iyS27M5BV4i1IqXr6Uf8GgFqv+NntxyyNUBomqNYdz02Mn1FlOBM4KXRTjQllIzrAjqWSRqj9bHbohJxbpU/CWNmShszU3xMZjbQeR4HtjKgZ6mVvKv7ndVITXvkZl0lqULL5ojAVxMRk+jXpc4XMiLEllClubyVsSBVlxmZTsCF4yy+vkuZl2XPLXt2mcQ1z5OEEzuACPKhAFW6hBg1ggPAIz/Di3DtPzqvzNm/NOYuZY/gD5/0H6NOPNQ==</latexit><latexit sha1_base64="rEhUZs3qal4B2jyV9+tPIlj3nL8=">AAAB6HicbVDLSgNBEOyNrxhfUY+KDAbBU9j1osegF48JmAckS5iddJIxs7PLzKwQlhw9efGgiFe/It/hzW/wJ5w8DppY0FBUddPdFcSCa+O6X05mZXVtfSO7mdva3tndy+8f1HSUKIZVFolINQKqUXCJVcONwEaskIaBwHowuJn49QdUmkfyzgxj9EPak7zLGTVWqsTtfMEtulOQZeLNSaF0PK58P56My+38Z6sTsSREaZigWjc9NzZ+SpXhTOAo10o0xpQNaA+blkoaovbT6aEjcmaVDulGypY0ZKr+nkhpqPUwDGxnSE1fL3oT8T+vmZjulZ9yGScGJZst6iaCmIhMviYdrpAZMbSEMsXtrYT1qaLM2GxyNgRv8eVlUrsoem7Rq9g0rmGGLBzBKZyDB5dQglsoQxUYIDzBC7w6986z8+a8z1ozznzmEP7A+fgBxxiQmw==</latexit><latexit sha1_base64="rEhUZs3qal4B2jyV9+tPIlj3nL8=">AAAB6HicbVDLSgNBEOyNrxhfUY+KDAbBU9j1osegF48JmAckS5iddJIxs7PLzKwQlhw9efGgiFe/It/hzW/wJ5w8DppY0FBUddPdFcSCa+O6X05mZXVtfSO7mdva3tndy+8f1HSUKIZVFolINQKqUXCJVcONwEaskIaBwHowuJn49QdUmkfyzgxj9EPak7zLGTVWqsTtfMEtulOQZeLNSaF0PK58P56My+38Z6sTsSREaZigWjc9NzZ+SpXhTOAo10o0xpQNaA+blkoaovbT6aEjcmaVDulGypY0ZKr+nkhpqPUwDGxnSE1fL3oT8T+vmZjulZ9yGScGJZst6iaCmIhMviYdrpAZMbSEMsXtrYT1qaLM2GxyNgRv8eVlUrsoem7Rq9g0rmGGLBzBKZyDB5dQglsoQxUYIDzBC7w6986z8+a8z1ozznzmEP7A+fgBxxiQmw==</latexit><latexit sha1_base64="NJcRm2LSCR31unftaQYs8y2SaBY=">AAAB6HicbVBNT8JAEJ3iF+IX6tHLRmLiibRe9Ej04hESCyTQkO0yhZXtttndmpCGX+DFg8Z49Sd589+4QA8KvmSSl/dmMjMvTAXXxnW/ndLG5tb2Tnm3srd/cHhUPT5p6yRTDH2WiER1Q6pRcIm+4UZgN1VI41BgJ5zczf3OEyrNE/lgpikGMR1JHnFGjZVa6aBac+vuAmSdeAWpQYHmoPrVHyYsi1EaJqjWPc9NTZBTZTgTOKv0M40pZRM6wp6lksaog3xx6IxcWGVIokTZkoYs1N8TOY21nsah7YypGetVby7+5/UyE90EOZdpZlCy5aIoE8QkZP41GXKFzIipJZQpbm8lbEwVZcZmU7EheKsvr5P2Vd1z617LrTVuizjKcAbncAkeXEMD7qEJPjBAeIZXeHMenRfn3flYtpacYuYU/sD5/AHY2Yzw</latexit>

z
<latexit sha1_base64="kAAWtYBn7/0aoVBmFqz2tm+nEUw=">AAAB6HicbZC7SwNBEMbnfMbzFbW0WQyCVbiz0UYM2lgmYB6QhLC3mUvW7O0du3tCPAL2NhaK2PrP2Nv537h5FJr4wcKP75thZyZIBNfG876dpeWV1bX13Ia7ubW9s5vf26/pOFUMqywWsWoEVKPgEquGG4GNRCGNAoH1YHA9zuv3qDSP5a0ZJtiOaE/ykDNqrFV56OQLXtGbiCyCP4PC5ad78QgA5U7+q9WNWRqhNExQrZu+l5h2RpXhTODIbaUaE8oGtIdNi5JGqNvZZNARObZOl4Sxsk8aMnF/d2Q00noYBbYyoqav57Ox+V/WTE143s64TFKDkk0/ClNBTEzGW5MuV8iMGFqgTHE7K2F9qigz9jauPYI/v/Ii1E6Lvlf0K16hdAVT5eAQjuAEfDiDEtxAGarAAOEJXuDVuXOenTfnfVq65Mx6DuCPnI8fV0iOxw==</latexit><latexit sha1_base64="tAmXynKJdtPm35TZtik9m1rvKrM=">AAAB6HicbZC7SgNBFIbPxltcb1FLm8EgWIVdG23EoI1lAuYCyRJmJ2eTMbMXZmaFuOQJbCwUsdWHsbcR38bJpdDEHwY+/v8c5pzjJ4Ir7TjfVm5peWV1Lb9ub2xube8UdvfqKk4lwxqLRSybPlUoeIQ1zbXAZiKRhr7Ahj+4GueNO5SKx9GNHibohbQX8YAzqo1Vve8Uik7JmYgsgjuD4sWHfZ68f9mVTuGz3Y1ZGmKkmaBKtVwn0V5GpeZM4MhupwoTyga0hy2DEQ1Redlk0BE5Mk6XBLE0L9Jk4v7uyGio1DD0TWVIdV/NZ2Pzv6yV6uDMy3iUpBojNv0oSAXRMRlvTbpcItNiaIAyyc2shPWppEyb29jmCO78yotQPym5TsmtOsXyJUyVhwM4hGNw4RTKcA0VqAEDhAd4gmfr1nq0XqzXaWnOmvXswx9Zbz9I15A7</latexit><latexit sha1_base64="tAmXynKJdtPm35TZtik9m1rvKrM=">AAAB6HicbZC7SgNBFIbPxltcb1FLm8EgWIVdG23EoI1lAuYCyRJmJ2eTMbMXZmaFuOQJbCwUsdWHsbcR38bJpdDEHwY+/v8c5pzjJ4Ir7TjfVm5peWV1Lb9ub2xube8UdvfqKk4lwxqLRSybPlUoeIQ1zbXAZiKRhr7Ahj+4GueNO5SKx9GNHibohbQX8YAzqo1Vve8Uik7JmYgsgjuD4sWHfZ68f9mVTuGz3Y1ZGmKkmaBKtVwn0V5GpeZM4MhupwoTyga0hy2DEQ1Redlk0BE5Mk6XBLE0L9Jk4v7uyGio1DD0TWVIdV/NZ2Pzv6yV6uDMy3iUpBojNv0oSAXRMRlvTbpcItNiaIAyyc2shPWppEyb29jmCO78yotQPym5TsmtOsXyJUyVhwM4hGNw4RTKcA0VqAEDhAd4gmfr1nq0XqzXaWnOmvXswx9Zbz9I15A7</latexit><latexit sha1_base64="/VpXkFonZ7oqnzGnYgpVrbAMIVo=">AAAB6HicbVA9TwJBEJ3DL8Qv1NJmIzGxInc2UhJtLCGRjwQuZG+Zg5W9vcvungle+AU2Fhpj60+y89+4wBUKvmSSl/dmMjMvSATXxnW/ncLG5tb2TnG3tLd/cHhUPj5p6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWByO/c7j6g0j+W9mSboR3QkecgZNVZqPg3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNWHNz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/WabqV+k8dRhDM4h0vw4BrqcAcNaAEDhGd4hTfnwXlx3p2PZWvByWdO4Q+czx/oAYz6</latexit>

y0

<latexit sha1_base64="DedVXuzqohYwGt26TRQfrqg/Pf4=">AAAB6XicbVC7TsNAEFyHVwivACUUJyIEVWTTQBlBQ5kg8pASKzpf1skp57N1d0aKrPwBDQUI0fITfAcdHZ/C5VFAwkgrjWZ2tbsTJIJr47pfTm5ldW19I79Z2Nre2d0r7h80dJwqhnUWi1i1AqpRcIl1w43AVqKQRoHAZjC8mfjNB1Sax/LejBL0I9qXPOSMGivdjc66xZJbdqcgy8Sbk1Ll+KP2DQDVbvGz04tZGqE0TFCt256bGD+jynAmcFzopBoTyoa0j21LJY1Q+9n00jE5tUqPhLGyJQ2Zqr8nMhppPYoC2xlRM9CL3kT8z2unJrzyMy6T1KBks0VhKoiJyeRt0uMKmREjSyhT3N5K2IAqyowNp2BD8BZfXiaNi7Lnlr2aTeMaZsjDEZzAOXhwCRW4hSrUgUEIj/AML87QeXJenbdZa86ZzxzCHzjvP1b/j28=</latexit><latexit sha1_base64="QSLzEHFJDnMA9st08y9SebZEOV8=">AAAB6XicbVC7SgNBFL3rM8ZX1FKRwSBahV0bLYM2lomYByRLmJ3MJkNmZpeZWWFZUtrZWChi60/kO+z8Bn/CyaPQxAMXDufcy733BDFn2rjul7O0vLK6tp7byG9ube/sFvb26zpKFKE1EvFINQOsKWeS1gwznDZjRbEIOG0Eg5ux33igSrNI3ps0pr7APclCRrCx0l161ikU3ZI7AVok3owUy0ej6vfj8ajSKXy2uxFJBJWGcKx1y3Nj42dYGUY4HebbiaYxJgPcoy1LJRZU+9nk0iE6tUoXhZGyJQ2aqL8nMiy0TkVgOwU2fT3vjcX/vFZiwis/YzJODJVkuihMODIRGr+NukxRYnhqCSaK2VsR6WOFibHh5G0I3vzLi6R+UfLckle1aVzDFDk4hBM4Bw8uoQy3UIEaEAjhCV7g1Rk4z86b8z5tXXJmMwfwB87HDzVEkNU=</latexit><latexit sha1_base64="QSLzEHFJDnMA9st08y9SebZEOV8=">AAAB6XicbVC7SgNBFL3rM8ZX1FKRwSBahV0bLYM2lomYByRLmJ3MJkNmZpeZWWFZUtrZWChi60/kO+z8Bn/CyaPQxAMXDufcy733BDFn2rjul7O0vLK6tp7byG9ube/sFvb26zpKFKE1EvFINQOsKWeS1gwznDZjRbEIOG0Eg5ux33igSrNI3ps0pr7APclCRrCx0l161ikU3ZI7AVok3owUy0ej6vfj8ajSKXy2uxFJBJWGcKx1y3Nj42dYGUY4HebbiaYxJgPcoy1LJRZU+9nk0iE6tUoXhZGyJQ2aqL8nMiy0TkVgOwU2fT3vjcX/vFZiwis/YzJODJVkuihMODIRGr+NukxRYnhqCSaK2VsR6WOFibHh5G0I3vzLi6R+UfLckle1aVzDFDk4hBM4Bw8uoQy3UIEaEAjhCV7g1Rk4z86b8z5tXXJmMwfwB87HDzVEkNU=</latexit><latexit sha1_base64="vc8g6+JR5IwOpGHOELKqDXqKSPk=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbRU0m86LHoxWMV+wFtKJvtpF262YTdjRBC/4EXD4p49R9589+4bXPQ1gcDj/dmmJkXJIJr47rfTmltfWNzq7xd2dnd2z+oHh61dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5nfmdJ1Sax/LRZAn6ER1JHnJGjZUesvNBtebW3TnIKvEKUoMCzUH1qz+MWRqhNExQrXuemxg/p8pwJnBa6acaE8omdIQ9SyWNUPv5/NIpObPKkISxsiUNmau/J3IaaZ1Fge2MqBnrZW8m/uf1UhNe+zmXSWpQssWiMBXExGT2NhlyhcyIzBLKFLe3EjamijJjw6nYELzll1dJ+7LuuXXv3q01boo4ynACp3ABHlxBA+6gCS1gEMIzvMKbM3FenHfnY9FacoqZY/gD5/MHRwWNKg==</latexit>

x0
<latexit sha1_base64="fzQOM3XmCMsoIkkF0vRHMJe6ZRc=">AAAB6XicbZC7SgNBFIbPeo3rLWppMxhEq7Bro40YtLGMYi6QLGF2cjYZMju7zMyKIQR8ABsLRWx9GHs738bJpdDEHwY+/v8c5pwTpoJr43nfzsLi0vLKam7NXd/Y3NrO7+xWdZIphhWWiETVQ6pRcIkVw43AeqqQxqHAWti7GuW1e1SaJ/LO9FMMYtqRPOKMGmvdPhy18gWv6I1F5sGfQuHi0z1/BIByK//VbCcsi1EaJqjWDd9LTTCgynAmcOg2M40pZT3awYZFSWPUwWA86ZAcWqdNokTZJw0Zu787BjTWuh+HtjKmpqtns5H5X9bITHQWDLhMM4OSTT6KMkFMQkZrkzZXyIzoW6BMcTsrYV2qKDP2OK49gj+78jxUT4q+V/RvvELpEibKwT4cwDH4cAoluIYyVIBBBE/wAq9Oz3l23pz3SemCM+3Zgz9yPn4AtLiO9g==</latexit><latexit sha1_base64="O2Bd58WbeH8pIuR8c3raJLFsFWs=">AAAB6XicbZDLSgMxFIbP1Fsdb1WXboJFdFVm3OhGLLpxWcVeoB1KJs20oZlkSDJiGfoGblwo4rYP496N+Daml4W2/hD4+P9zyDknTDjTxvO+ndzS8srqWn7d3djc2t4p7O7VtEwVoVUiuVSNEGvKmaBVwwynjURRHIec1sP+9TivP1ClmRT3ZpDQIMZdwSJGsLHW3eNxu1D0St5EaBH8GRQvP9yLZPTlVtqFz1ZHkjSmwhCOtW76XmKCDCvDCKdDt5VqmmDSx13atChwTHWQTSYdoiPrdFAklX3CoIn7uyPDsdaDOLSVMTY9PZ+Nzf+yZmqi8yBjIkkNFWT6UZRyZCQar406TFFi+MACJorZWRHpYYWJscdx7RH8+ZUXoXZa8r2Sf+sVy1cwVR4O4BBOwIczKMMNVKAKBCJ4ghd4dfrOs/PmvE9Lc86sZx/+yBn9AKZHkGo=</latexit><latexit sha1_base64="O2Bd58WbeH8pIuR8c3raJLFsFWs=">AAAB6XicbZDLSgMxFIbP1Fsdb1WXboJFdFVm3OhGLLpxWcVeoB1KJs20oZlkSDJiGfoGblwo4rYP496N+Daml4W2/hD4+P9zyDknTDjTxvO+ndzS8srqWn7d3djc2t4p7O7VtEwVoVUiuVSNEGvKmaBVwwynjURRHIec1sP+9TivP1ClmRT3ZpDQIMZdwSJGsLHW3eNxu1D0St5EaBH8GRQvP9yLZPTlVtqFz1ZHkjSmwhCOtW76XmKCDCvDCKdDt5VqmmDSx13atChwTHWQTSYdoiPrdFAklX3CoIn7uyPDsdaDOLSVMTY9PZ+Nzf+yZmqi8yBjIkkNFWT6UZRyZCQar406TFFi+MACJorZWRHpYYWJscdx7RH8+ZUXoXZa8r2Sf+sVy1cwVR4O4BBOwIczKMMNVKAKBCJ4ghd4dfrOs/PmvE9Lc86sZx/+yBn9AKZHkGo=</latexit><latexit sha1_base64="kOgXll9xUeMgz+G4CFAzvcFEdEI=">AAAB6XicbVA9TwJBEJ3DL8Qv1NJmIzFakTsbLIk2lmjkI4EL2VvmYMPe3mV3z0gu/AMbC42x9R/Z+W9c4AoFXzLJy3szmZkXJIJr47rfTmFtfWNzq7hd2tnd2z8oHx61dJwqhk0Wi1h1AqpRcIlNw43ATqKQRoHAdjC+mfntR1Sax/LBTBL0IzqUPOSMGivdP533yxW36s5BVomXkwrkaPTLX71BzNIIpWGCat313MT4GVWGM4HTUi/VmFA2pkPsWipphNrP5pdOyZlVBiSMlS1pyFz9PZHRSOtJFNjOiJqRXvZm4n9eNzXhlZ9xmaQGJVssClNBTExmb5MBV8iMmFhCmeL2VsJGVFFmbDglG4K3/PIqaV1WPbfq3bmV+nUeRxFO4BQuwIMa1OEWGtAEBiE8wyu8OWPnxXl3PhatBSefOYY/cD5/AEWAjSk=</latexit>

p
<latexit sha1_base64="bo9dss+6DWUHdvNWkVZVuywmJiw=">AAAB6HicbVDLSgNBEOyNrxhfUY96GAyCp7DrJR6DXjwmYB6QLGF20puMmZ1dZmaFsOQLvHhQxKtf4Xd48+anOHkcNLGgoajqprsrSATXxnW/nNza+sbmVn67sLO7t39QPDxq6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/VbD6g0j+WdGSfoR3QgecgZNVaqJ71iyS27M5BV4i1IqXr6Uf8GgFqv+NntxyyNUBomqNYdz02Mn1FlOBM4KXRTjQllIzrAjqWSRqj9bHbohJxbpU/CWNmShszU3xMZjbQeR4HtjKgZ6mVvKv7ndVITXvkZl0lqULL5ojAVxMRk+jXpc4XMiLEllClubyVsSBVlxmZTsCF4yy+vkuZl2XPLXt2mcQ1z5OEEzuACPKhAFW6hBg1ggPAIz/Di3DtPzqvzNm/NOYuZY/gD5/0H6NOPNQ==</latexit><latexit sha1_base64="rEhUZs3qal4B2jyV9+tPIlj3nL8=">AAAB6HicbVDLSgNBEOyNrxhfUY+KDAbBU9j1osegF48JmAckS5iddJIxs7PLzKwQlhw9efGgiFe/It/hzW/wJ5w8DppY0FBUddPdFcSCa+O6X05mZXVtfSO7mdva3tndy+8f1HSUKIZVFolINQKqUXCJVcONwEaskIaBwHowuJn49QdUmkfyzgxj9EPak7zLGTVWqsTtfMEtulOQZeLNSaF0PK58P56My+38Z6sTsSREaZigWjc9NzZ+SpXhTOAo10o0xpQNaA+blkoaovbT6aEjcmaVDulGypY0ZKr+nkhpqPUwDGxnSE1fL3oT8T+vmZjulZ9yGScGJZst6iaCmIhMviYdrpAZMbSEMsXtrYT1qaLM2GxyNgRv8eVlUrsoem7Rq9g0rmGGLBzBKZyDB5dQglsoQxUYIDzBC7w6986z8+a8z1ozznzmEP7A+fgBxxiQmw==</latexit><latexit sha1_base64="rEhUZs3qal4B2jyV9+tPIlj3nL8=">AAAB6HicbVDLSgNBEOyNrxhfUY+KDAbBU9j1osegF48JmAckS5iddJIxs7PLzKwQlhw9efGgiFe/It/hzW/wJ5w8DppY0FBUddPdFcSCa+O6X05mZXVtfSO7mdva3tndy+8f1HSUKIZVFolINQKqUXCJVcONwEaskIaBwHowuJn49QdUmkfyzgxj9EPak7zLGTVWqsTtfMEtulOQZeLNSaF0PK58P56My+38Z6sTsSREaZigWjc9NzZ+SpXhTOAo10o0xpQNaA+blkoaovbT6aEjcmaVDulGypY0ZKr+nkhpqPUwDGxnSE1fL3oT8T+vmZjulZ9yGScGJZst6iaCmIhMviYdrpAZMbSEMsXtrYT1qaLM2GxyNgRv8eVlUrsoem7Rq9g0rmGGLBzBKZyDB5dQglsoQxUYIDzBC7w6986z8+a8z1ozznzmEP7A+fgBxxiQmw==</latexit><latexit sha1_base64="NJcRm2LSCR31unftaQYs8y2SaBY=">AAAB6HicbVBNT8JAEJ3iF+IX6tHLRmLiibRe9Ej04hESCyTQkO0yhZXtttndmpCGX+DFg8Z49Sd589+4QA8KvmSSl/dmMjMvTAXXxnW/ndLG5tb2Tnm3srd/cHhUPT5p6yRTDH2WiER1Q6pRcIm+4UZgN1VI41BgJ5zczf3OEyrNE/lgpikGMR1JHnFGjZVa6aBac+vuAmSdeAWpQYHmoPrVHyYsi1EaJqjWPc9NTZBTZTgTOKv0M40pZRM6wp6lksaog3xx6IxcWGVIokTZkoYs1N8TOY21nsah7YypGetVby7+5/UyE90EOZdpZlCy5aIoE8QkZP41GXKFzIipJZQpbm8lbEwVZcZmU7EheKsvr5P2Vd1z617LrTVuizjKcAbncAkeXEMD7qEJPjBAeIZXeHMenRfn3flYtpacYuYU/sD5/AHY2Yzw</latexit>

`(zp, y
0

p0)
<latexit sha1_base64="gb/0RFMA+wfeilWXrvTgmuyC2tA=">AAAB+3icbVDLSsNAFJ3UV62vWJduBou0gpREBF0W3bisYB/QhjCZTtqhk8kwMxFjyK+4caGIW3/EnX/jtM1CqwcuHM65l3vvCQSjSjvOl1VaWV1b3yhvVra2d3b37P1qV8WJxKSDYxbLfoAUYZSTjqaakb6QBEUBI71gej3ze/dEKhrzO50K4kVozGlIMdJG8u3qkDDWePTFKUzrfibq+Ylv15ymMwf8S9yC1ECBtm9/DkcxTiLCNWZIqYHrCO1lSGqKGckrw0QRgfAUjcnAUI4iorxsfnsOj40ygmEsTXEN5+rPiQxFSqVRYDojpCdq2ZuJ/3mDRIeXXka5SDTheLEoTBjUMZwFAUdUEqxZagjCkppbIZ4gibA2cVVMCO7yy39J96zpOk339rzWuiriKINDcAQawAUXoAVuQBt0AAYP4Am8gFcrt56tN+t90VqyipkD8AvWxzd+i5Ns</latexit><latexit sha1_base64="gb/0RFMA+wfeilWXrvTgmuyC2tA=">AAAB+3icbVDLSsNAFJ3UV62vWJduBou0gpREBF0W3bisYB/QhjCZTtqhk8kwMxFjyK+4caGIW3/EnX/jtM1CqwcuHM65l3vvCQSjSjvOl1VaWV1b3yhvVra2d3b37P1qV8WJxKSDYxbLfoAUYZSTjqaakb6QBEUBI71gej3ze/dEKhrzO50K4kVozGlIMdJG8u3qkDDWePTFKUzrfibq+Ylv15ymMwf8S9yC1ECBtm9/DkcxTiLCNWZIqYHrCO1lSGqKGckrw0QRgfAUjcnAUI4iorxsfnsOj40ygmEsTXEN5+rPiQxFSqVRYDojpCdq2ZuJ/3mDRIeXXka5SDTheLEoTBjUMZwFAUdUEqxZagjCkppbIZ4gibA2cVVMCO7yy39J96zpOk339rzWuiriKINDcAQawAUXoAVuQBt0AAYP4Am8gFcrt56tN+t90VqyipkD8AvWxzd+i5Ns</latexit><latexit sha1_base64="gb/0RFMA+wfeilWXrvTgmuyC2tA=">AAAB+3icbVDLSsNAFJ3UV62vWJduBou0gpREBF0W3bisYB/QhjCZTtqhk8kwMxFjyK+4caGIW3/EnX/jtM1CqwcuHM65l3vvCQSjSjvOl1VaWV1b3yhvVra2d3b37P1qV8WJxKSDYxbLfoAUYZSTjqaakb6QBEUBI71gej3ze/dEKhrzO50K4kVozGlIMdJG8u3qkDDWePTFKUzrfibq+Ylv15ymMwf8S9yC1ECBtm9/DkcxTiLCNWZIqYHrCO1lSGqKGckrw0QRgfAUjcnAUI4iorxsfnsOj40ygmEsTXEN5+rPiQxFSqVRYDojpCdq2ZuJ/3mDRIeXXka5SDTheLEoTBjUMZwFAUdUEqxZagjCkppbIZ4gibA2cVVMCO7yy39J96zpOk339rzWuiriKINDcAQawAUXoAVuQBt0AAYP4Am8gFcrt56tN+t90VqyipkD8AvWxzd+i5Ns</latexit><latexit sha1_base64="gb/0RFMA+wfeilWXrvTgmuyC2tA=">AAAB+3icbVDLSsNAFJ3UV62vWJduBou0gpREBF0W3bisYB/QhjCZTtqhk8kwMxFjyK+4caGIW3/EnX/jtM1CqwcuHM65l3vvCQSjSjvOl1VaWV1b3yhvVra2d3b37P1qV8WJxKSDYxbLfoAUYZSTjqaakb6QBEUBI71gej3ze/dEKhrzO50K4kVozGlIMdJG8u3qkDDWePTFKUzrfibq+Ylv15ymMwf8S9yC1ECBtm9/DkcxTiLCNWZIqYHrCO1lSGqKGckrw0QRgfAUjcnAUI4iorxsfnsOj40ygmEsTXEN5+rPiQxFSqVRYDojpCdq2ZuJ/3mDRIeXXka5SDTheLEoTBjUMZwFAUdUEqxZagjCkppbIZ4gibA2cVVMCO7yy39J96zpOk339rzWuiriKINDcAQawAUXoAVuQBt0AAYP4Am8gFcrt56tN+t90VqyipkD8AvWxzd+i5Ns</latexit>
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Figure 2: Illustration of the prediction process for the
Localized Structured Prediction Estimator (7) for a
hypothetical computer vision application.

Algorithm 1

Input: training set (xi, yi)
n
i=1, distributions

⇡(·|x) a reproducing kernel k on X ⇥ P , hyper-
parameter � > 0, auxiliary dataset size m 2 N.

GENERATE the auxiliary set (⌘j ,�j , pj)
m
j=1:

Sample ij 2 Un(·). Set �j = xij .
Sample pj ⇠ ⇡(·|�j). Set ⌘j = [yij ]pj .

LEARN the coefficients for the map ↵:
Set K with Kjj0 = k((�j , pj), (�j0 , pj0)).
A = (K+m�I)�1.

Return the map ↵ : (x, p) 7! A v(x, p) 2 Rm

with v(x, p)j = k
�
(�j , pj), (x, p)

�
.

for any test point x 2 X and part p 2 P , the value ↵j(x, p) can be interpreted as a measure of how
similar xp is to the pj-th part of the auxiliary training point �j . For instance, assume ↵j(x, p) to be
an approximation of the delta function that is 1 when xp = [�j ]pj

and 0 otherwise. Then,

↵j(x, p) Lp(zp, ⌘j |xp) ⇡ �(xp, [�j ]pj ) Lp(zp, ⌘j |xp), (8)

which implies essentially that

xp ⇡ [�j ]pj =) zp ⇡ ⌘j . (9)

In other words, if the p-th part of test input x and the pj-th part of the auxiliary training input �j (i.e.,
the pj-th part of the training input xij ) are deemed similar, then the estimator will encourage the
p-th part of the test output z to be similar to the auxiliary part ⌘j . This process is illustrated in Fig. 2
for an ideal computer vision application: for a given test image x, the ↵ scores detect a similarity
between the p-th patch of x and the pj-th patch of the training input xij . Hence, the estimator will
enforce the p-th patch of the output z to be similar to the pj-th patch of the training label yij .

Learning ↵. In line with previous work on structured prediction [8], we learn each ↵j by solving a
linear system for a problem akin to kernel ridge regression (see Sec. 5 for the theoretical motivation).
In particular, let k : (X ⇥ P ) ⇥ (X ⇥ P ) ! R be a positive definite kernel, we define

(↵1(x, p), . . . ,↵m(x, p))
>

= (K + m�I)
�1v(x, p), (10)

where K 2 Rm⇥m is the empircal kernel matrix with entries Kjh = k((�j , pj), (�h, ph)) and
v(x, p) 2 Rm is the vector with entries v(x, p)j = k((�j , pj), (x, p)). Training the proposed
algorithm, consists in precomputing A = (K + m�I)

�1 to evaluate the coefficients ↵ as detailed by
the LEARN routine in Alg. 1. While computing A amounts to solving a linear system, which requires
O(m3

) operations, we note that it is possible to achieve the same statistical accuracy with reduced
complexity O(m

p
m) by means of low rank approximations (see [14, 32]).

Remark 2 (Evaluating bf ). According to (7), evaluating bf on a test point x 2 X consists in solving

an optimization problem over the output space Z. This is a standard strategy in structured prediction,

where an optimization protocol is derived on a case-by-case basis depending on both 4 and Z
(see, e.g., [29]). Hence, from a computational viewpoint, the inference step in this work is not

more demanding than previous methods (while also enjoying strong theoretical guarantees on the

prediction perfomance, as discussed in Sec. 5). Moreover, the specific form of our estimator suggests

a general stochastic meta-algorithm to address the inference problem in special settings. In particular,

we can reformulate (7) as

bf(x) = argmin
z2Z

Ej,p hj,p(z|x), (11)

with p sampled according to ⇡, j 2 {1, . . . , m} sampled according to the weights ↵j and hj,p suitably

defined in terms of Lp. When the hj,p are (sub)differentiable, (11) can be effectively addressed by

stochastic gradient methods (SGM). In Alg. 3 in Appendix J we give an example of this strategy.
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5 Generalization Properties of Structured Prediction with Parts

In this section we study the statistical properties for the proposed algorithm, with particular attention
to the impact of locality on learning rates, see Thm. 4 (for a complete analysis of univeral consistency
and learning rates without locality assumptions, see Appendices F and H). Our analysis leverages the
assumption that the loss function 4 is a Structure Encoding Loss Function (SELF) by Parts.
Definition 1 (SELF by Parts). A function 4 : Z⇥Y ⇥X ! R is a Structure Encoding Loss Function
(SELF) by Parts if it admits a factorization in the form of (6) with functions Lp : [Z]⇥ [Y ]⇥ [X] ! R,

and there exists a separable Hilbert space H and two bounded maps  : [Z] ⇥ [X] ⇥ P ! H,

' : [Y ] ! H such that for any ⇣ 2 [Z], ⌘ 2 [Y ], ⇠ 2 [X], p 2 P

Lp(⇣, ⌘|⇠) = h (⇣, ⇠, p),'(⌘)i
H

. (12)

The definition of “SELF by Parts” specializes the definition of SELF in [9] and in the following
we will always assume 4 to satisfy it. Indeed, Def. 1 is satisfied when the spaces of parts involved
are discrete sets and it is rather mild in the general case (see [8] for an exhaustive list of examples).
Note that when 4 is SELF, the solution of (5) is completely characterized in terms of the conditional
expectation (related to the conditional mean embedding [7, 23, 36, 34]) of '(yp) given x, denoted by
g⇤

: X ⇥ P ! H, as follows.
Lemma 2. Let 4 be SELF and Z compact. Then, the minimizer of (5) is ⇢X -a.e. characterized by

f⇤
(x) = argmin

z2Z

X

p2P

⇡(p|x) h (zp, xp, p), g⇤
(x, p)i

H
, g⇤

(x, p) =

Z

Y
'(yp)d⇢(y|x). (13)

Lemma 2 (proved in Appendix C) shows that f⇤ is completely characterized in terms of the conditional
expectation g⇤, which indeed plays a key role in controlling the learning rates of bf . In particular,
we investigate the learning rates in light of the two assumptions of between- and within-locality
introduced in Sec. 2. To this end, we first study the direct effects of these two assumptions on the
learning framework introduced in this work.

The effect of Between-locality. We start by observing that the between-locality between parts of the
inputs and parts of the output allows for a refined characterization of the conditional mean g⇤.
Lemma 3. Let g⇤

be defined as in (13). Under Assumption 1, there exists ḡ⇤
: [X] ! H such that

g⇤
(x, p) = ḡ⇤

(xp) 8x 2 X, p 2 P. (14)

Lemma 3 above shows that we can learn g⇤ by focusing on a “simpler” problem, identified by
the function ḡ⇤ acting only the parts [X] of X rather than on the whole input directly (for a proof
see Lemma 21 in Appendix G). This motivates the adoption of the restriction kernel [6], namely a
function k : (X ⇥ P ) ⇥ (X ⇥ P ) ! R such that

k((x, p), (x0, q)) = k̄(xp, xq), (15)

which, for any pair of inputs x, x0
2 X and parts p, q 2 P , measures the similarity between the p-part

of x and the q-th part of q via a kernel k̄ : [X]⇥ [X] ! R on the parts of X . The restriction kernel is
a well-established tool in structured prediction settings [6] and it has been observed to be remarkably
effective in computer vision applications [22, 45, 17].

The effect of Within-locality. We recall that within-locality characterizes the statistical correlation
between two different parts of the input (see Assumption 2). To this end we consider the simplified
scenario where the parts are sampled from the uniform distribution on P , i.e., ⇡(p|x) =

1

|P |
for any

x 2 X and p 2 P . While more general situations can be considered, this setting is useful to illustrate
the effect we are interested in this work. We now define some important quantities that characterize
the learning rates under locality,

Cp,q = Ex,x0
⇥

k̄(xp, xq)
2
� k̄(xp, x

0

q)
2

⇤
, r = sup

x2X,p2P
k̄(xp, xp). (16)

It is clear that the terms Cp,q and r above correspond respectively to the correlations introduced in (1)
and the scale parameter introduced in (2), with similarity function S = k̄2. Let bf be the structured
prediction estimator in (7) learned using the restriction kernel in (15) based on k̄ and denote by Ḡ the
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Figure 3: Learning the direction of ridges in fingerprint images. (Left) Examples of ground truths and predictions
with pixels’ color corresponding to the local direction of ridges. (Right) Test error according to 4 in (18).

space of functions Ḡ = H⌦ F̄ with F̄ the reproducing kernel Hilbert space [3] associated to k̄. In
particular, in the following we will consider the standard assumption in the context of non-parametric
estimation [7] on the regularity of the target function, which in our context reads as ḡ⇤

2 Ḡ. Finally
we introduce c2

4
= supz2Z,x2X

1

|P |

P
p2P k (z, x, p)k

2

H
to measure the “complexity” of the loss 4

w.r.t. the representation induced by SELF decomposition (Def. 1) analogously to Thm. 2 of [8].
Theorem 4 (Learning Rates & Locality). Under Assumptions 1 and 2 with S = k̄2

, let ḡ⇤
satisfying

Lemma 3, with ḡ = kḡ⇤
kḠ < 1. Let s be as in (3). When � = (r

2/m + s/(|P |n))
1/2

, then

E E( bf ) � E(f⇤
) 6 12 c4 ḡ

✓
r
2

m
+

r
2

|P |n
+

s

|P |n

◆1/4

. (17)

The proof of the result above can be found in Appendix G.1. We can see that between- and within-
locality allow to refine (and potentially improve) the bound of n�1/4 from structured prediction
without locality [8] (see also Thm. 5 in Appendix F). In particular, we observe that the adoption of the
restriction kernel in Thm. 4 allows the structured prediction estimator to leverage the within-locality,
gaining a benefit proportional to the magnitude of the parameter �. Indeed r

2 6 s 6 r
2
|P | by

definition. More precisely, if � = 0 (e.g., all parts are identical copies) then s = r
2
|P | and we recover

the rate of O(n�1/4
) of [8], while if � is large (the parts are almost not correlated) then s = r

2 and we
can take m / n|P | achieving a rate of the order of O

�
(n|P |)

�1/4
�
. We clearly see that depending

on the amount of within-locality in the learning problem, the proposed estimator is able to gain
significantly in terms of finite sample bounds.

6 Empirical Evaluation

We evaluate the proposed estimator on simulated as well as real data. We highlight how locality leads
to improved generalization performance, in particular when only few training examples are available.

Learning the Direction of Ridges for Fingerprint. Similarly to [37], we considered the problem of
detecting the pointwise direction of ridges in a fingerprint image on the FVC04 dataset1 comprising 80

grayscale 640 ⇥ 480 input images depicting fingerprints and corresponding output images encoding
in each pixel the local direction of the ridges of the input fingerprint as an angle ✓ 2 [�⇡,⇡]. A
natural loss function is the average pixel-wise error sin(✓ � ✓0

)
2 between a ground-truth angle ✓ and

the predicted ✓0 according to the geodesic distance on the sphere. To apply the proposed algorithm,
we consider the following representation of the loss in term of parts: let P be the collection of patches
of dimension 20 ⇥ 20 and equispaced each 5 ⇥ 5 pixels2 so that each pixel belongs exactly to 16

patches. For all z, y 2 R640⇥480, the average pixel-wise error is

4(z, y) =
16

|P |

X

p2P

L(zp, yp), with L(⇣, ⌘) =
1

20 ⇥ 20

20X

i,j=1

sin([⇣]ij , [⌘]ij)
2, (18)

1http://bias.csr.unibo.it/fvc2004, DB1_B. The output is obtained by applying 7⇥7 Sobel filtering.
2For simplicity we assume “circular images”, namely [x]i,j = [x](i mod 640),(j mod 480).
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Figure 4: Empirical estimation of within-locality

for the central patch of the fingerprints dataset.
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Figure 5: Effect of within-locality w.r.t. � and |P |:
Global-LS vs. IndependentParts-LS vs. Local-LS (ours).

where ⇣ = zp, ⌘ = yp 2 [�⇡,⇡]
20⇥20 are the extracted patches and [·]ij their value at pixel (i, j).

We compared our approach using 4 (Local-4) or least-squares (Local-LS) with competitors that do
not take into account the local structure of the problem, namely standard vector-valued kernel ridge
regression (KRLS) [7] and the structured prediction algorithm in [8] with 4 loss (4-Global). We used
a Gaussian kernel on the input (for the local estimators the restriction kernel in (15) with k̄ Gaussian).
We randomly sampled 50/30 images for training/testing, performing 5-fold cross-validation on � in
[10

�6, 10] (log spaced) and the kernel bandwidth in [10
�3, 1]. For Local-4 and Local-LS we built

an auxiliary set with m = 30000 random patches (see Sec. 4), sampled from the 50 training images.

Results. Fig. 3 (Left) reports the average prediction error across 10 random train-test splits. We make
two observations: first, methods that leverage the locality in the data are consistently superior to their
“global” counterparts, supporting our theoretical results in Sec. 5 that the proposed estimator can lead
to significantly better performance, in particular when few training points are available. Second, the
experiment suggests that choosing the right loss is critical, since exploiting locality without the right
loss (i.e., Local-LS in the figure) generally leads to worse performance. The three sample predictions
in Fig. 3 (Right) provide more qualitative insights on the models tested. In particular while both
locality-aware methods are able to recover the correct structure of the fingerprints, only combining
this information with the loss 4 leads to accurate recovery of the ridge orientation.

Within-locality. In Fig. 4 we visualize the (empirical) within-locality of the central patch p for the
fingerprint dataset. The figure depicts Cp,q (defined in (16)) for q 2 P , with the (i, j)-th pixel in
the image corresponding to Cp,q with q the 20 ⇥ 20 patch centered in (i, j). The fast decay of these
values as the distance from the central patch p increase, suggests that within-locality holds for a large
value of �, possibly justifying the good performance exhibited by (Local-4) in light of Thm. 4.

Simulation: Within-Locality. We complement our analysis with synthetic experiments where we
control the “amount” of within-locality �. We considered a setting where input points are vectors
x 2 Rk|P | comprising |P | parts of dimension k = 1000. Inputs are sampled according to a normal
distribution with zero mean and covariance ⌃(�) = M(�) ⌦ I , where M(�) 2 R|P |⇥|P | has entries
M(�)pq = e��d(p,q) and d(p, q) = |p� q|/|P |. By design, as � grows C varies from being rank-one
(all parts are identical copies) to diagonal (all parts are independently sampled).

To isolate the effect of within-locality on learning, we tested our estimator on a linear multitask (actu-
ally vector-valued) regression problem with least-squares loss 4. We generated datasets (xi, yi)

n
i=1

of size n = 100 for training and n = 1000 for testing, with xi sampled as described above and
yi = w>xi + ✏ with noise ✏ 2 Rk|P | sampled from an isotropic Gaussian with standard deviation
0.5. To guarantee between-locality to hold, we generated the target vector w = [w̄, . . . , w̄] 2 Rk|P |

by concatenating copies of a w̄ 2 Rk sampled uniformly on the radius-one ball. We performed
regression with linear restriction kernel on the parts/subvectors (Local-LS) on the “full” auxiliary
dataset ([xi]p, [yi]p) with 1 6 i 6 n and 1 6 p 6 |P |, and compared it with standard linear regres-
sion (Global-LS) on the original dataset (xi, yi)

n
i=1

and linear regression performed independently
for each (local) subdataset ([xi]p, [yi]p)

n
i=1

(IndependentParts - LS). The parameter � was chosen by
hold-out cross-validation in [10

�6, 10] (log spaced).
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Fig. 5 reports the (log scale) mean square error (MSE) across 100 runs of the two estimators for
increasing values of � and |P |. In line with Thm. 4, when � and |P | are large, Local-LS significantly
outperforms both i) Global-LS, which solves one single problem jointly and does not benefit within-
locality, and ii) IndependentParts-LS, which is insensitive to the between-locality across parts and
solves each local prediction problem in isolation. For a smaller �, such advantage becomes less
prominent even when the number of parts is large. This is expected since for � = 0 the input parts
are extremely correlated and there is no within locality that can be exploited.

7 Conclusion

We proposed a novel approach for structured prediction in presence of locality in the data. Our
method builds on [8] by incorporating knowledge of the parts directly within the learning model. We
proved the benefits of locality by showing that, under a low-correlation assumption on the parts of the
input (within locality), the learning rates of our estimator can improve proportionally to the number
of parts in the data. To obtain this result we additionally introduced a natural assumption on the
conditional independence between input-output parts (between locality), which provides also a formal
justification for adoption of the so-called “restriction kernel”, previously proposed in the literature,
as a mean to lower the sample complexity of the problem. Empirical evaluation on synthetic as
well as real data shows that our approach offers significant advantages when few training points are
available and leveraging structural information such as locality is crucial to achieve good prediction
performance. We identify two main directions for future work: 1) consider settings where the parts
are unknown (or “latent”) and need to be discovered/learned from data; 2) Consider more general
locality assumptions. In particular, we argue that Assumption 2 (WL) might be weakened to account
for different (but related) local input-output relations across adjacent parts.
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