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Abstract

We study the geometry of deep (neural) networks (DNs) with piecewise affine and
convex nonlinearities. The layers of such DNs have been shown to be max-affine
spline operators (MASOs) that partition their input space and apply a region-
dependent affine mapping to their input to produce their output. We demonstrate
that each MASO layer’s input space partition corresponds to a power diagram
(an extension of the classical Voronoi tiling) with a number of regions that grows
exponentially with respect to the number of units (neurons). We further show
that a composition of MASO layers (e.g., the entire DN) produces a progressively
subdivided power diagram and provide its analytical form. The subdivision process
constrains the affine maps on the potentially exponentially many power diagram
regions with respect to the number of neurons to greatly reduce their complexity.
For classification problems, we obtain a formula for the DN’s decision boundary in
the input space plus a measure of its curvature that depends on the DN’s architecture,
nonlinearities, and weights. Numerous numerical experiments support and extend
our theoretical results.

1 Introduction

Today’s machine learning landscape is dominated by deep (neural) networks (DNs), which are
compositions of a large number of simple parameterized linear and nonlinear transformations. Deep
networks perform surprisingly well in a host of applications; however, surprisingly little is known
about why they work so well.

Recently, [BB18a, BB18b] connected a large class of DNs to a special kind of spline, which enables
one to view and analyze the inner workings of a DN using tools from approximation theory and
functional analysis. In particular, when the DN is constructed using convex and piecewise affine
nonlinearities (such as ReLU, Leaky- ReLU, max-pooling, etc.), then its layers can be written as
max-affine spline operators (MASOs). An important consequence for DNs is that each layer partitions
its input space into a set of regions and then processes inputs via a simple affine transformation
that changes continuously from region to region. Understanding the geometry of the layer partition
regions – and how the layer partition regions combine into the DN input partition – is thus key to
understanding the operation of DNs.

There has only been limited work in the geometry of deep networks. The originating MASO
work of [BB18a, BB18b] focused on the analytical form of the region-dependent affine maps and
empirical statistics of the partition without studying the structure of the partition or its construction
through depth. The work of [WBB19] empirically studied the partition highlighting the fact that
knowledge of the region in which each input lies is sufficient to reach high performance. Other
works have focused on the properties of the partition, such as upper bounding the number of regions
[MPCB14, RPK+17, HR19]. An explicit characterization of the input space partition of one hidden
layer DNs with ReLU activation has been developed in [ZBH+16] by means of tropical geometry.
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In this paper, we adopt a computational and combinatorial geometry [PA11, PS12] perspective of
MASO-based DNs to derive the analytical form of the input-space partition of a DN unit, a DN layer,
and an entire end-to-end DN. Our results apply to any DN employing affine transformations plus
piecewise affine and convex nonlinearities.

We summarize our contributions as follows: [C1] We demonstrate that each MASO DN layer
partitions its input (feature map) space according to a power diagram (PD) (also known as a La-
guerre–Voronoi diagram) [AI] and derive the analytical formula of the PD (Section 3.2). [C2] We
demonstrate that the composition of the several MASO layers comprising a DN effects a subdivision
process that creates the overall DN input-space partition and provide the analytical form of the
partition (Section 4). [C3] We demonstrate how the centroids of the layer PDs can be efficiently
computed via backpropagation (Section 4.2), which permits ready visualization of a PD. [C4] In
the classification setting, we derive an analytical formula for a DN’s decision boundary in terms
of its input space partition (Section 5). The analytical formula enables us to characterize some key
geometrical properties of the boundary.

Our complete, analytical characterization of the input-space and feature map partition of MASO
DNs opens up new avenues to study the geometrical mechanisms behind their operation. Additional
background information, results, and proofs of the main results are provided in several appendices.

2 Background
Deep Networks. A deep (neural) network (DN) is an operator fΘ with parameters Θ that maps an
input signal x ∈ RD to the output prediction ŷ ∈ RC . Current DNs can be written as a composition
of L intermediate layer mappings f (`) : X(`−1) → X(`) (` = 1, . . . , L) with X(`) ⊂ RD(`) that
transform an input feature map z(`−1) into the output feature map z(`) with the initializations
z(0)(x) := x and D(0) = D. The feature maps z(`) can be viewed equivalently as signals, tensors,
or flattened vectors; we will use boldface to denote flattened vectors (e.g., z(`), x).

DNs can be constructed from a range of different linear and nonlinear operators. One important
linear operator is the fully connected operator that performs an arbitrary affine transformation by
multiplying its input by the dense matrix W (`) ∈ RD(`)×D(`−1) and adding the arbitrary bias
vector b(`)W ∈ RD(`) as in f (`)

W

(
z(`−1)(x)

)
:= W (`)z(`−1)(x) + b

(`)
W . Another linear operator is

the convolution operator in which the matrix W (`) is replaced with a circulant block circulant
matrix denoted as C(`). One important nonlinear operator is the activation operator that applies
elementwise a nonlinearity σ such as ReLU σReLU(u) = max(u, 0). Further examples are provided
in [GBC16]. We define a DN layer f (`) as a single nonlinear DN operator composed with any (if
any) preceding linear operators that lie between it and the preceding nonlinear operator.

Max Affine Spline Operators (MASOs). Work from [BB18a, BB18b] connects DN layers with
max-affine spline operators (MASOs). A MASO is a continuous and convex operator w.r.t. each
output dimension S[A,B] : RD → RK that concatenates K independent max-affine splines [MB09,
HD13], with each spline formed from R affine mappings. The MASO parameters consist of the
“slopes”A ∈ RK×R×D and the “offsets/biases”B ∈ RK×R.1 Given the layer input z(`−1), a MASO
layer produces its output via

[z(`)(x)]k =
[
S[A(`), B(`)](z(`−1)(x))

]
k

= max
r=1,...,R

(〈
[A(`)]k,r,·, z

(`−1)(x)
〉

+ [B(`)]k,r

)
, (1)

where A(`), B(`) are the per-layer parameters, [A(`)]k,r,· represents the vector formed from all of the
values of the last dimension of A(`), and [·]k denotes the value of a vector’s kth entry.

The key background result for this paper is that any DN layer f (`) constructed from operators that
are piecewise-affine and convex can be written as a MASO with parameters A(`), B(`) and output
dimension K = D(`). Hence, a DN is a composition of L MASOs [BB18a, BB18b]. For example, a
layer made of a fully connected operator followed by a leaky-ReLU with leakiness η has parameters
[A(`)]k,1,· = [W (`)]k,·, [A

(`)]k,2,· = η[W (`)]k,· for the slopes and [B(`)]k,1,· = [b(`)]k, [B
(`)]k,2 =

η[b(`)]k for the biases.

1The three subscripts of the slopes tensor [A]k,r,d correspond to output k, partition region r, and input signal
index d. The two subscripts of the offsets/biases tensor [B]k,r correspond to output k and partition region r.
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Figure 1: Two equivalent representations of a power diagram (PD).
Top: The grey circles have centroid [µ]k,· and radii [rad]k; each point
x is assigned to a specific region/cell according to the Laguerre distance
from the centroid, which is defined as the length of the segment tangent
to and starting on the circle and reaching x. Bottom: A PD in RD

(here D = 2) is constructed by lifting the centroids [µ]k,· up into an
additional dimension in RD+1 by the distance [rad]k and then finding
the Voronoi diagram (VD) of the augmented centroids ([µ]k,·, [rad]k)
in RD+1. The intersection of this higher-dimensional VD with the
originating space RD yields the PD.

A DN comprising L MASO layers is a non-convex but continuous affine spline operator with an input
space partition and a partition-region-dependent affine mapping. However, little is known analytically
about the input-space partition. The goal of this paper is to characterize the geometry of the MASO
partitions of the input space and the feature map spaces X(`).

Voronoi and Power Diagrams. A power diagram (PD), also known as a Laguerre–Voronoi diagram
[AI], is a generalization of the classical Voronoi diagram (VD).

Definition 1. A PD partitions a space X into R disjoint regions/cells Ω = {ω1, . . . , ωR} such that
∪Rr=1ωr = X, where each cell is obtained via ωr = {x ∈ X : r(x) = r}, r = 1, . . . , R, with

r(x) = arg min
k=1,...,R

‖x− [µ]k,·‖2 − [rad]k. (2)

The parameter [µ]k,· is called the centroid, while [rad]k is called the radius. The distance minimized
in (2) is called the Laguerre distance [IIM85].

When the radii are equal for all k, a PD collapses to a VD. See Fig. 1 for two equivalent geometric
interpretations of a PD. For additional insights, see Appendix A and [PS12]. We will have the
occasion to use negative radii in our development below. Since arg mink ‖x− [µ]k,·‖2 − [rad]k =
arg mink ‖x− [µ]k,·‖2 − ([rad]k + ρ), we can always apply a constant shift ρ to all of the radii to
make them positive .

3 Input Space Power Diagram of a MASO Layer
Like any spline, it is the interplay between the (affine) spline mappings and the input space partition
that work the magic in a MASO DN. Indeed, the partition opens up new geometric avenues to study
how a MASO-based DN clusters and organizes signals in a hierarchical fashion.

We now embark on a programme to fully characterize the geometry of the input space partition of a
MASO-based DN. We will proceed in three steps by studying the partition induced by i) one unit of a
single DN layer (Section 3.1), ii) the combination of all units in a single layer (Section 3.2), iii) the
composition of L layers that forms the complete DN (Section 4).

3.1 MAS Unit Power Diagram
A MASO layer combines K max affine spline (MAS) units zk(x) to produce the layer output
z(x) = [z1(x), . . . , zK(x)]T given an input x ∈ X. To streamline our argument, we omit the `
superscript and denote the layer input by x. Denote each MAS computation from (1) as

zk(x) = max
r=1,...,R

〈[A]k,r,·, x〉+ [B]k,r = max
r=1,...,R

Ek,r(x), (3)

where Ek,r(x) is the affine projection of x parameterized by the slope [A]k,r,· and offset [B]k,r. By
defining the following half-space consisting of the set of points above the hyperplane

E+
k,r = {(x, y) ∈ X× R : y ≥ Ek,r(x)}, (4)

we obtain the following geometric interpretation of the unit output.

Proposition 1. The kth MAS unit maps its input space onto the boundary of the convex polytope
Pk = ∩Rr=1E

+
k,r, leading to

{(x, zk(x)),x ∈ X} = ∂Pk, (5)
where ∂Pk denotes the boundary of the polytope.
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The MAS computation can be decomposed geometrically as follows. The slope [A]k,r,· and offset
[B]k,r parameters describe the shape of the half-space E+

k,r. The max over the regions r in (3) defines
the polytope Pk as the intersection over the R half-spaces. The following property shows how the
unit projection, the polytope faces and the unit input space partition naturally tie together.

Lemma 1. The vertical projection on the input space X of the faces of the polytope Pk from (5)
define the cells of a PD.

Furthermore, we can highlight the maximization process of the unit computation (3) with the following
operator rk : X→ {1, . . . , R} defined as

rk(x) = arg max
r=1,...,R

Ek,r(x). (6)

This operator keeps track of the index of the affine mapping used to produce the unit output or,
equivalently, the index of the polytope face used to produce the unit output. The collection of
inputs having the same face allocation, defined as ∀r ∈ {1, . . . , R} , ωr = {x ∈ X : rk(x) = r},
constitutes the rth partition cell of the unit k PD (recall (2) and Lemma 1).

The polytope formulation of a DN’s PD provides an avenue to study the interplay between the slope
and offset of the MAS unit and this specific partition by providing the analytical form of the PD.

Theorem 1. The kth MAS unit partitions its input space according to a PD with R centroids and
radii given by [µ]k,r = [A]k,r,· and [rad]k,r = 2[B]k,r + ‖[A]k,r,·‖2,∀r ∈ {1, . . . , R} (recall (2)).

Corollary 1. The input space partition of a DN unit is composed of convex polytopes.

For a single MAS unit, the slope corresponds to the centroid, and its `2 norm combines with the bias
to produce the radius. The PD simplifies to a VD when [B]k,r = − 1

2‖[A]k,r,·‖2 + c, ∀r, ∀c ∈ R.

3.2 MASO Layer Power Diagram
We study the input space partition of an entire DN layer by studying the joint behavior of all its
constituent units. A MASO layer is a continuous, piecewise affine operator made by the concatenation
of K MAS units (recall (1)); we extend (3) to

z(x) =

[
max

r=1,...,R
E1,r(x), . . . , max

r=1,...,R
EK,r(x)

]T
, ∀x ∈ X (7)

and the per-unit face index function rk (6) into the operator r : X→ {1, . . . , R}K defined as

r(x) = [r1(x), . . . , rK(x)]T . (8)

Following the geometric interpretation of the unit output from Proposition 1, we extend (4) to

E+
r =

{
(x,y) ∈ X× RK : [y]1 ≥ E1,[r]1(x), . . . , [y]K ≥ EK,[r]K (x)

}
, ∀r ∈ {1, . . . , R}K (9)

in order to provide the following layer output geometrical interpretation.

Proposition 2. The layer operator z maps its input space into the boundary of the dim(X) + K
dimensional convex polytope P =

⋂
r∈{1,...,R}K E

+
r via

∂P = {(x, z(x)),∀x ∈ X}. (10)

Similarly to Proposition 1, the polytope P imprints the layer’s input space with a partition that is the
intersection of the K per-unit input space partitions.

Lemma 2. The vertical projection on the input space X of the faces of the polytope P from Proposi-
tion 2 define the cells of a PD.

The MASO layer projects an input x onto the polytope face indexed by r(x) corresponding to

r(x) =

[
arg max
r=1,...,R

E1,r(x), . . . , arg max
r=1,...,R

EK,r(x)

]T
. (11)

The collection of inputs having the same face allocation jointly across the K units constitutes the rth

partition cell (region) of the layer PD.
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Layer 1: mapping
X(0)⊂R2 to X(1)⊂R6

Layer 2: mapping
X(1)⊂R6 toX(2)⊂R6

Layer 3: mapping
X(2)⊂R6 toX(3)⊂R1 Figure 2: Power diagram subdivision

in a toy deep network (DN) with aD =
2 dimensional input space. Top: The
partition polynomial (22), whose roots
define the partition boundaries in the in-
put space. Bottom: Evolution of the in-
put space partition (15) displayed layer
by layer, with the newly introduced
boundaries in darker color. Below each
partition, one of the newly introduced
cuts edgeX(0)(k, `) from (21) is high-
lighted; in the final layer (right), this cut
corresponds to the decision boundary
(in red).

Theorem 2. A DN layer partitions its input space according to a PD containing up to RK cells with
centroids µr =

∑K
k=1[A]k,[r]k,· and radii radr = 2

∑K
k=1[B]k,[r]k + ‖µr‖2 (recall (2)).

Corollary 2. The input space partition of a DN layer is composed of convex polytopes.

Extending Theorem 1, we observe in the layer case that the centroid of each PD cell corresponds to
the sum of the rows of the slopes matrix producing the layer output. The radii involve the bias units
and the `2 norm of the slopes as well as their correlation. This highlights how, even when a change of
weight occurs for a single unit, it will impact multiple centroids and hence multiple cells. Note also
that orthogonal DN filters 2 and [B]k,r = − 1

2‖[A]k,r,·‖2 reduces the PD to a VD.

Appendix A.2 explores how the shapes and orientations of layer’s PD cells can be designed by
appropriately constraining the values of the DN’s weights and biases.

4 Input Space Power Diagram of a MASO Deep Network
We are now armed to characterize and study the input space partition of an entire DN by studying the
joint behavior of its constituent layers.

4.1 The Power Diagram Subdivision Recursion
We provide the formula for the input space partition of an L-layer DN by means of a recursion.
Recall that each layer partitions its input space X(`−1) in terms of the polytopes P(`) according to
Proposition 2. The DN partition corresponds to a recursive subdivision where each per-layer polytope
subdivides the previously obtained partition.

Initialization (` = 0): Define the region of interest in the input space X(0) ⊂ RD.

First step (` = 1): The first layer subdivides X(0) into a PD via Theorem 2 with parametersA(1), B(1)

to obtain the layer-1 partition Ω(1).

Recursion step (` = 2): For concreteness we focus here on how the second layer subdivides the first
layer’s input space partition. In particular, we highlight how a single cell ω(1)

r(1) of Ω(1) is subdivided,
the same applies to all the cells. On this cell, the first layer mapping is affine with parameters
A

(1)

r(1) , B
(1)

r(1) . This convex cell thus remains a convex cell at the output of the first layer mapping, it
lives in X(1) and it is defined as

affr(1) =
{
A

(1)

r(1)x +B
(1)

r(1) ,x ∈ ω
(1)

r(1)

}
⊂ X(1). (12)

The second layer partitions its input space X(1) and thus also potentially subdivisions affr(1) . In
particular, this -mapped cell- will be subdivided by the edges of the polytope P(2) (recall (10)) having
for domain affr(1) , this domain restricted polytope is defined as

P
(2)

r(1) = P(2) ∩
(

affr(1) × RD(2)
)
. (13)

2Orthogonal DN filters have the property that 〈[A]k,r,·, [A]k′,r′,·〉 = 0, ∀r, r′, k 6= k′.
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Since the layer 1 mapping is affine in this region, the domain restricted polytope P
(2)

r(1) can be
expressed as part of X(0) as opposed to X(1).

Definition 2. The domain restricted polytope P(2)

r(1) ∈ X(1)×RD(2) can be expressed in X(0)×RD(2)

as

P
(1←2)

r(1) =∩r(2)

{
(x,y)∈ω(1)

r(1)× RD(1): [y]1≥ E
(1←2)

1,[r(2)]1
(x), . . . , [y]D(1)≥ E

(1←2)

D(1),[r(2)]D(1)
(x)
}

(14)

with E
(1←2)

k,[r(1)]k
the hyperplane with slope A(1)T

r(1) A
(2)

r(2) and bias
〈

[A
(2)

r(2) ]k,r,., B
(1)

r(1)

〉
+ B

(2)

r(2) ,k ∈
{1, . . . , D(1)}.

The above results demonstrates how cell ω(1)

r(1) , seen as affr(1) by the second layer, is subdi-

vided by the domain restricted polytope P
(2)

r(1) ; and conversely, how this subdivision of ω(1)

r(1) is

done by the domain restricted second layer polytope expressed in the DN input space P
(1←2)

r(1) .
Now, combining the latter interpretation, and applying Lemma 2, we obtain that this cell is sub-
divided according to a PD induced by the faces of P

(1←2)

r(1) , denoted as PD(1←2)

r(1) . This PD is

characterized by the centroids µ(1←2)

r(1),r(2) = A
(1)

r(1)

>
µ

(1←2)

r(2) , and radii rad
(1←2)

r(1),r(2) = ‖µ(1←2)

r(1),r(2)‖2 +

2〈µ(2)

r(2) , B
(1)

r(1)〉+ 2〈1, B(2)

r(2)〉,∀r(2) ∈ {1, . . . , R}D(2). The PD parameters thus combine the affine

parameters A(1)

r(1) , B
(1)

r(1) of the considered cell with the second layer parameters A(2), B(2). Repeat-

ing this subdivision process for all cells ω(1)

r(1) from Ω(1) forms the subdivided input space partition

Ω(1,2) = ∪r(1)PD(1←2)

r(1) .

Recursion step (`): Consider the situation at layer ` knowing Ω(1,...,`−1) from the previous subdivi-
sion steps. Similarly to the ` = 2 step, layer ` subdivides each cell in Ω(1,...,`−1) to produce Ω(1,...,`)

leading to the up-to-layer-`-layer DN partition

Ω(1,...,`) = ∪r(1),...,r(`−1)PD(1←`)
r(1),...,r(`−1) . (15)

See Fig. 2 for a numerical example with a 3-layer DN and D = 2 dimensional input space. (See also
Figures 7 and 9 in Appendix B.)

Theorem 3. Each cell ω(1,...,`−1)

r(1),...,r(`−1) ∈ Ω(1,...,`−1) is subdivided into PD(1←`)
r(1),...,r(`−1) , a PD with

domain ω(1.....`−1)

r(1),...,r(`−1) and parameters

µ
(1←`)
r(1),...,r(`) =(A

(1←`−1)

r(1),...,r(`−1))
Tµ

(`)

r(`) (centroids) (16)

rad
(1←`)
r(1),...,r(`) =‖µ(1←`)

r(1),...,r(`)‖2 + 2〈µ(`)

r(`) , B
(1→`−1)

r(1),...,r(`−1)〉+ 2〈1, B(`)

r(`)〉 (radii), (17)

∀r(i) ∈ {1, . . . , R}D(i)

with B(1→`−1) =
∑`−1
`′=1

(∏`′

i=`−1A
(i)

r(i)

)
B

(`′)

r(`′) forming Ω(1,...,`).

The subdivision recursion provides a direct result on the shape of the DN input space partition regions.

Corollary 3. For any number of MASO layers L ≥ 1, the PD cells of the DN input space partition
are convex polytopes.

4.2 Centroid and Radius Computation
While in general a DN has a tremendous number of PD cells, the DN’s forward inference calculation
locates the cell containing an input signal x with a computational complexity that is only logarithmic
in the number of regions. (See Appendix A.3 for a proof and additional discussion.) We now produce
a closed-form formula for the radius and centroid of that cell.

Consider the cell of the PD induced by layers 1 through ` of a DN that contains a data point x of
interest. This cell is described by the code r(1)(x), . . . , r(`)(x) that we will simplify here in an abuse
of notation so simply x. Denote the Jacobian operator as J, and the vector of ones by 1, the centroid
and radius of the cell are given by

µ(1←`)
x = (Jxf

(1→`))T1, (18)
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(1,2)
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Figure 3: Centroids of the PD regions containing an input horse image x computed via (18) for a
LargeConv network (top) and a ResNet (bottom). (See Fig. 11 for results with a SmallConv network.) The
input belongs to the PD cell ω(1,...,`)

x for each successively refined PD subdivision of each layer Ω(1,...,`).
At each layer of the subdivision, the region has an associated centroid µ(1,...,`)

x (depicted here) and radius
(not depicted). As the depth ` increases, the centroids diverge from horse-like images. This is because the
radii begin to dominate the centroids, pushing the centroids outside the PD cell containing x. Training
accelerates this domineering effect.

rad(1←`)
x = ‖µ(1←`)

x ‖2 + 2
〈

1, B(`)
x

〉
+ 2

〈
f (1→`)(x)−A(1→`−1)

x x,

D(`)∑
k=1

[A(`)
x ]k,.

〉
(19)

with A
(1→`−1)
x =

(
∇xf

(1→`−1)
1 , . . . ,∇xf

(1→`−1)
D(`)

)T
, and where we recall that µ

(`)
x =∑D(`)

k=1 [A
(`)
x ]k,., B

(1→`−1)
x = f (1→`)(x)− A(1→`−1)

x x from Theorem 3 and f (1→`)
k is the kth unit

of the layer 1 to ` mapping. Note how the centroids and biases of the current layer are mapped back
to the input space X(0) via a projection onto the tangent hyperplane defined by the basis A(1→`−1)

x .

Conveniently, the centroids (18) can be computed via an efficient backpropagation pass through the
DN, which is typically available because it is integral to DN learning. Moreover, (18) corresponds
to the element-wise summation of the saliency maps [SVZ13, ZF14] from all of the layer units.3
Figure 3 visualizes the centroids of the cell containing a particular input signal for a LargeConv and
ResNet DN trained on the CIFAR10 dataset (see Appendix C for details on the models plus additional
figures).

4.3 Distance to the Nearest PD Cell Boundary
In Appendix D we derive the Euclidean distance from a data point x to the nearest boundary of its
PD cell (a point from ∂Ω)

min
u∈∂Ω

‖x− u‖ = min
`=1,...,L

min
k=1,...,D(`)

|(z(`)
k ◦ · · · ◦ z(1))(x)|

‖∇x(z
(`)
k ◦ · · · ◦ z(1))(x)‖

. (20)

Fig. 4 (and 6 in the Appendix) plots the distributions of the log distances from the training points in
the CIFAR10 training set to their nearest region boundary the input space partition as a function of
layer ` and at different stages of learning. We see that training increases the number of data points
that lie close to their nearest boundary. We see from these figures that while a network with fully
connected layers (MLP) refines its partition by introducing cuts close to the training points at each
layer, the SmallCNN does not reduce the shortest distance at deeper layers.

A further exploration is carried out in Appendix A.4, where Table 1 summarizes the performance of
the centroids, when used as centroids of a VD, to recover inside their region, the same input as the
one that originally produced the centroid.

3The saliency maps were linked to the filters in a matched filterbank in [BB18a, BB18b].
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Figure 4: Empirical distributions of the log distances from the training points of the CIFAR10 dataset to the
nearest PD cell boundary as calculated by (20) for the various layers of a SmallCNN (left) and MLP (right).
Blue: Training set. Red: Test set. On top is the evolution through layers at the end of the training, on bottom is
the evolution of the last layer, through the epochs. The distances decrease with ` due to PD subdivision which
reduces the volume of the cells as the subdivision process occurs. The distances are also much smaller for the
CNN desptie having the same number of units for the MLP as the number of filters and translations for the
convolutional layers. This demonstrates how the subdivision process of the convolutional layer is much more
performance at refining the DN input space partitioning around the data for image data.

5 Geometry of the Deep Network Decision Boundary
We now study the edges of the polytopes that define the PD cells’ boundaries. We demonstrate how
a single unit at layer ` defines multiple cell boundaries in the input space and use this finding to
derive an analytical formula for the DN decision boundary that would be used in a classification task.
Without loss of generality, we focus in this section on piecewise nonlinearities with R = 2, such as
ReLU, leaky-ReLU, and absolute value.

5.1 Partition Boundaries and Edges

In the case of R = 2 nonlinearities, the polytope P(`)
k of unit z(`)

k contains a single edge, we consider
here nonlinearities that can be expressed as a leaky-ReLU with leakiness η 6= 0. We define this
edge as the intersection of the faces of the polytope. For instance, in the case of leaky-ReLU, the
polytope contains two faces that characterize the two regions produced by a single leaky-ReLU unit.
We formally define the edge of a polytope as follows.

Definition 3. The edges of the polytope P
(`)
k can be expressed in any space X(`′), `′ < ` (and in

particular the input space X(0)) as

edgeX(`′)(k, `) = {x ∈ X(`′) : E
(`)
k,2(z(`′→`−1)(x)) = 0}, (21)

with z(`′→`−1) = z(`−1) ◦ · · · ◦ z(`′), E(`)
k,2 from (3), and where ◦ denotes the composition operator.

In the same way that the polytopes P(1←`)
r1,...,r(`−1) could be expressed in X(0)×RD(`) and then mapped

to the DN input space (recall Section 4.1), these edges defined in X(`−1) can be expressed in the DN
input space X(0). The projection of the edges into the DN input space will constitute the partition
boundaries. Defining the polynomial

Pol(x) =

L∏
`=1

D(`)∏
k=1

(z
(`)
k ◦ z

(`−1) ◦ · · · ◦ z(1))(x), (22)

we obtain the following result where the boundaries of Ω(1,...,`) from Theorem 3 can be expressed in
term of the polytope edges and roots of the polynomial.

8



Theorem 4. The polynomial (22) is of order
∏L
`=1D(`), and its roots correspond to the partition

boundaries:

∂Ω(1,...,`) = {x ∈ X(0) : Pol(x) = 0} = ∪``′=1 ∪
D(`′)
k=1 edgeX(0)(k, `). (23)

The root order defines the dimensionality of the root (boundary, corner, etc.).

5.2 Decision Boundary Curvature
The final DN layer introduces a last subdivision of the partition. For brevity, we focus on a binary
classification problem; in this case, D(L) = 1 and a single last subdivision occurs, leading to the
class prediction being y = 1

z
(L)
1 (x)>τ

for some threshold τ , this last layer can thus be cast as a
MASO with a leaky-ReLU type nonlinearity with proper bias, and setting τ = 0. That is, the DN
prediction is unchanged by this last nonlinearity, and the change of sign is the change of class is the
decision boundary.

Proposition 3. The decision boundary of a DN with L layers is the edge of the last layer polytope
P(L) expressed in the input space X(0) from Definition 3 as

DecisionBoundary = {x ∈ X(0) : f(x) = 0} = edgeX(0)(1, L), (24)

where edgeX(0)(1, L) denotes the edge of unit 1 of layer L expressed in the input space X(0).

To provide insights into this result, consider a 3-layer DN denoted as f and a binary classification
task; we have

DecisionBoundary = ∪r(2) ∪r(1) {x ∈ X(0) : 〈αr(2),r(1) ,x〉+ βr(2),r(1) = 0} ∩ ω(1,2)

r(1),r(2) , (25)

with αr(1),r(2) = (A
(2)

r(2)A
(1)

r(1))
T [A(3)]1,1,· and βr(1),r(2) = [A(3)]T1,1,·A

(2)

r(2)B
(1)

r(1) + [B(3)]1,1.4 The
distribution of αr(1),r(2) characterizes the structure of the decision boundary and thus highlights the
interplay between the layer parameters, layer topology, and the decision boundary. For example,
in Fig. 2 the red line demonstrates how the weights characterize the curvature and cut positions of
the decision boundary. We provide examples highlighting the impact on the angles of change in the
architecture of the DN in Appendix A.5.

We provide a direct application of the above finding by providing a curvature characterization of the
decision boundary. First, we propose the following result stating that the form of α and β from (25)
from a region to a neighbouring one alters only a single unit code at a some layer.

Lemma 3. Upon reaching a region boundary, any edge as defined in Definition 3 must continue into
a neighbouring region.

This follows directly from continuity of the involved operator and enables us to study its curvature
by comparing the edges of adjacent regions. In fact adjacent region edges connect at the region
boundary by continuity, however their angle might differ, this angle defines the curviness of the
decision boundary, which is defined as the collection of all the edges introduces by the last layer.

Theorem 5. The decision boundary curvature/angle between two adjacent regions5 r and r′ is given
by the following dihedral angle [KB38] between neighbouring α parameters as

cos(θ(r, r′)) =
|〈αr, αr′〉|
‖αr‖‖αr′‖

. (26)
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