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Abstract

We study the multi-channel sparse blind deconvolution (MCS-BD) problem,
whose task is to simultaneously recover a kernel a and multiple sparse inputs
{x;}¥_, from their circulant convolution y; = a® x; (i = 1,--- ,p). We formu-
late the task as a nonconvex optimization problem over the sphere. Under mild
statistical assumptions of the data, we prove that the vanilla Riemannian gradient
descent (RGD) method, with random initializations, provably recovers both the
kernel @ and the signals {x;}’_, up to a signed shift ambiguity. In comparison
with state-of-the-art results, our work shows significant improvements in terms
of sample complexity and computational efficiency. Our theoretical results are
corroborated by numerical experiments, which demonstrate superior performance
of the proposed approach over the previous methods on both synthetic and real
datasets.

1 Introduction

We study the blind deconvolution problem with multiple inputs: given circulant convolutions

Yy = a®x; €R" i€ p] :=1{1,...,p}, (D

we aim to recover both the kernel @ € R™ and the signals {x;}?_, € R" using efficient methods.

Blind deconvolution is an ill-posed problem in its most general form. Nonetheless, problems in prac-
tice often exhibits intrinsic low-dimensional structures, showing promises for efficient optimization.
One such useful structure is the sparsity of the signals {«;}”_; [1]. The multichannel sparse blind
deconvolution (MCS-BD) broadly appears in the context of communications [2, 3], computational
imaging [4, 5], seismic imaging [6—8], neuroscience [9-13], computer vision [14—16], and more.

e Neuroscience. Detections of neuronal spiking activity is a prerequisite for understanding the
mechanism of brain function. Calcium imaging [12,13] and functional MRI [9,11] are two widely
used techniques, which record the convolution of unknown neuronal transient response and sparse
spike trains. The spike detection problem can be naturally cast as a MCS-BD problem.

o Computational (microscopy) imaging. Super-resolution fluorescent microscopy imaging [4, 17,
18] conquers the resolution limit by solving sparse deconvolution problems. Its basic principle
is using photoswitchable fluorophores that stochastically activate fluorescent molecular, creating
a video sequence of sparse superpositions of point spread function (PSF). In many scenarios
(especially in 3D imaging), as it is often difficult to obtain the PSF due to defocus and unknown
aberrations [19], it is preferred to estimate the point-sources and PSF jointly by solving MCS-BD.

o Image deblurring. Sparse blind deconvolution problems also arise in natural image processing:
when a blurry image is taken due to the resolution limit or malfunction of imaging procedure, it
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Table 1: Comparison with existing methods for solving MCS-BD?

Methods Wang et al. [20] Lietal. [21] Ours
. a spiky & invertible, a invertible, a invertible,
Assumptions
x; ~iid BG(0) x; ~ii.d. BR(O) x; ~iid BG(0)
Formulation minjg _ |CY |, maxgegn 1 |CqPY |} mingegn—1 H, (CqPY)
Algorithm interior point noisy RGD vanilla RGD
Recovery 0e O({/\/ﬁ), R 0eO(1), . R 0eO(1), .
Condition p=Q(n) p = Q(max {n, 8} %) p = Q(max {n, %} nt)
Time Complexity O(p*n® log(1/¢)) O(pn13/e8) O(pn® + pnlog (1/¢))

can be modeled as a blur pattern convolved with visually plausible sharp images (whose gradient
are sparse) [15, 16].

Prior arts. Recently, there have been a few attempts to solve MCS-BD with guaranteed perfor-
mance. Wang et al. [20] formulated the task as finding the sparsest vector in a subspace problem [22].
They considered a convex objective, showing that the problem can be solved to exact solutions when
p = Q(nlogn) and the sparsity level § € O(1/4/n). A similar approach has also been investigated
by [23]. Li et al. [21] consider an ¢*-maximization problem over the sphere, revealing benign global
geometric structures of the problem. Correspondingly, they introduced a noisy Riemannian gradient
descent (RGD) that solves the problem to approximate solutions in polynomial time.

These results are very inspiring but still suffer from quite a few limitations. The theory and method
in [20] only applies to cases when a is approximately a delta function (which excludes most prob-
lems of interest) and {x;}._, are very sparse. Li et al. [21] suggests that more generic kernels a can
be handled via preconditioning of the data. However, due to the heavy-tailed behavior of 4-loss,
the sample complexity provided in [21] is quite pessimistic>. Moreover, noisy RGD is proved to
converge with huge amounts of iterations [21], and it requires additional efforts to tune the noise
parameters which is often unrealistic in practice. As mentioned in [21], one may use vanilla RGD
which almost surely converges to a global minimum, but without guarantee on the number of itera-
tions. On the other hand, Li et al. [21] only considered the Bernoulli-Rademacher model* which is
quite restrictive.

Contributions. In this work, we introduce an efficient optimization method for solving MCS-BD.
We consider a natural nonconvex formulation based on a smooth relaxation of ¢!-loss. Under mild
assumptions of the data, we prove the following result.

With random initializations, a vanilla RGD efficiently finds an approximate solution, which can
then be refined by a subgradient method that converges to the target solution in a linear rate.

We summarize our main result in Table 1. By comparison’ with [21], our approach demonstrates sub-
stantial improvements for solving MCS-BD in terms of both sample and time complexity. Moreover,
our experimental results imply that our analysis is still far from tight — the phase transitions suggest
that p > Q(poly log(n)) samples might be sufficient for exact recovery, which is favorable for ap-
plications (as real data in form of images can have millions of pixels, resulting in huge dimension
n). Our analysis is inspired by recent results on orthogonal dictionary learning [24-26], but much of
our theoretical analysis is tailored for MCS-BD with a few extra new ingredients. Our work is the
first result provably showing that vanilla gradient descent type methods solve MCS-BD efficiently.

’Here, (i) BG(#) and BR(#) denote Bernoulli-Gaussian and Bernoulli-Rademacher distribution, respec-
tively; (ii) 6 € [0, 1] is the Bernoulli parameter controlling the sparsity level of «;; (iii) € denotes the recovery
precision of global solution @, i.e., ming |a — s¢ [a.]| < & (iv) O and 2 hides log(n), 6 and other factors.

3As the tail of BG(6) distribution is heavier than that of BR(), their sample complexity would be even
worse if BG(6) model was considered.

“We say x obeys a Bernoulli-Rademacher distribution when £ = b ® r where ® denotes point-wise
product, b follows i.i.d. Bernoulli distribution and 7 follows i.i.d. Rademacher distribution.

SWe do not find a direct comparison with [20] meaningful, mainly due to its limitations of the kernel
assumption and sparsity level 8 € O(1/4/n) discussed above.



Moreover, our ideas could potentially lead to new algorithmic guarantees for other nonconvex prob-
lems such as blind gain and phase calibration [27,28] and convolutional dictionary learning [29,30].
The full version [31] of this work can be found at https://arxiv.org/abs/1908.10776.

2 Problem Formulation
To begin, we list our assumptions on the unknown kernel a € R™ and sparse inputs {z;}?_, € R™:

o Invertible kernel. We assume the kernel a to be invertible in the sense that its spectrum a = F'a
does not have zero entries, where @ = Fa is the discrete Fourier transform (DFT) of a with
F € C™ " being the DFT matrix. Let C, € R™ ™ be an n x n circulant matrix whose first
column is a. Since this circulant matrix C, can be decomposed as C, = F* diag (a) F [32], it
is also invertible and we define its condition number x(a) := max; |a;| / min; |a;|.

e Random sparse signal. The input signals {x; }le are sparse, and follow i.i.d. Bernoulli-Gaussian
(BG(6)) distribution:

z, = bjOg;, bi ~iia BO), gi~iia N(0,1I),
where 6 € [0, 1] is the Bernoulli-parameter which controls the sparsity level of x;.

As aforementioned, this assumption generalizes those used in [20,21]. In particular, the first assump-
tion on kernel a is much more practical than that of [20], in which a is assumed to be spiky. The
second assumption is a generalization of the Bernoulli-Rademacher model adopted in [21].

Note that the MCS-BD problem exhibits intrinsic signed scaling-shift symmetry, i.e., for any o = 0,

Y = s_¢[+aa] ® s;[ra'z;], i€ [p], )
where sy [-] denotes a cyclic shift operator of length ¢. Without loss of generality, for the rest of the
paper we assume that the kernel a is normalized with |a| = 1. Thus, we only hope to recover a

and {x;}"_, up to a signed shift ambiguity,
A nonconvex formulation. LetY = [y1 vy2 -+ ypland X = [x1 T2 -+ x| We
can rewrite the measurement (1) in a matrix-vector form via circulant matrices,

Y, = a@wi = Caaci, iE[p] - Y = (ja)(7

Since C, is assumed to be invertible, we can define its corresponding inverse kernel h € R™ by
h := F~'a®~! whose corresponding circulant matrix satisfies

Cp = F*diag (a® ") F = C;",

where (-)©~! denotes entrywise inversion. Observing
Ch'Y =Cp-Cy- X = X |
— —

=71 sparse
it leads us to consider the following objective
w Licyl, - L S ic,al,. st g0 ®
min — = — . s.t. .
a np 0 npH vidlo> a

Obviously, when the solution of (3) is unique, the only minimizer is the inverse kernel h up to signed
scaling-shift (i.e., g. = tasy [h]), producing CrY = X with the highest sparsity. The nonzero
constraint g # 0 is enforced simply to prevent the trivial solution g = 0. Ideally, if we could solve
(3) to obtain one of the target solutions g, = sy [h] up to a signed scaling, the kernel a and sparse

signals {x;}”_, can be exactly recovered up to signed shift via

a. = F! [(Fq*)&l]» z; = Cyq., (1<i<p).

However, it has been known for decades that optimizing the basic ¢yp-formulation (3) is an NP-hard
problem [33,34]. Instead, we consider the following nonconvex® relaxation of the original problem

(3):

d

. 1 ne
min ¢p(q) = — Z H,(Cy Pq), st. qeS'L, 4
a np =

where H,(-) is the Huber loss [35] and P is a preconditioning matrix, both of which will be defined

®1t is nonconvex because of the spherical constraint ¢ € S™~*.
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Smooth sparsity surrogate. It is well-known that /!-norm serves as a natural sparsity surrogate
for ¢°-norm, but its nonsmoothness often makes it difficult for analysis7. Here, we consider the
Huber loss® H,, (-) which is widely used in robust optimization [35]. It acts as a smooth sparsity
surrogate of ¢! penalty and is defined as:

SRy 2| 2| =

H,(Z) = h (Z;; h,(z) = 2 5

P«( ) ZZ M( l])’ /1«() {Zﬂ_'_g |Z|<M’ ()
where 1o > 0 is a smoothing scalar. Our choice h,, (2) is first-order smooth, and behaves exactly
same as the /!-norm for |z| > u. In contrast, although the the £* objective in [21] is smooth, it only
promotes sparsity in special cases. Moreover, it results in a heavy-tailed process, producing flat land-
scape around target solutions, and requiring substantially more samples for measure concentration.
Figure 1 shows a comparison of optimization landscapes in low dimension: the Huber-loss behaves
very similar to the £*-loss, while optimizing the £-loss could result in large approximation error.

Preconditioning. An ill-conditioned (a) £*-loss, X  (b) Huber-loss, X (c) #*-loss, X
kernel a can result in poor optimiza-
tion landscapes (see Figure 1 for an
illustration). To alleviate this effect,
we introduce a preconditioning matrix
P e R"*"[21,36,37], defined as follows®

———

, —1/2
p_ < 1 Z C;—i Cyi> (6 (d) £*-loss, v (e) Huber-loss, v (f) #*-loss, v

Onp -
i=1

. . o
which refines the function landscapes by

orthogonalizing the circulant matrix Cl,: ‘
C.P ~ C,(CIC.) . ‘ ‘ ‘ ‘ ‘
~—— [N —

R Q orthogonal

Figure 1: Comparison of optimization landscapes for dif-
. —1/2 ferent loss functions. Here X and v' mean without and with
Since P ~ (CaCa) , R can be  the preconditioning matrix P, respectively. Each figure plots
proved to be very close to the orthogonal  the function values of the loss over S, where the function val-
matrix Q. Thus, R is much more well- ues are all normalized between 0 and 1 (darker color means
conditioned than C,,. As illustrated in Fig- smaller value, and vice versa). The small red dots on the
ure 1, a Comparison of Optimization land- landscapes denote shifts of the ground truths.

scapes without and with preconditioning

shows that preconditioning symmetrifies

the optimization landscapes and eliminates spurious local minimizers. Therefore, it makes the prob-
lem more amendable for optimization.

Constrain over the sphere S"~!. We relax the nonconvex constraint ¢ = 0 in (3) by a unit
norm constraint on g. The norm constraint removes the scaling ambiguity as well as prevents the
trivial solution ¢ = 0. Note that the choice of the norm has strong implication for computation.
When q is constrained over /*-norm, the ¢! /¢* optimization problem breaks beyond sparsity level
6 > Q(1/y/n) [20]. In contrast, the sphere S"~! is a homogeneous Riemannian manifold. It
has been shown recently that optimizing over the sphere often leads to optimal sparsity § € O(1)
[21,22,36,38]. Therefore, we choose to work with q € S™=1 and we also show similar recovery
results for MCS-BD.

Next, we develop efficient first-order methods and provide guarantees for exact recovery.

"The subgradient of £-loss is non-Lipschitz, which introduces tremendous difficulty in controlling suprema
of random process and perturbation analysis for preconditioning.

$Actually, h,(-) is a scaled and elevated version of standard Huber function h, (z), with hy, (z) =
ihf‘ (z) + 4. Hence in our framework minimizing with h,, (z) is equivalent to minimizing with h;, (z).

“Here, the sparsity @ serves as a normalization purpose. It is often not known ahead of time, but the scaling
here does not change the optimization landscape.



3 Main Results and Analysis

In this section, we show that the underlying benign first-order geometry of the optimization land-
scapes of (4) enables efficient and exact recovery using vanilla gradient descent methods, even with
random initialization. Our main result can be captured by the following theorem.

Theorem 3.1 We assume that the kernel a is invertible with condition number r, and {x;}}_, ~
BG(0). Suppose 6 € (711, é) and pp < cmin {9, f} Whenever

K8
p= Cmax{ 2o log? n} 6~2n*log®(n) log <9n) , (8)
9 mln M
w.h.p. the function (4) satisfies certain regularity conditions (see Theorem 3.2), allowing us to
design an efficient vanilla first-order method. In particular, with probability at least %, by using a
random initialization, the algorithms provably recover the target solution up to a signed shift with
e-precision in a linear rate

#Iter < C’ <91n4 log <1> + log(np) log <i>> .
1

Remark 1. In the following, we explain our results in several aspects.

e Conditions and Assumptions. Here, as the MCS-BD problem becomes trivial'” when 6 < 1/n,
we only focus on the regime 6 > 1/n. Similar to [21], our result only requires the kernel a to be
invertible and sparsity level 6 to be constant. In contrast, the method in [20] only works when the
kernel a is spiky and {z;},_, are very sparse § € O(1/4/n), excluding most problems of interest.

e Sample Complexity. As shown in Table 1, our sample complexity p > €}(max {n,x¥/u?} n*
in (8) improves upon the result p > (max {n,x®} n®/e%) in [21]. As aforementioned, this
improvement partly owes to the similarity of the Huber-loss to #!-loss, so that the Huber-loss
is much less heavy-tailed than the £4-loss studied in [21], requiring fewer samples for measure
concentration. Still, our result leaves much room for improvement — we believe the sample de-
pendency on 6! is an artifact of our analysis'!, and the phase transition in Figure 5 suggests that
p = Q(polylog(n)) samples might be sufficient for exact recovery.

o Algorithmic Convergence. Finally, it should be noted that the number of iteration
9] (n* + log (1/¢)) for our algorithm substantially improves upon that O(n'2/s2) of the noisy
RGD in [21, Theorem IV.2]. This has been achieved via a two-stage approach: (i) we first run
O(n*) iterations of vanilla RGD to obtain an approximate solution; (ii) then perform a subgradi-
ent method with linear convergence to the ground-truth. Moreover, without any noise parameters
to tune, vanilla RGD is more practical than the noisy RGD in [21].

3.1 A glimpse of high dimensional geometry

To study the optimization landscape of (5), we simplify the problem by a change of variable ¢ = Qgq,
which rotates the space by the orthogonal matrix @ in (7). Since the rotation Q@ does not change the
optimization landscape, by an abuse of notation of g and g, we can rewrite the problem (5) as

min f(q) = —ZH (C,RQ'q), st |q| =1, ©)

where we also used the fact that Cyy, P = Cz, R in (7). Moreover, since R ~ Q) is near orthogonal,
by assuming RQ~! = I, for pure analysis purposes we can further reduce (9) to

mmf 2 H, st |qf = 1. (10)

The reduction in (10) is simpler and much easier for analysis. By a similar analysis as [24, 36], it
can be shown that asymptotically the landscape is highly symmetric and the standard basis vectors
{+e;};_, are approximately'? the only global minimizers. Hence, as RQ ™' ~ I, we can study the

'"The problem becomes trivial when 6 < 1/n because n = 1 so that each x; tends to be an one sparse
d-function.

"The same ' dependency also appears in [21,24,25,36,37].

"2The standard basis {te;}!_, are exact global solutions for £*-loss. The Huber loss we considered here
introduces small approximation errors due to its smoothing effects.



landscape of f(q) via studying the landscape of f(q) followed by a perturbation analysis. As illus-

trated in Figure 2, based on the target solutions of f(q), we partition the sphere into 2n symmetric
regions, and consider 2n (disjoint) subsets of each region13 [24,25]

St = {qu“‘l | 0 >4/1+€, qizo}, ¢ e[0,00),
lg—illo
where q_; is a subvector of g with i-th entry removed. For every i € [n], Sgr (or Sg_) contains
exactly one of the target solution e; (or —e;), and all points in this set have one unique largest entry
with index 4, so that they are closer to e; (or —e;) in % distance than all the other standard basis
vectors. As shown in Figure 2, the union of these sets form a full partition of the sphere only when
& = 0. While for small £ > 0, each disjoint set excludes all the saddle points and maximizers, but
their union covers most measure of the sphere: when & = (5logn) ~! their union covers at least half
of the sphere, and hence a random initialization falls into one of the regions Sgi with probability at

least 1/2 [25]. Therefore, we can only consider the optimization landscapes on the sets Sii, where
we show the Riemannian gradient of f(q)

grad f(q) := PgeVf(q) = (I—qq")Vf(q)

satisfies the following properties in each set S gi. For convenience, we will simply present the results

in terms of Sg‘*, but they also hold for Sé_.
Proposition 3.2 (Regularity Condition) Suppose § € (1,1) and i < cmin {9, ﬁ} When p
satisfies (8), w.h.p. over the randomness of {x;}!_,, the Riemannian gradient of f(q) satisfies

(grad f(q),qiq — ei) = a(q) |q —eil, (11)

foranyq € S§+ with /1 — qf > u, where the regularity parameter is

a(q) _ 6/0(1 - Q)Qi V 1-— q1‘2 € [/%’Y]
dO(1—0)ntq J1—¢ =~

which increases as q gets closer to e;. Here ~y € [, 1) is some constant.

Remark 2. Here, our result is stated with respect
to e; for the sake of simplicity. It should be noted
that asymptotically the global minimizer of (9) is
B(RQ~1)"Le; rather than e;, where 3 is a normal-
ization factor. Nonetheless, as RQ~' ~ I, the
global optimizer 3(RQ~')'e; of (9) is very close
to e;, so that we can state a similar result with re-
spect to B(RQ~')"le;. The regularity condition
(11) shows that any ¢ € S;* with /1 —¢7 > p
is not a stationary point. Similar regularity condition
has been proved for phase retrieval [39], dictionary
learning [25], etc. Such condition implies that the
negative gradient direction coincides with the direc-
tion to the target solution. The lower bound on Rie-
mannian gradient ensures that the iterate still makes . es 1+ .
sufficient progress to the target solution, even when Figure 2: Illustration of the set S;™ in 3-
it is close to the target. dimension. Region 1 (purple region) denotes
the interior of S;* when & = 0, where it in-
cludes one unique target solution. We show
the regularity condition (11) within Sg*, ex-
. cluding a green region of order O(u) (i.e.,
ularize themselves staying in the set Sng. This en- Region 2) due to Huber smoothing.

sures that the regularity condition (11) holds through

the solution path of the RGD method.

To ensure convergence of RGD, we also need to
show the following property, so that once initialized
in Sg+ the iterates of the RGD method implicitly reg-

"*Here, we define | g_;| ;" = +o0 when |g_;||, = 0, so that the set Sé+ is compact and e; is also contained
in the set.



Proposition 3.3 (Implicit Regularization) Under the same condition of Proposition 3.2, w.h.p.
over the randomness of {x;}._,, the Riemannian gradient of f(q) satisfies

LS 0a-6) ¢
(arad (@) e = e ) > ettt 12

forall q € S’g” and any q; such that j # i and qu» > %qf

Remark 3. In a nutshell, (12) guarantees that the negative gradient direction points towards e;
component-wisely for relatively large components (i.e., q?- > %q?, Vj # 7). With this, we can
prove that those components will not increase after gradient update, ensuring the iterates stay within
the region Sé*. This type of implicit regularizations for the gradient has also been discovered
for many nonconvex optimization problems, such as low-rank matrix factorizations [40-43], phase
retrieval [44], and neural network training [45].

3.2 From geometry to efficient optimization

Phase 1: Finding an approximate solution via RGD. Starting from a random initialization q(*)
uniformly drawn from S"~1, we solve the problem (4) via vanilla RGD

gD = P, (q(k) — 7 grad f(q(k))> , (13)

where 7 > 0 is the stepsize, and Pg.—1 (-) is a projection operator onto the sphere S"~1.

Proposition 3.4 (Linear convergence of gradient descent) Suppose Proposition 3.2 and Proposi-
tion 3.3 hold. With probability at least 1 /2, the random initialization q'9 falls into one of the regions
Sgi for some i € [n]. Choosing a fixed step size T < < min {u, n_3/2} in (13), we have

< 2u, Vk = N := gn4 log (1) .
¢ I

Because of the preconditioning and smoothing via Huber loss (5), the geometry structure in Propo-
sition 3.2 implies that the gradient descent method can only produce an approximate solution g, up
to a precision O(y1). Moreover, as we can show that ||e; — 3(RQ 1) e;| < /2, it does not make
much difference of stating the result in terms of either e; or 3 (RQ_l)_lei. Next, we show that,
by using g, as a warm start, an extra linear program (LP) rounding procedure produces an exact
solution (RQ~')'e; up to a scaling factor in a few iterations.

.

Phase 2: Exact solution via LP rounding. Let r» = g, be the solution obtain from solving RGD.
We recover the exact solution by solving the following LP problem'*

mln ¢(g) == — Z |C, RQ™ q||1 st. (r,qy=1. (14)

Since the feasible set {r, q) = 1 is essentially the tangent space of the sphere S" ! at r, and r = g,
is pretty close to the target solution, one should expect that the optimizer g, of (14) exactly recovers
the inverse kernel h up to a scaled-shift. The problem (14) is convex and can be directly solved
using standard tools such as CVX [46], but it will be time consuming for large dataset. Instead, we
introduce an efficient projected subgradient method for solving (14),

R T . _
g* ) = g — 0P g gk = — N (RQT) C] sign (Cm,;RQ 1q(’“)). (15)

P
For convenience, let 7 := (RQ‘l) "~ 7, and define the distance d(q) between g and the truth
. Len
dist(q) := |d(q)|, d(q) == ¢— (RQ™")"

7
Proposition 3.5 Suppose ;1 < 5= and let v = q5 which satlsﬁes [r— e,»H < 2u. Choose T(F) =
n*7©) with 7©) = ¢;log™?(np) and n € [(1—c log 2 (np))1/2 ,1). Under the same condition
of Theorem 3.1, w.h.p. the sequence {q(k)} produced by (15) with q¢\°) = r converges to the target
solution in a linear rate, i.e.,

dist(q™) < CnF, Vk =012, -

“For convenience, we state this problem in the rotated space. For the original problem (5), we should solve
an equivalent problem of (14) as ming ((q) := nip P |Cy.Pql,, st (F,q) =1 withT =Qr.




—a -o-('-loss
Huber-loss
-2 ('-loss

Phase 1: Phase 2:
RGD 1 % LP Rounding 08

a.+all})

s

G
Recovery Probability

——("-loss
—o—Huber-loss, =5 x 107!

log(min{ la.—al| .

20 Huber-loss, p =5 x 1072 02+

——Huber-loss,pu = 5 x 1073

—o—(*-loss . X
7250 20 40 60 80 100 120 140 160 180 200 005 01 015 02 025 03 035 04 045 05 055

Tteration Number Sparsity ¢

Figure 3: Comparison of iterate Figure 4: Comparison of recovery
convergence. p = 50, n = 200, probability with varying 6. p = 50,
0 = 0.25. n = 500.

Remark 4. Unlike smooth problems, in general, subgradient methods for nonsmooth problem
have to use geometrically diminishing stepsize to achieve linear convergence'® [48-51]. The under-
lying geometry that supports the use of geometric diminishing step size and linear convergence is
the so-called sharpness property [52] of the problem (14). In particular, for some constant o > 0,
we prove ((q) is sharp in the sense that

C(g) —¢ ((RQ_1)71 en/Fn) > «-dist(q), V {(r,q)=1.

Finally, we end this section by noting that although we use matrix-vector form of convolutions in
(13) and (15), all the matrix-vector multiplications can be efficiently implemented by FFT, including
the preconditioning matrix in (6) which is also a circulant matrix. With FFT, the complexities of
implementing one gradient update in (13) and subgradient in (15) are both O(pn logn).

4 Experiment

Experiments on 1D synthetic dataset. First, we conduct a series of experiments on synthetic
dataset to demonstrate the superior performance of the vanilla RGD method (13). For all synthetic
experiments, we generate the measurements y; = a ® x; (1 < ¢ < p), with the ground truth kernel
a € R™ drawn uniformly random from the sphere S"~* (i.e., a ~ U(S" 1)), and with sparse signals
x; € R",i = [p] drawn from i.i.d. Bernoulli-Gaussian distribution x; ~; ; 4. BG(0).

We compare the performances of RGD'® with random initialization on ¢!-loss, Huber-loss, and ¢-
loss considered in [21]. We use line-search for adaptively choosing stepsize. For a fair comparison
of optimizing all losses, we refine all solutions with the LP rounding procedure (14) optimized by
subgradient descent (15), and use the same random initialization uniformly drawn from the sphere.

For judging the success of recovery, let g, be a solution produced by the algorithm and we define
Pace(@s) = [CaPul, /|CaPq.| € [0,1].

If g, achieves the target solution, it should satisfy Pq, = h, with h being the inverse kernel of @ and
thus pacc(gs) = 1. Therefore, we should expect p,..(gx) ~ 1 when an algorithm produces a correct
solution. For the following simulations, we assume successful recovery whenever p,..(g«) = 0.95.

(a) Comparison of iterate convergence. We first compare the convergence in terms of the distance
from the iterate to the target solution for all losses using RGD. As shown in Figure 3, in Phase 1
optimizing £*-loss can only produce an approximate solution up to precision 1072, In contrast,
optimizing Huber-loss converges much faster, and producing much more accurate solutions as
1 decreases. In Phase 2, subgradient descent converges linearly to the exact solution.

(b) Recovery with varying sparsity. Fix n = 500 and p = 50, we compare the recovery prob-
ability with varying sparsity level 6. For each 6, we repeat the simulation for 15 times. As
illustrated in Figure 4, optimizing Huber-loss enables successful recovery for much larger 6 in
comparison with that of /4-loss. The performances of optimizing ¢!-loss and Huber-loss are
quite similar.

'Typical choices such as 7" = O(1/k) and 7*) = O(1/v/k) lead to sublinear convergence [47-51].
1%For ¢*-loss, we use Riemannian subgradient method, similar to (15).
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Figure 5: Comparison of phase transition on (p, n) with fixed = 0.25.

(c) Phase transition on (p,n). Finally, we fix § = 0.25, and test the dependency of sample
number p on the dimension n via phase transition plots. For each individual (p, n), we repeat
the simulation for 15 times. Whiter pixels in Figure 5 indicates higher success probability, and
vice versa. As shown in Figure 5, for a given n, optimizing Huber-loss requires much fewer
samples p for recovery in comparison with that of ¢4-loss. The performance of optimizing
£'-loss and Huber-loss is comparable; we conjecture sample dependency for optimizing both
losses is p = Q(poly log(n)). In contrast, optimizing ¢*-loss might need p > 2(n) samples.

(a) Observation (b) Ground truth (c) Huber-loss (d) £*-loss

(e) Ground truth (f) Huber-loss

A

Figure 6: STORM imaging via solving MCS-BD. The first line shows (a) observed image,
(b) ground truth, (c) recovered image by optimizing Huber-loss, and (d) by £*-loss. The second
line, () ground truth kernel, (f) recovered by optimizing Huber-loss, and (g) by £*-loss.

Real experiment on 2D super-resolution microscopy imaging. As introduced in Section 1,
stochastic optical reconstruction microscopy (STORM) is a new computation based imaging tech-
nique which breaks the resolution limits of optical fluorescence microscopy [4, 17, 18]. The basic
principle is using photoswitchable florescent probes to create multiple images Y; = A [ X;, where
denotes 2D circular convolution, A is PSF, and { X i}le are sparse point-sources. In 3D imaging,
the PSF A is hard to estimate due to defocus and unknown aberrations [19], so that we want to jointly
estimate the PSF A and point sources {X;}}_,. Once {X;}’_, are recovered, we can obtain a high
resolution image by aggregating all X;. We test our algorithms on this task, by using p = 1000
frames obtained from a standard dataset'’. As demonstrated in Figure 6, optimizing Huber-loss
using vanilla RGD can near perfectly recover both the underlying Bessel PSF and point-sources,
producing accurate high resolution image. In contrast, optimizing ¢*-loss [21] fails to recover the
PSF, resulting in some aliasing effects of the recovered image.
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