
We thank the reviewers for their thoughtful comments and suggestions and we respond below to some concrete1

questions/comments that were raised.2

Response to Reviewer #4. Slate estimator. We agree that we should have added a reference to the Swaminathan et3

al paper. The setup there is also a special case of our setup, where the reward is linear in the treatment vector, i.e.4

〈θ(z), T 〉, but where T ∈ R`·m (` is number of items and m number of slots) and where T takes values in a subset5

of the hypercube. The discreteness of the action space allows Swaminathan et al to apply a more direct propensity6

approach (see e.g. Remark 2 for a similar example). Moreover, the slate estimator uses solely the IPS part and is not7

doubly robust, as the paper works in the setting with a known propensity function.8

Efficiency. This phenomenon is rather standard in the econometrics literature: if one assumes both that the model is9

well-specified and that there is heteroskedastic noise, then one could typically construct more efficient estimators by10

optimally re-weighting the samples inversely proportionate to the variance of the error for the corresponding zi. Such11

optimally re-weighted estimators are typically avoided in practice as they heavily rely on the well-specification of the12

model. Hence, we omitted such an analysis. We will add a relevant discussion in the revision with reference of results13

similar in flavor and an appendix section of how an optimally re-weighted estimator would look like.14

Estimating co-variance. In the worst-case one can view the estimation of the co-variance as a set of separate regressions,15

one for each entry of the matrix (see e.g. Equation 6 and the sentence above). Assuming the matrix has small dimension16

and assuming some high-dimensional model space for each regression, then typical regression rates would apply. The17

example of pricing however shows that in natural problems one might be able to get away with even simpler estimators18

for this co-variance matrix. We will add some more elaborate discussion on these rates expanding on Remark 4.19

Response to Reviewer #5. See response also to Reviewer #4 regarding efficiency. Roughly: if one assumes the model20

is well-specified then this implies many more moment conditions than just the unconditional moment implied by a21

square loss projection. These extra moments can be used to construct more efficient estimators. This can indeed lead22

to a benefit if the errors are heteroskedastic as then one should do an optimally re-weighted square loss projection.23

However, these extra moment conditions have no bite in the case of homoskedastic noise. The technical proof in24

appendix D goes through such an argument. We will add a sketch that highlights these main points.25

Response to Reviewer #6. Relation to Foster and Syrgkanis (FS). Our paper does use the framework of (FS) and the26

main theorems in that work as a stepping stone in our regret results. However, there are two substantial contributions:27

1) the framework of (FS) starts from the assumption that one has formulated an orthogonal loss, but does not provide28

any way of acquiring such an orthogonal loss. Hence, our first contribution is constructing an orthogonal loss in the29

case of policy learning with continuous actions. Existence of such orthogonal losses were left as an open question in30

prior work (e.g. Athey and Wager). 2) The out-of-sample regularized ERM provides both a computationally efficient31

alternative to the variance penalization whenever the original ERM problem is convex and also attains a regret bound32

whose leading term is much better than that achieved by variance or moment penalization: i) we get a bound that33

depends on the entropy integral of the policy space as opposed to the critical radius that was achieved by (FS), or the34

even worse metric entropy at O(1/n) approximation achieved by variance penalization; the latter quantities for instance35

typically add an extra log(n) factor in the leading term in the case of VC classes and create even larger deteriorations as36

compared to the entropy integral for larger classes; achieving an entropy integral dependence has been an open question37

in the variance penalization literature and the f-divergence robust optimization formulations do not provide an answer38

to these as they similarly have dependence on metric entropy quantities at fixed approximation levels; moreover the39

f-divergence equivalence to variance penalization is only asymptotic, ii) we depend on the variance of the difference of40

the policy loss between the optimal policy and any policy in a small regret slice; this constant can be much smaller than41

the variance of the optimal policy that is achieved by the moment penalization of (FS) (see discussion after theorem 1).42

Computational efficiency. We note that in both the examples that we present the policy learning problem is convex. We43

agree that we omitted the description of how we optimize the policy in the pricing example. But we do have a concrete44

discussion of how we optimize the policy in the costly resource allocation. In the case of pricing, where we optimize45

over linear policies, then observe that the problem is convex with respect to the coefficients in the linear policy (as it is46

of the form of maximizing: 〈γ, z〉(a(z)+ b(z)〈γ, z〉) and b(z) is non-positive; hence the hessian with respect to gamma47

is negative semi-definite and hence a concave maximization problem). In this case we optimized the objective by simply48

finding a closed form solution to the first order condition. This involves simple matrix computations. Similarly as49

we describe in the costly resource allocation application in Appendix G, the policy learning problem boils down to50

the square loss minimization over a space of high-dimensional linear policies subject to an `1 ball constraint (e.g. a51

multi-task lasso problem); see Equation (55) and statement below. This is a convex problem and can be solved efficiently52

with standard packages; which is what we employed. In both cases, out-of-sample regularized ERM preserves the53

convexity of the ERM problem and is efficiently computable via convex optimization; as opposed to variance/moment54

penalization, which becomes a non-convex problem.55


