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Abstract

Boosting variational inference (BVI) approximates an intractable probability den-
sity by iteratively building up a mixture of simple component distributions one at a
time, using techniques from sparse convex optimization to provide both compu-
tational scalability and approximation error guarantees. But the guarantees have
strong conditions that do not often hold in practice, resulting in degenerate com-
ponent optimization problems; and we show that the ad-hoc regularization used
to prevent degeneracy in practice can cause BVI to fail in unintuitive ways. We
thus develop universal boosting variational inference (UBVI), a BVI scheme that
exploits the simple geometry of probability densities under the Hellinger metric to
prevent the degeneracy of other gradient-based BVI methods, avoid difficult joint
optimizations of both component and weight, and simplify fully-corrective weight
optimizations. We show that for any target density and any mixture component
family, the output of UBVI converges to the best possible approximation in the mix-
ture family, even when the mixture family is misspecified. We develop a scalable
implementation based on exponential family mixture components and standard
stochastic optimization techniques. Finally, we discuss statistical benefits of the
Hellinger distance as a variational objective through bounds on posterior probabil-
ity, moment, and importance sampling errors. Experiments on multiple datasets
and models show that UBVI provides reliable, accurate posterior approximations.

1 Introduction

Bayesian statistical models provide a powerful framework for learning from data, with the ability to
encode complex hierarchical dependence structures and prior domain expertise, as well as coherently
capture uncertainty in latent parameters. The two predominant methods for Bayesian inference
are Markov chain Monte Carlo (MCMC) [, 2]—which obtains approximate posterior samples by
simulating a Markov chain—and variational inference (VI) [3| l4]—which obtains an approximate
distribution by minimizing some divergence to the posterior within a tractable family. The key
strengths of MCMC are its generality and the ability to perform a computation-quality tradeoff: one
can obtain a higher quality approximation by simulating the chain for a longer period [5, Theorem
4 & Fact 5]. However, the resulting Monte Carlo estimators have an unknown bias or random
computation time [6], and statistical distances between the discrete sample posterior approximation
and a diffuse true posterior are vacuous, ill-defined, or hard to bound without restrictive assumptions
or a choice of kernel [7H9]. Designing correct MCMC schemes in the large-scale data setting
is also a challenging task [10H12]. VI, on the other hand, is both computationally scalable and
widely applicable due to advances from stochastic optimization and automatic differentiation [13-
17]. However, the major disadvantage of the approach—and the fundamental reason that MCMC
remains the preferred method in statistics—is that the variational family typically does not contain the
posterior, fundamentally limiting the achievable approximation quality. And despite recent results in
the asymptotic theory of variational methods [18H22], it is difficult to assess the effect of the chosen
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family on the approximation for finite data; a poor choice can result in severe underestimation of
posterior uncertainty [23| Ch. 21].

Boosting variational inference (BVI) [24H26]] is an exciting new approach that addresses this funda-
mental limitation by using a nonparametric mixture variational family. By adding and reweighting
only a single mixture component at a time, the approximation may be iteratively refined, achieving
the computation/quality tradeoff of MCMC and the scalability of VI. Theoretical guarantees on the
convergence rate of Kullback-Leibler (KL) divergence [24} 27, 28] are much stronger than those
available for standard Monte Carlo, which degrade as the number of estimands increases, enabling
the practitioner to confidently reuse the same approximation for multiple tasks. However, the bounds
require the KL divergence to be sufficiently smooth over the class of mixtures—an assumption that
does not hold for many standard mixture families, e.g. Gaussians, resulting in a degenerate procedure
in practice. To overcome this, an ad-hoc entropy regularization is typically added to each component
optimization; but this regularization invalidates convergence guarantees, and—depending on the
regularization weight—sometimes does not actually prevent degeneracy.

In this paper, we develop universal boosting variational inference (UBVI), a variational scheme
based on the Hellinger distance rather than the KL divergence. The primary advantage of using
the Hellinger distance is that it endows the space of probability densities with a particularly simple
unit-spherical geometry in a Hilbert space. We exploit this geometry to prevent the degeneracy of
other gradient-based BVI methods, avoid difficult joint optimizations of both component and weight,
simplify fully-corrective weight optimizations, and provide a procedure in which the normalization
constant of f does not need to be known, a crucial property in most VI settings. It also leads to the
universality of UBVI: we show that for any target density and any mixture component family, the
output of UBVI converges to the best possible approximation in the mixture family, even when the
mixture family is misspecified. We develop a scalable implementation based on exponential family
mixture components and standard stochastic optimization techniques. Finally, we discuss other
statistical benefits of the Hellinger distance as a variational objective through bounds on posterior
probability, moment, and importance sampling errors. Experiments on multiple datasets and models
show that UBVI provides reliable, accurate posterior approximations.

2 Background: variational inference and boosting

Variational inference, in its most general form, involves approximating a probability density p by
minimizing some divergence D (-||-) from ¢ to p over densities & in a family O,

g =argminD (¢||p) .
£eQ

Past work has almost exclusively involved parametric families Q, such as mean-field exponential
families [4], finite mixtures [29431]], normalizing flows [32], and neural nets [16]. The issue with
these families is that typically mingeo D (€||p) > 0—meaning the practitioner cannot achieve
arbitrary approximation quality with more computational effort—and a priori, there is no way to tell
how poor the best approximation is. To address this, boosting variational inference (BVI) [24H26]
proposes the use of the nonparametric family of all finite mixtures of a component density family C,

K
Q =conv(C := {Zwkfk KeNweAK"! VkeNg, e C} .
k=1
Given a judicious choice of C, we have that infec o D (£||p) = 0; in other words, we can approximate
any continuous density p with arbitrarily low divergence [33]. As optimizing directly over the
nonparametric Q is intractable, BVI instead adds one component at a time to iteratively refine the
approximation. There are two general formulations of BVI; Miller et al. [26] propose minimizing KL
divergence over both the weight and component simultaneously,
n ) T
qn = ankgkr §n+17w = argmin DKL (pg + (1 - p)Qan) Wn+1 = [(1 - w)wn w} ;
k=1 €eC,pe[0,1]

while Guo et al. and Wang [24] 25]] argue that optimizing both simultaneously is too difficult, and use
a gradient boosting [34] formulation instead,

n+1
s = argmin (€ YDy, ()l ) wosr = argmin Dy | Sowntallp ).
gec p€0,1] k=1

w:[(l—p)wn p]vT
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Figure 1: : Greedy component selection, with target f, current iterate g,,, candidate components #,
optimal component ¢y, 1, the closest point g* to f on the g, — ¢,41 geodesic, and arrows for initial
geodesic directions. The quality of g,,11 is determined by the distance from f to g*, or equivalently,
by the alignment of the initial directions g,, — gn41 and g, — f. (Ib): BVI can fail even when p is
in the mixture family. Here p = $A/(0,1) + 5N/ (25,5), and UBVI finds the correct mixture in 2
iterations. BVI (with regularization weight in {1, 10, 30}) does not converge. For example, when
the regularization weight is 1 the first component will have variance < 5, and the second component
optimization diverges since the target A/(25, 5) component has a heavier tail. Upon reweighting the
second component is removed, and the approximation will never improve.

Both algorithms attain Dy (¢n||p) = O(1/N ) the former by appealing to results from convex
functional analysis [35 Theorem II.1], and the latter by viewing BVI as functional Frank-Wolfe
optimization [27}[36] [37]. This requires that D, (¢||p) is strongly smooth or has bounded curvature
over q € Q, for which it is sufficient that densities in Q are bounded away from 0, bounded above,
and have compact support [27]], or have a bounded parameter space [28]. However, these assumptions
do not hold in practice for many simple (and common) cases, e.g., where C is the class of multivariate
normal distributions. Indeed, gradient boosting-based BVI methods all require some ad-hoc entropy
regularization in the component optimizations to avoid degeneracy [24, 25} 28]]. In particular, given a
sequence of regularization weights r,, > 0, BVI solves the following component optimization [28]]:

. §mtigy
Snt1 = ar%mln falogT . (1)

eC

This addition of regularization has an adverse effect on performance in practice as demonstrated in
Fig.[Ib] and can lead to unintuitive behaviour and nonconvergence—even when p € Q (Proposition|[I))
or when the distributions in C have lighter tails than p (Proposition 2).

Proposition 1. Suppose C is the set of univariate Gaussians with mean 0 parametrized by variance,
let p = N(0,1), and let the initial approximation be q; = N(0,72). Then BVI in Eq. (1)) with
regularization ro > 0 returns a degenerate next component &, if 72 < 1, and iterates infinitely
without improving the approximation if 72 > 1 and ro > 72 — 1.

Proposition 2. Suppose C is the set of univariate Gaussians with mean 0 parametrized by variance,
and let p = Cauchy (0, 1). Then BVI in Eq. with regularization r1 > 0 returns a degenerate first
component &1 ifr1 > 2.

3 Universal boosting variational inference (UBVI)

3.1 Algorithm and convergence guarantee

To design a BVI procedure without the need for ad-hoc regularization, we use a variational objective
based on the Hellinger distance, which for any probability space (X, X, 1) and densities p, ¢ is

Di (p.q) = %/ (\/M* \/ﬁfﬁt(dx)

"'We assume throughout that nonconvex optimization problems can be solved reliably.




Algorithm 1 The universal boosting variational inference (UBVI) algorithm.

1: procedure UBVI(p, H, N)
2 &

3: go <0

4: forn=1,...,N do

> Find the next component to add to the approximation using Eq. (3)

5 gn < argmaxy cq <.f - <f7 g’ﬂ*1>g’ﬂ*15 h)/\/ 1- <h’7g’ﬂ*1>2
> Compute pairwise normalizations using Eq. (2)

6: fori=1,...,ndo
7: Zn,i = Zi,n — <gnygz>
8: end for
> Update weights using Eq.
9: d:(<f7g1>7"'?<f7g”>)T
10: B = argmin,cgn 500" 270+ 20" Z71d
11: ()\n’h”.’)\n,n):w

V(B+DT Z=1(B+4d)

> Update boosting approximation

12: Gn < 2 i 1 Anigi
13: end for
14: return g = gjz\,

15: end procedure

Our general approach relies on two facts about the Hellinger distance. First, the metric Dy (-, -)
endows the set of p-densities with a simple geometry corresponding to the nonnegative functions
on the unit sphere in L?(y). In particular, if f, g € L*(u) satisfy || f||2 = |lgll2 = 1, f,g > 0, then
p = f? and ¢ = g2 are probability densities and

1 2
Dt (p,q) = 5 1 = gll>-

One can thus perform Hellinger distance boosting by iteratively finding components that minimize
geodesic distance to f on the unit sphere in L?(p). Like the Miller et al. approach [26], the boosting
step directly minimizes a statistical distance, leading to a nondegenerate method; but like the Guo et
al. and Wang approach [24} 25]], this avoids the joint optimization of both component and weight; see

Sectionfor details. Second, a conic combination g = ZZN:O Xigi» Ai >0, |lgill2=1,¢9; > 0in
L?(u) satisfying ||g||2 = 1 corresponds to the mixture model density

N

¢=9*= ”zz:l ZijNiAj (%ij) Zij = {(gi, g;) > 0. (2)
Therefore, if we can find a conic combination satisfying ||f — g|l2 < V2% for p = f2, we can
guarantee that the corresponding mixture density ¢ satisfies Dy (p, ¢) < e. The mixture will be built
from a family H C L?(u) of component functions for which Vh € H, ||h||z = 1 and b > 0. We
assume that the target function f € L?(p), ||fll2 = 1, f > 0 is known up to proportionality. We
also assume that f is not orthogonal to span # for expositional brevity, although the algorithms and
theoretical results presented here apply equally well in this case. We make no other assumptions; in
particular, we do not assume f is in cl span H.

The universal boosting variational inference (UBVI) procedure is shown in Algorithm|I] In each
iteration, the algorithm finds a new mixture component from H (line 5; see Section and Fig. [Ta).
Once the new component is found, the algorithm solves a convex quadratic optimization problem
to update the weights (lines 9—11). The primary requirement to run Algorithm |1|is the ability to
compute or estimate (h, ) and (h, h') for h, h’ € H. For this purpose we employ an exponential
component family # such that Z;; is available in closed-form, and use samples from h? to obtain
estimates of (h, f); see Appendix for further implementation details.

The major benefit of UB VI is that it comes with a computation/quality tradeoff akin to MCMC: for any
target p and component family #, (1) there is a unique mixture p = f 2 minimizing Dy (P, p) over the
closure of finite mixtures cl Q; and (2) the output ¢ of UBVI(p, H, N) satisfies Dy; (¢, p) = O(1/N)
with a dimension-independent constant. No matter how coarse the family # is, the output of UBVI
will converge to the best possible mixture approximation. Theorem [3| provides the precise result.



Theorem 3. For any density p there is a unique density p = f2 satisfying p =
argmingc. o Dy (&,p). If each component optimization Eq. is solved with a relative sub-

optimality of at most (1 — 0), then the variational mixture approximation q returned by UBVI(p, H,
N) satisfies

J1
1+ (2202 7(N 1)

9 N 2
Dy (5,9)° < Ji=1=(fig1) €[0.1) 7:=Eq @) <.

The proof of Theorem [3]may be found in Appendix and consists of three primary steps. First,
Lemma |§I guarantees the existence and uniqueness of the convergence target f under possible

misspecification of the component family . Then the difficulty of approximating f with conic
combinations of functions in H is captured by the basis pursuit denoising problem [38]]

= inf 1— -1 h; t. F_ h; <z, v" h; > 0. 3

Lemma guarantees that 7 is finite, and in particular 7 < ! 1:/:%1, which can be estimated in
- 1

practice using Eq. (9). Finally, Lemma|TT]develops an objective function recursion, which is then
solved to yield Theorem[3] Although UBVI and Theorem [3]is reminiscent of past work on greedy
approximation in a Hilbert space [34} 39146, it provides the crucial advantage that the greedy steps
do not require knowledge of the normalization of p. UBVI is inspired by a previous greedy method
[46], but provides guarantees with an arbitrary, potentially misspecified infinite dictionary in a Hilbert
space, and uses quadratic optimization to perform weight updates. Note that both the theoretical and
practical cost of UBVI is dominated by finding the next component (line 5), which is a nonconvex
optimization problem. The other expensive step is inverting Z; however, incremental methods using
block matrix inversion [47, p. 46] reduce the cost at iteration n to O(n?) and overall cost to O(N?3),
which is not a concern for practical mixtures with < 10% components. The weight optimization (line
10) is a nonnegative least squares problem, which can be solved efficiently [48, Ch. 23].

3.2 Greedy boosting along density manifold geodesics

This section provides the technical derivation of UBVI (Algorithm |1)) by expoiting the geometry
of square-root densities under the Hellinger metric. Let the conic combination in L?(y) after
initialization followed by N — 1 steps of greedy construction be denoted

n
Gn = Z)\nzgzv HgnH2 = ]-7
=1

where \,,; > 0 is the weight for component ¢ at step n, and g; is the component added at step ¢. To
find the next component, we minimize the distance between g,,+1 and f over choices of h € H and
position z € [0, 1] along the g, — h geodesic

||h - <h7gn> gn||2
h — <h7 §n> Jn

argmax z{ f, —
heH,z€[0,1] < ||h7<h,gn>gn”2

arg min
heH,z€(0,1]

4)

go=20 Gnt1, 2"

2

) VI ().

Noting that h — (h, g,,) gy, is orthogonal to g,,, the second term does not depend on A, and x > 0, we
avoid optimizing the weight and component simultaneously and find that

< f_<fagn>gn h_<h7gn>gn > <f_<fagn>gnah>

e , e = arg max . (5
”f - <f7 gn> gn||2 ”h - <h>gn> gn||2 heH 1— <h7§n>2

gn+41 = argimax
heH

Intuitively, Eq. attempts to maximize alignment of g,,1 with the residual f — (f, g,) g (the
numerator) resulting in a ring of possible solutions, and among these, Eq. (5) minimizes alignment

“Note that the arg max may not be unique, and when # is infinite it may not exist; Theorem still holds
and UBVI works as intended in this case. For simplicity, we use (...) = arg max(...) throughout.
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Figure 2: Forward KL divergence—which controls worst-case downstream importance sampling
error—and importance-sampling-based covariance estimation error on a task of approximating

N(0, AT A), A;; "= N(0,1) with N'(0,0%I) by minimizing Hellinger, forward KL, and reverse
KL, plotted as a function of condition number x(A% A). Minimizing Hellinger distance provides
significantly lower forward KL divergence and estimation error than minimizing reverse KL.

with the current iterate g,, (the denominator). The first form in Eq. @) provides an alternative intuition:
gn+1 achieves the maximal alignment of the initial geodesic directions g,, — f and g, — h on the
sphere. See Fig. @ for a depiction. After selecting the next component g,, 1, one option to obtain
Gn-+1 is to use the optimal weighting 2* from Eq. [@); in practice, however, it is typically the case that
solving Eq. (5) is expensive enough that finding the optimal set of coefficients for {gi, ..., gn+1} is
worthwhile. This is accomplished by maximizing alignment with f subject to a nonnegativity and
unit-norm constraint:

n+1
(A41)1s -+ s At 1)(nt1)) = arg m+alx <f, Z xig,-> st. x>0, 27Zz<1, (6)
zER™ i=1

where Z € RNTIXN+1 i the matrix with entries Z;; from Eq. . Since projection onto the feasible
set of Eq. (6) may be difficult, the problem may instead be solved using the dual via

(Am1)1 A(nt1)(nt1)) = e )
n sty n n - o1 .
: VB+ATZT(B+d) o
d= (<f7 gl>7~ HEE <f>gn+1>) B = ba]ég-Fm%)I;obTZ_lb—i_ 2bTZ_1d.
e n 1) >

Eq. (7) is a nonnegative linear least-squares problem—for which very efficient algorithms are available
[48., Ch. 23]—in contrast to prior variational boosting methods, where a fully-corrective weight update
is a general constrained convex optimization problem. Note that, crucially, none of the above steps
rely on knowledge of the normalization constant of f.

4 Hellinger distance as a variational objective

While the Hellinger distance has most frequently been applied in asymptotic analyses (e.g., [49]),
it has seen recent use as a variational objective [50] and possesses a number of particularly useful
properties that make it a natural fit for this purpose. First, Dy (-, -) applies to any arbitrary pair
of densities, unlike Dy, (p||¢), which requires that p < ¢. Minimizing Dy (-, ) also implicitly
minimizes error in posterior probabilities and moments—two quantities of primary importance to
practitioners—via its control on total variation and ¢-Wasserstein by Propositions [d and [5} Note
that the upper bound in Proposition is typically tighter than that provided by the usual Dy (¢||p)
variational objective via Pinsker’s inequality (and at the very least is always in [0, 1]), and the bound
in Proposition [5|shows that convergence in Dy (-, -) implies convergence in up to ¢ moments [51}
Theorem 6.9] under relatively weak conditions.

Proposition 4 (e.g. [52, p. 61]). The Hellinger distance bounds total variation via

1
D (p,q) < Dy (p,q) == 5P —dll < Dr (p.g) /2 - D% (p.q) .



Proposition 5. Suppose X is a Polish space with metric d(-,-), £ > 1, and p, q are densities with
respect to a common measure 1. Then for any x,
: Y
Wi(p. q) < 2Dy (p,q)”" (E [d(wo, X)*'] +E [d(0,Y)*]) "™
where Y ~ p(y)u(dy) and X ~ q(z)u(dz). In particular, if densities (qn)nen and p have
uniformly bounded 20™ moments, Dy; (p,qn) — 0 = Wy(p,qn) — 0 as N — oo.

Once a variational approximation g is obtained, it will typically be used to estimate expectations of
some function of interest ¢(z) € L?(u1) via Monte Carlo. Unless q is trusted entirely, this involves
importance sampling—using I,,(¢) or J,,(¢) in Eq. (8) depending on whether the normalization of p
is known—to account for the error in ¢ compared with the target distribution p [53]],

L o p(X) 1,(9)
I, = — X; In = X ~ dz). 8

(@)= 5 3 eyl =70 a(w)p(dz). ®)
Recent work has shown that the error of importance sampling is controlled by the intractable forward
KL-divergence Dy, (p||¢) [54]. This is where the Hellinger distance shines; Proposition@ shows
that it penalizes both positive and negative values of log p(z)/q(x) and thus provides moderate
control on Dy, (p||g)—unlike Dy (g||p), which only penalizes negative values. See Fig. [2|for a
demonstration of this effect on the classical correlated Gaussian example [23, Ch. 21]. While the
takeaway from this setup is typically that minimizing Dy, (¢||p) may cause severe underestimation
of variance, a reasonable practitioner should attempt to use importance sampling to correct for this
anyway. But Fig. [2[shows that minimizing Dy (¢||p) doesn’t minimize Dy (p||q) well, leading to
poor estimates from importance sampling. Even though minimizing D (p, ¢) also underestimates
variance, it provides enough control on Dy, (p||¢) so that importance sampling can correct the errors.
Direct bounds on the error of importance sampling estimates are also provided in Proposition [7}

Proposition 6. Define R := log 2 EX§ where X ~ p(x)u(dz). Then

g (LHLR<OR 2
1+R

Dy, (p||Q)
T2 /1+EA[R>0(1+R)?]

Proposition 7. Define o := (N*1/4 +2+/Dy (p, q) )2. Then the importance sampling error with
known normalization is bounded by

E[[1n(¢) = I(@)l] < [[VP'dll20,

and with unknown normalization by
V>0 P(Ju(@) — 1(9)] > VP ellzt) < (1+47VI+ 1) a

Next, the Hellinger distance between densities ¢, p can be estimated with high relative accuracy given
samples from g, enabling the use of the above bounds in practice. This involves computing either

—

D% (p, q) or D (p, q) below, depending on whether the normalization of p is known. The expected
error of both of these estimates relative to Dy (p, ¢) is bounded via Proposition I

Nzn 1y (X71 “d
D2 (p, q) _1_72 =1— qX yu(dz).
W)
N Zn 1 q(X )

Proposition 8. The mean absolute difference between the Hellinger squared estimates is

_ 2
HD2 (p.q) — Dy (p, )2H < Du (P 9) jﬁDH(P»Q)

EHD%(I?,) Dy (p,q 2H<\F(1+F )DH(paQ)'

It is worth pointing out that although the above statistical properties of the Hellinger distance make
it well-suited as a variational objective, it does pose computational issues during optimization.
In particular, to avoid numerically unstable gradient estimation, one must transform Hellinger-
based objectives such as Eq. (). This typically produces biased and occasionally higher-variance
Monte Carlo gradient estimates than the corresponding KL gradient estimates. We detail these
transformations and other computational considerations in Appendix

(€))
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Figure 3: Results on the Cauchy and banana distributions; all subfigures use the legend from Fig.
(Figs.[3aand [3d): Density approximation with 30 components for Cauchy (3a) and banana (3d). BVI
has degenerate component optimizations after the first, while UBVI and BVI+ are able to refine the
approximation. (Figs.[3b|and[3¢): Log density approximations for Cauchy (3b) and banana marginals
(3e)). UBVI provides more accurate approximation of distribution tails than the KL-based BVI(+)
algorithms. (Figs.[3c|and[3f): The forward KL divergence vs. the number of boosting components
and computation time. UBVI consistently improves its approximation as more components are added,
while the KL-based BVI(+) methods improve either slowly or not at all due to degeneracy. Solid
lines / dots indicate median, and dashed lines / whiskers indicate 25" and 75" percentile.

5 Experiments

In this section, we compare UBVI, KL divergence boosting variational inference (BVI) [28]], BVI
with an ad-hoc stabilization in which g,, in Eq. (1) is replaced by ¢,, +10~2 to help prevent degeneracy
(BVI+), and standard V1. For all experiments, we used a regularization schedule of v, = 1//n’
for BVI(+) in Eq. (I). We used the multivariate Gaussian family for 7 parametrized by mean
and log-transformed diagonal covariance matrix. We used 10,000 iterations of ADAM [535] for
optimization, with decaying step size 1/4/1 + ¢ and Monte Carlo gradients based on 1,000 samples.
Fully-corrective weight optimization was conducted via simplex-projected SGD for BVI(+) and
nonnegative least squares for UBVI. Monte Carlo estimates of {f, g,,) in UBVI were based on 10,000
samples. Each component optimization was initialized from the best of 10,000 trials of sampling
a component (with mean m and covariance X) from the current mixture, sampling the initialized
component mean from N (m, 16X), and setting the initialized component covariance to exp(Z)%,
Z ~ N(0,1). Each experiment was run 20 times with an Intel i7 8700K processor and 32GB of
memory. Code is available at www.github.com/trevorcampbell/ubvi.

5.1 Cauchy and banana distributions

Fig. 3] shows the results of running UBVI, BVI, and BVI+ for 30 boosting iterations on the standard
univariate Cauchy distribution and the banana distribution [56] with curvature b = 0.1. These
distributions were selected for their heavy tails and complex structure (shown in Figs. [3band [3¢),
two features that standard variational inference does not often address but boosting methods should
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Figure 4: Results from Bayesian logistic regression posterior inference on the synthetic , chemical
(@b), and phishing datasets, showing the energy distance [57] to the posterior (via NUTS [58]])
vs. the number of components and CPU time. Energy distance and time are normalized by the VI
median. Solid lines / dots indicate median, and dashed lines / whiskers indicate 25t / 751 percentile.

handle. However, BVI particularly struggles with heavy-tailed distributions, where its component
optimization objective after the first is degenerate. BVI+ is able to refine its approximation, but still
cannot capture heavy tails well, leading to large forward KL divergence (which controls downstream
importance sampling error). We also found that the behaviour of BVI(+) is very sensitive to the choice
of regularization tuning schedule r,,, and is difficult to tune well. UBVI, in contrast, approximates
both heavy-tailed and complex distributions well with few components, and involves no tuning effort
beyond the component optimization step size.

5.2 Logistic regression with a heavy-tailed prior

Fig. E| shows the results of running 10 boosting iterations of UBVI, BVI+, and standard VI for
posterior inference in Bayesian logistic regression. We used a multivariate 73 (u, X3) prior, where
in each trial, the prior parameters were set via 4 = 0 and ¥ = AT A for A;; Y (0,1). We ran
this experiment on a 2-dimensional synthetic dataset generated from the model, a 10-dimensional
chemical reactivity dataset, and a 10-dimensional phishing websites dataset, each with 20 subsampled
datapointsﬂ The small dataset size and heavy-tailed prior were chosen to create a complex posterior
structure better-suited to evaluating boosting variational methods. The results in Fig. ] are similar to
those in the synthetic test from Section[5.1} UBVI is able to refine its posterior approximation as it
adds components without tuning effort, while the KL-based BVI+ method is difficult to tune well and
does not reliably provide better posterior approximations than standard VI. BVI (no stabilization) is
not shown, as its component optimizations after the first are degenerate and it reduces to standard VI.

6 Conclusion

This paper developed universal boosting variational inference (UBVI). UBVI optimizes the Hellinger
metric, avoiding the degeneracy, tuning, and difficult joint component/weight optimizations of other
gradient-based BVI methods, while simplifying fully-corrective weight optimizations. Theoretical
guarantees on the convergence of Hellinger distance provide an MCMC-like computation/quality
tradeoff, and experimental results demonstrate the advantages over previous variational methods.
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