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Abstract

Measurement of spatial fields is of interest in environment monitoring. Recently
mobile sensing has been proposed for spatial field reconstruction, which requires a
smaller number of sensors when compared to the traditional paradigm of sensing
with static sensors. A challenge in mobile sensing is to overcome the location
uncertainty of its sensors. While GPS or other localization methods can reduce
this uncertainty, we address a more fundamental question: can a location-unaware
mobile sensor, recording samples on a directed non-uniform random walk, learn
the statistical distribution (as a function of space) of an underlying random process
(spatial field)? The answer is in the affirmative for Lipschitz continuous fields,
where the accuracy of our distribution-learning method increases with the number
of observed field samples (sampling rate). To validate our distribution-learning
method, we have created a dataset with 43 experimental trials by measuring sound-
level along a fixed path using a location-unaware mobile sound-level meter.

1 Introduction

Learning the statistical distribution of physical fields from observed values is a fundamental task in
applications like environmental monitoring and pollution control. Consider a spatio-temporal process
X (s,t) along a path, such as in a residential neighborhood or a city boulevard, where s denotes the
location and ¢ is the time. It is of interest to the learn the statistical distribution of X (s, ) at any point
s along the path for environment monitoring. Motivated by this application, the distribution-learning
of a Lipschitz continuous spatial field at all locations from spatial samples of its realizations is studied.

In classical environment monitoring done by agencies such as the EPA (http://epa.gov), the sensing
locations are assumed to be known. This is especially true when there is a dedicated fixed sensing
location with associated equipment. Recently, mobile-sensing has been proposed as a way to increase
the spatial sampling density and reduce the cost of hardware [Unnikrishnan and Vetterli| [2013]]. A
key challenge in mobile-sensing is to ascertain the exact location of sampling and it is of interest
to work with location-unaware sensing methods [Kumar| [2017]]. While it is possible to use GPS or
wireless localization methods to estimate the location, it has energy and hardware overhead |Che
et al. [2009]],|[Hu and Evans|[2004]. We have a more fundamental question: can recently discovered
location-unaware sensing methods be used to learn the statistical distribution of X (s, t) as a function
of s?7 The answer is yes, and analytical and experimental results along this theme will be presented.

Let X (s,t) be a spatial field where s € P denotes the location and ¢ € R denotes time. The path P
is known, and it can be an open path or a loop. The set P represents the finite path over which the
distribution of X (s, t) has to be learned. It is assumed that | X (s, t)| < b everywhere for a finite b > 0
and the field is Lipschitz continuous; that is, | X (s,t) — X (s',¢)| < a|s — s'| for some a > 0. The
unknown sampling locations are modeled using an unknown renewal process (directed non-uniform
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random walk) as in the related literature [Kumar| [2017]]. The sampling locations are S1, S2, ..., Sy
along the path P, where M is obtained from the stopping condition Spy < 1, Spr41 > 1. A renewal
process implies that 61 := Sq, 65 := Sy — 51, ... are independent and identically distributed. In
our setup, the distribution of # is not known. This model is useful when there is jitter in mobile
sensor’s speed or when the sensing time-intervals are programmed to be on a renewal process. The
mobile-sensing experiment for distribution-learning is designed around N independent trials. It
is assumed that /N mobile-sensing experiments, with statistically independent sampling locations
between the experiments, are conducted on the path P. Using these location-unaware samples, it is
of interest to learn the statistical distribution of X (s, t) for any point s € P.

Our main results are as follows:

1. Using the classical Glivenko-Cantelli estimate, a distribution-learning method for
X(s,t), s € P is presented, where the maximum pointwise error between the cumulative
distribution function (CDF) of X (s, ¢) and its estimate decreases as O (1/(ne?)) + O(e).
Here € > 0 is a parameter of choice and n is the average number of samples. This result
holds in the limit when N — oo.

2. We have conducted mobile sensing experiments with a sound-level meter. The implications
of our distribution-learning method on this custom dataset will be explored, and comparisons
between distribution-learning with a fixed and a mobile sound-level meter will be presented.

To apply our distribution-learning method we have measured sound-level along a closed path in
multiple experiments. Using a portable sound-level meter, which is location-unaware, a dataset with
N = 43 trials has been created for the application of the proposed distribution-learning method.
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Figure 1: (a) The figure shows a mobile sensor moving along a fixed 1-D path. The field samples are
obtained at unknown locations Sy, Sa, ..., Sys. (b) IV trials are carried on NV different days. Spatial
field values are recorded at unknown locations \S; 1, S; 2, . . ., S; a, on trial . The number of samples

recorded during the sth trial is denoted by M,;.

State of the art: Classical sampling and distributed sampling have been addressed with fixed sam-
pling locations, where the location of sensor is known |A. J. Jerri [[1977]], Marco et al., |[Kumar|
et al.| [2011,2010]. A systematic analysis of spatial sensing with mobile sensor has been studied
in (Unnikrishnan and Vetterli| [2013]]. Sensing of temporally fixed parametric spatial fields with
location-unaware mobile sensor was first addressed in|Kumar| [2016]. With location-unaware sam-
pling, interpolation methods for polynomial shapes has been reported in|Pacholska et al.[[2017]. With
location-unawareness, an algorithm for spatial mapping is presented in [Elhami et al.|[2018]]. Mobile
sampling is also studied for crowdsensing application; |Morselli et al.|[2018] compared environmental
monitoring using a fixed grid of sensors and sensors attached to vehicles. Use of vehicular sensor
networks for environmental monitoring has been studied in|Atakan|[2014]],[Wang and Chen|[2017].

2 Sensing model and spatial field properties

In this section, modeling assumptions made on the spatial field and the location-unaware mobile
sensor are presented. First, spatial field properties are discussed.



Let P be a bounded-length path and s € P be a point on it. Let ¢ be time. The spatial field of interest
is X(s,t),s € P,t € R. The distribution of X (s,t) as a function of s € P has to be ‘learned’
and it will be termed as the distribution-learning problem in this work. The field X (s,¢) may be
non-stationary as a function of s € P which makes the distribution-learning problem non-trivial. It is
assumed that | X (s,t)| < b everywhere and it is Lipschitz continuous in s, i.e.,

| X (s,t) — X(s',t)] < als — &'| forall s,s" € P andall ¢.
The boundedness of spatial derivative indicates that nearby points have similar field values.

Without loss of generality, the one-dimensional path will be considered as P = [0, 1]. A location-
unaware mobile sensor samples the field X (s,t) from s = 0 to s = 1 at points generated by an
unknown renewal process. The sampling points are S7, S2, . .., S, while the inter-sample distances
are 01 := 51,05 := S, — S1,...,0np := Sy — Spr—1. The variables 61, 6, . . . are independent and
identically distributed positive random variables. For analysis purposes, it will be assumed that
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n n
where A > 1 is finite and represents maximum speed of the sensor while the average sampling rate is
n/meter.

Since 61, 05, . .. are assumed to be random variables, the number of sample points realized in [0, 1]
will be random. Let the random variable M be the number of readings taken in each mobile sensing
trial in the interval P = [0, 1]. The variable M is given by the following stopping rule Durrett|[2010]:
014+60:+...+0y <land by 4+ 605+ ...+60p+1 > 1. As shown in|Kumar| [2017], the conditional
average of 6 conditioned on M = n is approximately % Specifically, it is known that

EM] <n+A-1. )

The distribution of 61 and the values of s1, ..., sy are not required for our distribution-learning
algorithm, which makes it a universal learning algorithm under the above assumptions. This is one of
the simplest location-unaware mobile sensor model that can be used along a path.

The entire mobile-sensing experiment is designed around N independent trials. It is assumed that the
field samples

fii= [X(S11,t11), X(S1,2,t1,2), -+, X(S1.011, t1,00)])7;
fv = [X(Sn1,tN1), X(SN2:tN2), -+ s X (SN My s Enn )] E

are available. It is assumed that the observed values in different trials are statistically independent.
Using these N different trials, it is of interest to learn the distribution of X (s, ¢) for any point s € P.
The values of sampling locations S; ; are not known. All of these sampling locations are generated
by N independent instances of the same renewal process with inter-sample spacing distribution of
0. Thus, the vectors ﬁ, ceey f v are statistically independent. (Individually, each vector ﬁ will be
dependent; for example, S 2 = S1,1 + 61,2 depends on 5 ;1.)

3 Spatial field’s distribution-learning algorithm

This section will summarize our distribution-learning method and the analysis results. The values
summarized by ﬁ, R f n are available. The i-th trial results in the dataset f; with M; number of
samples. Since the sample locations are unknown, error in learning the field distribution at any given
location depends on the error in the estimation of field values for the given location from samples
obtained by the mobile sensor. For any s € [0, 1], the task is to learn the distribution of X (s, ¢). For
notational purposes, in a given trial, let M be the number of recorded samples. Let M; be the number
of samples recorded during trial ¢ and let .S; ; denote the location of jth sample for trial . From

trial 7, let X; (s) be the estimate of field value at the point s (corresponding to the time of the trial 7).

Designing a good estimate for X; (s) is a challenge in the location-unaware sensing setup. For the
distribution-learning problem, we define an estimate for X (s) from the i-th trial as

Xi(8) = X (Si,|(M—1)s) 115 Lis (M —1)s) 11)- 3)



Note that the dependence on ¢ has been dropped in the left-hand side. This simplified notation will be
used, since the main error in distribution-learning will be due to the error in location estimate s. The
distribution is assumed to be calculated over all time. Let

Fi(s)(z) = P(X(s) < )

denote the cumulative distribution function (CDF) of field values at the location s, and let F' X (s) (z) =

P(X(s) < z) be the CDF of its estimate. Let 1(z € A) be the indicator of set A. The CDF of X ()
can be obtained as the following classical Glivenko-Cantelli limit:

N
o1 5
Fio(@) = lim — Zl 1(Xi(s) < @) “)
Our first result establishes the error between Fig () (2) to Fix(s)(x) under the previously mentioned
location-unaware sensing setup. Let fx(,)(z) be the probability density function of X (s). Then,

Theorem 1. Let 01,60, ..., 6, be inter-sample intervals generated by an unknown renewal process
such that E[0,] = % and 0 < 0 < % Let M be the random number of samples recorded during a
trial. Then for every x € R, s € [0, 1] and for any ¢ > 0,

2 )\2
[Fx (s)(#) = Fig(5)(%)| < €. max (fxs) (@) + Z—Q((n +A-1s(l—s)+ C)ﬁ %)

Proof. This result establishes the closeness of CDFs of X (s) and X (s) for any s € [0,1]. Using
classical result from [[Grimmett and Stirzaker|[2001]], pg. 311], the following result is noted:

Fgo(@) < Fx(s)(z+e) +P (’X(s) — X(s)

> a) . 6)

When fx () (x) exists for every z, |[Fx(s)(z +€) — Fx(5(z)] = Pz < X(s) < z+¢) <
e.max (fx(s) (z)) EI Therefore,

[P (@) = Fx(o) ()] £ [Fxo (@ + ) = Fxo (@) + P (|£(9) = X(9)| )

< e.max (fyx(s)(x)) + P ( X(s) - X(s)‘ > e) . ®)

Since the field is assumed to be Lipschitz continuous, so

‘X(S)—X(S)’ < a|S|ar—1)s)+1 — s/, )
where « is the Lipschitz constant. Let
(M,s)=|(M—-1)s| + 1.

Therefore, the mean-squared error (MSE) in the estimation of spatial field values at location s is
given by

E :‘X(s) — X(s) 2] < o’E [|SZ(M7S) - sﬂ . (10)

From (23) in Appendix A (given in the supplementary document),

2

r A
E _|SZ(M,S>—5\2] < (E[M]s(1 - s) +C)=. (1)
From (@), (I0), and (TT) it follows that
N 2 2
EDX(S)—X(S)‘ } SaQ((n—&-)\—l)s(l—s)—i—C)%. (12)

In case f x(s) () does not exist for every x, since F'x (s (z) is a continuous function for every € > 0 there
exists a 0(g) > 0 such that | Fiy () (x 4+ €) — Fix(s)(z)| < d(g). As € tends to zero () tends to zero.



By the Chebyshev’s inequality and X (s) = X (Si(m,s))-

P (|X(s) = X(Sim,)| > €) < E%IE Ux(s) - X(s)ﬂ (13)
< j—j((n+A71)s(1fs)+C)2—z. (14)

Thus from (8) and (14),
2 /\2
|Fx(s)(x) — FX(S)(JU)\ < e.max (fX S)(x)) + %((n—l— A—1)s(l—s) —|—C')f. (15)

The second term in the upper bound is of the order O (-7 ) while the first term is of the order O(e).
Therefore, as the sampling rate n tends to infinity, Fy X( y(z) converges to F'g (S)( x). This upper

bound depends on s and has a maximum at s = 1/2. O

Similar to the above result, our next theorem obtains a uniform bound on the error between the CDFs
of X (s) and X (s).

Theorem 2. Let 917 02, ...,0p be inter-sample intervals generated by an unknown renewal process
such that E[0,] = = and O < 0 < i‘l Let M be the random number of samples recorded during a
trial. Then for every zeR,s€ [0 1] and for any € > 0,
32 a? A2
sup [P (o)) = Fxo (@)] < e.max (fxo (@) + 5 5+ A=175 (6)
s€[0,1] B e n
Proof. From (),
sup ‘X X(s)’ < a sup |Sl(M)S) — 5|. (17)
5€[0,1] 5€[0,1]
For any € > 0,
0< lim P sup ‘Xs —X(s)‘>€ < lim P{ sup |Sl(Ms —8’ . (18)
n—oo éE 0 1] n—oo E[O 1] o
Let £ = 7. From (44) in Appendix B (given in the supplementary document),
P (sup|S — 5| > <EEIE[M])\—2
Sp 1(M,s) n B2 n2’
where /3 tends to 1 as n tends to infinity. Therefore from (2) and (T8),
A 32 o? A2
P{ sup ’XS—XS‘>E <——=Mn+A-1)— 19)
(Sem () = X(s) 5 )5

The upper bound in (T9) is of O(). This proves that for any £ > 0,

lim P(sup ‘X X(s)’>5>0.

n—00 s€[0,1]

From (8),

[P (@) = Pxo@)] <P (|X(5) = X)) > ) + 2max (Fxo (@)

s€0,1]

<P ( sup ‘X(s) - X(s)‘ > 5) + e.max (fx(5)(x)) .

The upper bound on the right hand side in (T9) is independent of s so,

32 o A2
sup | Fgy(2) — Fx(s) (x)‘ <emax (fxs)(z) + 5+ A-1)= (20)
s€[0,1] B e n
This implies that as the sampling rate n tends to infinity, F'x(4)(z) converges uniformly over s € [0, 1]
to FX(S) ( ) O

In the above result, ¢ is a parameter and the upper bound can be minimized over it. The result is left
in terms of ¢ for future improvements, if any. Simulation results are presented next to validate the
above two theorems.



4 Simulations for distribution-learning using location-unaware samples

To apply and confirm our distribution-learning method, we consider a synthetic spatiotemporally
varying sound-level along a path for simulations. The main goal of these simulations is to verify
the accuracy of our distribution-learning method with an increase in the number of samples. The
sound-level at location s € [0, 1] and time ¢ in the simulated signal is X (s, t) where,

10
X (s,t) = |1000 + Z A,(t) cos(2m f-(t)s)] .

r=1

It is a 10 frequency signal, where the frequencies at each sampling time-instant are generated
uniformly at random in the audible frequency range 20 Hz to 20 kHz, and where the amplitudes A,.(t)
are generated uniformly in the range [—180, 180]; this interval was selected to ensure that the sound-
level lies in the usual range of 30-70 dB. Thus, in each trial among a total of IV, at every sampling
instant an independent realization of the sound-level signal is used. Let ¢; ; be the sampling instants
where: =1,2,...,Nand j = 1,2,...,m;. Here, m; is the number of samples collected in trial 7.
The sound-levels for different values of ¢; ; are independent in our simulations. If j = [(m;, s), then
X (s,t; ;) is the true sound-level which is estimated by our algorithm as X (s, t; ;) 1= X (s, j,%i,;)
(see (@)). Note that s; ; values are not known in location-unaware sensing; and, these sampling
locations are approximated as ]m;l forj=1,2,...,m;.

The sampling locations are obtained by randomly generated locations s; 1, S;2, ... S;m, on trial
i. These locations are generated by adding independent inter-sample intervals 6 with a Rayleigh

distribution having a parameter %\/g . The mean of 4 is 1/n. The sound-levels in the simulation are

also recorded at s in each trial. These values model the recording of sound-level by a fixed sensor at
the point s. The empirical CDF of sound-level and their estimates at location s are given by

N N

. 1 - 1 B
Fxo)(x) = N Z 1{X (s,ti5) < x} and Fig (z) = N Z 1{X(s,ti,j) < x} 21

i=1 i=1

where 1(x € A) denotes the indicator of set A. Recall that j = I(m;, s) for the i-th trial as discussed
above. Comparisons of CDFs for various values of n and N are shown in Figure[2] where n indicates
the sampling rate and s = 1/2. As the sampling rate n increases, the number of samples recorded
during each trial increases and the error between the estimated CDF of samples obtained by mobile
sensor and the actual CDF of samples obtained by the fixed sensor at location s = 1/2 reduces. When
there is a large number of trials, the error in the estimation of empirical CDFs reduces further. Thus,
the simulation results validate our distribution-learning method with location-unaware samples.

5 Experiments for sound-level estimation along a path

Sound-level is measured along the path shown in the map in Figure [3|using a sound-level meter. It is
carried along the path from the starting point 1 along the path back to point 1. Sound level meter by
BAFX products (Model no: BAFX3608) is used for this purpose. Specifications of the sound-level
meter are given in TabldI] It is not equipped with GPS or any other localization tool.

Table 1: Specifications of Sound Level Meter

Range: 30-130dB  Sampling Rate: 1 per sec Memory: 4700 readings  Accuracy: £+ 1.5 dB

Datasets: We have created two different datasets by measuring sound-level along the path shown in
Figure 3] For the first data set denoted by Datasetl, the path is traversed with a sound-level meter. It
begins recording data at the starting point and continues collecting data along the entire path. This
acts as a location-unaware mobile sound-level meter. A static sound-level meter is used to measure
sound-level at specific locations marked in the map in Figure |3| with numbers one to nine, during
each trial. This acts as a fixed sensor as the field is measured at known locations. We have performed
43 trials along the same path in Figure 3] For the second dataset denoted by Dataset2, the path
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Figure 2: Empirical CDF of simulated sound-level at the location s = 0.5 where n is the sampling
rate and N is the number of trials: (a) n = 100 and N = 100; (b) n = 100 and N = 500; (c)
n = 1000 and N = 100; and, (d) n» = 1000 and N = 500.
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Figure 3: Path along which sound-level is recorded. The locations marked in the map with numbers
are used for measurement using a fixed sensor

is traversed using the sound-level meter while cycling, where sampling rate in space is lower as
compared to walking. We have performed 43 trials in this case as well along the same path in Figure[3]
Since the sound-level meter records samples at the rate of 1 sample per second, the spatial sampling
rate for Dataset2 is smaller than the spatial sampling rate for Dataset]. We have also emulated a fixed
station at location 9 in Figure | using a static sensor for 10 minutes.

For experimentation, the path in Figure 3] was chosen as there is a large variation in the sound-level
along the path. The residential area is expected to be quiet compared to the region near the state
highway and residential market. The box plot for Datasetl is illustrated in Figure 4} A box plot
displays information about the range, median, and quartiles of the data. From Figure 4] the dynamic
range of sound-level along the path is observed. The average sound-level variation is 20 dB (ratio of
100) while the dynamic range exceeds 30 dB (ratio of 1000). The main aim is to apply the distribution-
learning method on experimental data, and compare the agreement of learned distributions between a
mobile sensor and a fixed sensor. The empirical distribution of sound-level obtained from the mobile
sound-level meter defined in (2T)) and the empirical distribution of sound-level obtained from the fixed
sensor defined in (2I)) that measures sound-level at locations marked with numbers 1-9 in Figure3]is
compared. Figure[5a]shows the comparison of empirical CDFs of experimental data from Dataset1
at location 5 in Figure[3] The error in the empirical distributions computed using samples from the
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Figure 4: Box plot for samples obtained from the mobile sound level device in Datasetl along the
path in Figure |§| of length 1015 meter is illustrated.

fixed sensor and the mobile sensor in Dataset] is small as shown in Figure[5a] This shows that the
sound-level distribution at any location on a path can be learned using location-unaware samples.

To check the distribution-learning method at two different sampling rates of the mobile sound-level
meter, the empirical CDF of sound-level defined by (ZI) (at location 9 in Figure [3) using a fixed
sensor and empirical CDF of sound-level obtained by mobile sensors defined by are compared.
This comparison is done at two different sampling rates, obtained from Datasetl and Dataset2. The
CDFs are plotted in Figure 5] From Figure[5(b) and (c) the accuracy in learning the distribution is
better for Dataset1 (higher spatial sampling rate) as compared to Dataset2 (lower spatial sampling
rate). The accuracy of the distribution-learning method increases with spatial sampling rate. The
decrease in maximum pointwise error in learned CDF with n is also shown in Theorems [T]and 2]
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Figure 5: (a) Comparison of empirical CDF of sound-level at location 5 in Figure |3} obtained by
the fixed sensor and by experimentation at location 9 in Figure[3] for two different sampling rates of
mobile sensor: (b) fixed sensor versus mobile sensor for Datasetl (Higher spatial sampling rate) (c)
fixed sensor versus mobile sensor for Dataset2 (Lower spatial sampling rate)

6 Conclusions

In this work, we proposed a data-driven method for learning the statistical distribution of a Lipschitz
continuous spatial field along a path. The samples used were obtained at unknown-locations generated
by an unknown renewal process. The accuracy of the proposed distribution-learning method increases
with the spatial sampling rate of the mobile sensor. Simulation and experimental results support
this claim. A method to learn the variation of distribution with time needs be developed if the field
is temporally varying in nature. The field was assumed to be one dimensional and a single mobile
sensor was used to sample. Use of multiple location-unaware mobile sensors for sampling 2-D fields
can be studied in the future.
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