
Think out of the “Box”: Generically-Constrained
Asynchronous Composite Optimization and Hedging

Pooria Joulani⇤
DeepMind, UK

pjoulani@google.com

András György
DeepMind, UK

agyorgy@google.com

Csaba Szepesvári
DeepMind, UK

szepi@google.com

Abstract

We present two new algorithms, ASYNCADA and HEDGEHOG, for asynchronous
sparse online and stochastic optimization. ASYNCADA is, to our knowledge,
the first asynchronous stochastic optimization algorithm with finite-time data-
dependent convergence guarantees for generic convex constraints. In addition,
ASYNCADA: (a) allows for proximal (i.e., composite-objective) updates and
adaptive step-sizes; (b) enjoys any-time convergence guarantees without requiring
an exact global clock; and (c) when the data is sufficiently sparse, its convergence
rate for (non-)smooth, (non-)strongly-convex, and even a limited class of non-
convex objectives matches the corresponding serial rate, implying a theoretical
“linear speed-up”. The second algorithm, HEDGEHOG, is an asynchronous parallel
version of the Exponentiated Gradient (EG) algorithm for optimization over the
probability simplex (a.k.a. Hedge in online learning), and, to our knowledge, the
first asynchronous algorithm enjoying linear speed-ups under sparsity with non-
SGD-style updates. Unlike previous work, ASYNCADA and HEDGEHOG and
their convergence and speed-up analyses are not limited to individual coordinate-
wise (i.e., “box-shaped”) constraints or smooth and strongly-convex objectives.
Underlying both results is a generic analysis framework that is of independent
interest, and further applicable to distributed and delayed feedback optimization.

1 Introduction

Many modern machine learning methods are based on iteratively optimizing a regularized objective.
Given a convex, non-empty set of feasible model parameters X ⇢ Rd, a differentiable loss function
f : Rd ! R, and a convex (possibly non-differentiable) regularizer function � : Rd ! R, these
methods seek the parameter vector x⇤ 2 X that minimizes f + � (assuming a minimizer exists):

x
⇤ = argmin

x2X
f(x) + �(x) . (1)

In particular, empirical risk minimization (ERM) methods such as (regularized) least-squares, logistic
regression, LASSO, and support vector machines solve optimization problems of the form (1). In
these cases, f(x) = 1

m

P
m

i=1 F (x, ⇠i) is the average of the loss F (x, ⇠i) of the model parameter x
on the given training data ⇠1, ⇠2, . . . , ⇠m and �(x) is a norm (or a combination of norms) on Rd (e.g.,
F (x, ⇠) = log(1 + exp(x>

⇠)) and �(x) = 1
2kxk

2
2 in linear logistic regression [13]).

To bring the power of modern parallel computing architectures to such optimization problems, several
papers in the past decade have studied parallel variants of the stochastic optimization algorithms
applied to these problems. Here one of the main questions is to quantify the cost of parallelization,
that is, how much extra work is needed by a parallel algorithm to achieve the same accuracy as its
serial variant. Ideally, a parallel algorithm is required to do no more work than the serial version, but

⇤Work partially done when the author was at the University of Alberta, Edmonton, AB, Canada.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

this is very hard to achieve in our case. Instead, a somewhat weaker goal is to ensure that the price
of parallelism is at most a constant factor: that is, the parallel variant needs at most constant-times
more updates (or work). In other words, using ⌧ parallel process requires a wall-clock running time
that is only O(1/⌧)-times that of the serial variant. In this case we say that the parallel algorithm
achieves a linear speed-up. Of particular interest are asynchronous lock-free algorithms, where
Recht et al. [30] demostrated first that linear speed-ups are possible: They showed that if ⌧ processes
run stochastic gradient descent (SGD) and apply their updates to the same shared iterate without
locking, then the overall algorithm (called Hogwild!) converges after the same amount of work as
serial SGD, up to a multiplicative factor that increases with the number of concurrent processes and
decreases with the sparsity of the problem. Thus, if the problem is sparse enough, this penalty can
be considered a constant, and the algorithm achieves linear speed-up. Several follow-up work (see
e.g., [20, 18, 17, 27, 24, 10, 29, 7, 11, 4, 2, 3, 19, 31, 33, 32, 35, 36, 12, 6, 28] and the references
therein) have demonstrated linear speed-ups for methods based on (block-)coordinate descent (BCD),
as well as other variants of SGD such as SVRG [15], SAGA [8], ADAGRAD [22, 9], and SGD with a
time-decaying step-size. Despite the great advances, however, several problems remain open.2

First, the existing convergence guarantees concern SGD when the constraint set X is box-shaped,
that is, a Cartesian product of (block-)coordinatewise constraints X = ⇥d

i=1Xi. This leaves it unclear
whether existing techniques apply to stochastic optimization algorithms that operate on non-box-
shaped constraints (e.g., on the `2 ball), or algorithms that use a non-Euclidean regularizer, such as
the exponentiated gradient (EG) algorithm used on the probability simplex (see, e.g., [34, 14]).

Second, with the exception of the works of Duchi et al. [10] and Pan et al. [26] (which still require
box-shaped constraints), and De Sa et al. [7] (which only bounds the probability of “failure”, i.e., of
producing no iterates in the ✏-ball around x

⇤), the existing analyses demonstrating linear speed-ups
are limited to strongly-convex (or Polyak-Łojasiewicz) objectives. Thus, so far it has remained
unclear whether a similar speed-up analysis is possible if the objective is simply convex or smooth
[20], or if we are in the closely-related online-learning setting with the objective changing over time.

Third, with the exception of the work of Pedregosa et al. [27] (which still requires box-shaped
constraints, block-separable � and strongly-convex f), the existing analyses do not take advantage of
the structure of problem (1). In particular, when � is “simple to optimize” over X (formally defined
as having access to a proximal operator oracle, as we make precise in what follows), serial algorithms
such as Proximal-SGD take advantage of this property to achieve considerably faster convergence
rates. Asynchronous variants of the Proximal-SGD algorithm with such faster rates have so far been
unavailable for non-strongly-convex objectives and non-box constraints.

1.1 Contributions

In this paper we address the aforementioned problems and present algorithms that are applicable
to general convex constraint sets, not just box-shaped X , but still achieve linear speed-ups (under
sparsity) for non-smooth and non-strongly-convex (as well as smooth or strongly convex) objectives,
and even for a specific class of non-convex problems. This is achieved through our new asynchronous
optimization algorithm, ASYNCADA, which generalizes the ASYNC-ADAGRAD (and ASYNC-DA)
algorithm of Duchi et al. [10] to proximal updates and its data-dependent bound to arbitrary constraint
sets. Instantiations of ASYNCADA under different settings are given in Table 1. Indeed, the results
are obtained by a more general analysis framework, built on the work of Duchi et al. [10], that yields
data-dependent convergence guarantees for a generic class of adaptive, composite-objective online
optimization algorithms undergoing perturbations to their “state”. We further use this framework to
derive the first asynchronous online and stochastic optimization algorithm with non-box constraints
that uses non-Euclidean regularizers. In particular, we present and analyze HEDGEHOG, the parallel
asynchronous variant of the EG algorithm, also known as Hedge in online linear optimization [34, 14],

2 In this paper, we do not further consider BCD-based methods, for two main reasons: a) in general, a
BCD update may unnecessarily slow down the convergence of the algorithm by focusing only on a single
coordinate of the gradient information, especially in the sparse-data problems we consider in this paper (see,
e.g., Pedregosa et al. [27, Appendix F]); and b) BCD algorithms typically apply only to box-shaped constraints,
which is what our algorithms are designed to be able to avoid. We would like to note, however, that our
stochastic gradient oracle set-up (Section 2) does allow for building an unbiased gradient estimate using only
one randomly-selected (block-)coordinate, as done in BCD methods. Nevertheless, the literature on parallel
asynchronous BCD algorithms is vast, including especially algorithms for proximal, non-strongly-convex, and
non-convex optimization; see, e.g., [29, 11, 4, 2, 3, 19, 31, 33, 32, 35, 36, 12, 6, 28] and the references therein.

2

Algorithm X Nonsmooth Smooth f Strongly-convex Smooth f + Strongly-convex
SGD (DA) Rd [10, 26] X [26] X [26] X [30, 7, 20, 17, 24, 26] X
SGD (MD) ⇤ [10, 26] [26] [26] [30, 7, 20, 17, 24, 26]

DA � X X X X
AG / DA ⇤ [10, 26] X [26] X [26] X [26] X
AG / DA � X X X X
Prox-MD ⇤ - - - [27]

Prox-DA � X X X X
Prox-AG � X X X X
Hedge/EG 4 X X X X

Table 1: (Star-)convex optimization settings under which sufficient sparsity results in linear speed-up.
Previous work are cited under the settings they address. A X indicates a setting covered by the results
in this paper. The symbols ⇤,4, and� indicate, respectively, the case when the constraint set is
box-shaped, the probability simplex, or any convex constraint set with a projection oracle. AG, DA,
and MD stand, respectively, for ADAGRAD, Dual-Averaging, and Mirror Descent, while Prox-AG,
Prox-DA, and Prox-MD denote their proximal variants (using the proximal operator of �).

and show that it enjoys similar parallel speed-up regimes as ASYNCADA. The results are derived for
the more general setting of noisy online optimization, and the generic framework is of independent
interest, in particular in the related settings of distributed and delayed-feedback learning.

The rest of the paper is organized as follows: The optimization problem and its solution with serial
algorithms are described in Section 2 and Section 3, respectively. The generic perturbed-iterate
framework is given in Section 4. Our main algorithms, ASYNCADA and HEDGEHOG are presented
and analyzed in Section 5 and Section 6, respectively. Conclusions are drawn and some open problems
are discussed in Section 7, while omitted technical details are given in the appendices.

1.2 Notation and definitions

We use [n] to denote the set {1, 2, . . . , n}, I{E} for the indicator of an event E , and �(H) to denote
the sigma-field generated by a set H of random variables. The j-th coordinate of a vector a 2 Rd

is denoted a
(j). For ↵ 2 Rd with positive entries, k · k↵ denotes the ↵-weighted Euclidean norm,

given by kxk2
↵
= 1

2

P
d

j=1 ↵
(j)

�
x
(j)
�2

, and k · k↵,⇤ its dual. We use (at)
j

t=i
to denote a sequence

ai, ai+1, . . . , aj and define ai:j :=
P

j

t=i
at, with ai:j := 0 if i > j. Given a differentiable function

h : Rd ! R, the Bregman divergence of y 2 Rd from x 2 Rd with respect to (w.r.t.) h is given by
Bh(y, x) := h(y)� h(x)� hrh(x), y � xi. It can be shown that a differentiable function is convex
if and only if Bh(x, y) � 0 for all x, y 2 Rd. The function h : Rd ! R is µ-strongly convex w.r.t. a
norm k ·k on Rd if and only if for all x, y 2 Rd Bh(x, y) � µ

2 kx�yk2, and smooth w.r.t. a norm k ·k
if and only if for all x, y 2 Rd, |Bh(x, y)|  1

2kx� yk2. A differentiable function f is star-convex if
and only if there exists a global minimizer x⇤ of f such that for all x 2 Rd, Bf (x⇤

, x) � 0.

2 Problem setting: noisy online optimization

We consider a generic iterative optimization setting that enables us to study both online learning
and stochastic composite optimization. The problem is defined by a (known) constraint set X
and a (known) convex (possibly non-differentiable) function �, as well as differentiable functions
f1, f2, . . . about which an algorithm learns iteratively. At each iteration t = 1, 2, . . . , the algorithm
picks an iterate xt 2 X , and observes an unbiased estimate gt 2 Rd of the gradient rft(xt) , that
is, E{gt|xt} = rft(xt). The goal is to minimize the composite-objective online regret after T
iterations, given by

R
(f+�)
T

=
TX

t=1

(ft(xt) + �(xt)� ft(x
⇤
T
)� �(x⇤

T
)) ,

3

where x
⇤
T

= argminx2X

nP
T

t=1(ft(x) + �(x))
o

. In the absence of noise (i.e., when gt =

rft(xt)), this reduces to the (composite-objective) online (convex) optimization setting [34, 14].

Stochastic optimization, online regret, and iterate averaging. If ft = f for all t = 1, 2, . . . , we
recover the stochastic optimization setting, with the algorithm aiming to minimize the composite
objective f + � over X while receiving noisy estimates of rf at points (xt)Tt=1. The algorithm’s
online regret can then be used to control the optimization risk: Since ft ⌘ f , we have x

⇤
T
= x

⇤ =
argminx2X {f(x) + �(x)}, and by Jensen’s inequality, if f is convex and x̄T = 1

T
x1:T is the

average iterate,

f(x̄T) + �(x̄T)� f(x⇤)� �(x⇤)  1

T
R

(f+�)
T

.

In addition, if f is non-convex but x̄T is selected uniformly at random from x1, . . . , xT , then the
above bound holds in expectation. As such, in the rest of the paper we study the optimization risk
through the lens of online regret.

Stochastic first-order oracle. Throughout the paper, we assume that at time t, the noisy gradient
estimate gt is given by a randomized first-order oracle3

gt : Rd ⇥ ⌅! Rd, where ⌅ is some space
of random variables, and there exists a sequence (⇠t)

T

t=1 of independent elements from ⌅, with
distribution P⌅, such that

R
⌅ gt(x, ⇠)dP⌅(⇠) = rft(x) for all x 2 X .

For example, in the finite-sum stochastic optimization case when f =
P

N

i
fi, selecting one fi

uniformly at random to estimate the gradient corresponds to P⌅ being the uniform distribution on ⌅ =
{1, 2, . . . , N} and gt(x, ⇠t) = rf⇠t(x), whereas selecting a mini-batch of fi’s corresponds to ⌅ being
the set of subsets (of a fixed or varying size) of {1, 2, . . . , N} and gt(x, ⇠t) =

1
|⇠t|

P
i2⇠t
rfi(x).

This also covers variance-reduced gradient estimates as formed, e.g., by SAGA and SVRG, in which
case gt is built using information from the previous rounds.4

3 Preliminaries: analysis in the serial setting

First, we recall the analysis of a generic serial dual-averaging algorithm, known as Adaptive Follow-
the-Regularized-Leader (ADA-FTRL) [21, 25, 16], that generalizes regularized dual-averaging [37]
and captures the dual-averaging variants of SGD, Ada-Grad, Proximal-SGD and EG as special case.

Serial ADA-FTRL. The serial ADA-FTRL algorithm uses a sequence of regularizer functions
r0, r1, r2, At time t = 1, 2, . . . , given the previous feedback gs 2 Rd

, s 2 [t� 1], ADA-FTRL
selects the next point xt such that

xt 2 argmin
x2X

hzt�1, xi+ t�(x) + r0:t�1(x) , (2)

where zt�1 = g1:t�1 is the sum of the past feedback. We refer to (zt, t, r0:t) as the state of the
algorithm at time t, noting that apart from tie-breaking in (2), this state determines xt.

It is straightforward to verify that with � = 0,X = R
d, and r0:t�1 = ⌘

2k · k
2 for some ⌘ > 0, we get

the SGD update xt = � 1
⌘
g1:t�1. In addition, using r0:t�1 = 1

2k · k
2
⌘t

where ⌘(i)
t
, i 2 [d] are positive

step-sizes (possibly adaptively tuned [22, 9]), ADA-FTRL reduces to xt = prox(t�,�zt�1, ⌘t),
where prox is the generalized proximal operator oracle5 over X that, given a function and vectors
z and ⌘, returns6

prox(, z, ⌘) := argmin
x2X

 (x) +
1

2

��x� ⌘�1 � z
��2
⌘
. (3)

3With a slight abuse of notation, gt(x, ⇠) (with arguments x, ⇠) is from now on used to denote the oracle at
time t evaluated at x, ⇠, where as gt (without arguments) denotes the observed noisy gradient gt(xt, ⇠t).

4Note that in this case ⇠t remains an independent sequence, even though gt changes with the history.
5 Serial proximal DA [37] and ADA-FTRL call prox with t�, whereas the conventional Proximal-SGD

algorithm (based on Mirror-Descent) invokes the proximal operator with � irrespective of the iteration; see
the paper of Xiao [37, Sections 5 and 6] for a detailed discussion of this phenomenon.

6Here ⌘�1 denotes the elementwise inverse of ⌘ and � denotes elementwise multiplication.

4

When ⌘ is the same for all coordinates (in which case we simply treat it as a scalar), this reduces
to prox(, z, ⌘) = argminx2X (x) +

⌘

2kx � z/⌘k2, which is the standard proximal operator;
the generalized version (3) makes it possible to use coordinatewise step-sizes as in ADAGRAD
[22, 9]. Finally, when � = 0 and X is the probability simplex, ADA-FTRL with the negen-
tropy regularizer r0:t�1(x) = r0(x) = ⌘

P
d

i=1 xi log(xi) for some ⌘ > 0, recovers the update
x
(i)
t

= Ct exp(�z(i)t�1/⌘) of the EG algorithm, where Ct = 1/
P

j=1 exp(�z
(j)
t�1/⌘) is the constant

normalizing xt to lie in X . Other choices of rt recover algorithms such as the p-norm update; we refer
to Shalev-Shwartz [34], Hazan [14], McMahan [21], and Orabona et al. [25] for further examples.

Analysis of ADA-FTRL ADA-FTRL and its special cases have been extensively studied in the
literature [5, 34, 14, 21, 25, 16]. In particular, it has been shown that under specific conditions on rt

and �, which we discuss in detail in Appendix F, ADA-FTRL enjoys the following bound on the
linearized regret [25, 16]:

Theorem 1 (Regret of ADA-FTRL). For any x
⇤ 2 X and any sequence of vectors (gt)

T

t=1 in Rd,
using any sequence of regularizers r0, r1, . . . , rT that are admissible w.r.t. a sequence of norms
k · k(t) (see Definition 2 in Appendix F), the iterates (xt)

T

t=1 generated by ADA-FTRL satisfy

TX

t=1

(hgt, xt � x
⇤i+ �(xt)� �(x⇤))  r0:T (x

⇤)�
TX

t=0

rt(xt+1) +
TX

t=1

1

2
kgtk2(t,⇤) . (4)

Importantly, this bound holds for any feedback sequence gt irrespective of the way it is generated,
and serves as a solid basis to derive bounds under different assumptions on f , �, and rt [25, 16].

4 Relaxing the serial analysis: algorithms with perturbed state

In this section, we show that Theorem 1 can be used to analyze ADA-FTRL when its state undergoes
specific perturbations. This relaxation of the generic serial analysis framework underlies our analysis
of parallel asynchronous algorithms, since parallel algorithms like ASYNCADA and HEDGEHOG
can be viewed as serial ADA-FTRL algorithms with perturbed states, as we show in Sections 5 and 6.

Perturbed ADA-FTRL. Next, we show that Theorem 1 also provides the basis to analyze ADA-
FTRL with perturbed states. Specifically, suppose that instead of (2), the iterate xt is given by

xt 2 argmin
x2X

hẑt�1, xi+ t̂t�(x) + r̂0:t�1(x), t = 1, 2, . . . , (5)

where ẑt�1 denotes a perturbed version of the dual vector zt�1, t̂t denotes a perturbed version of
ADA-FTRL’s iteration counter t, and r̂0:t�1 denotes a perturbed version of the regularizer r0:t�1.
Then, we can analyze the regret of the Perturbed-ADA-FTRL update (5) by comparing xt to the
“ideal” iterate x̃t, given by

x̃t := argmin
x2X

hzt�1, xi+ t�(x) + r0:t�1(x), t = 1, 2, (6)

Since (x̃t)
T

t=1 is given by a non-perturbed ADA-FTRL update, it enjoys the bound of Theorem 1. The
crucial observation of Duchi et al. [10] (who studied the special case of (5) with � = 0, box-shaped
X , and r̂t = rt) was that the regret of Perturbed-ADA-FTRL is related to the linearized regret of x̃t.
When � may be non-zero, we capture this relation by the next lemma, proved in Appendix A:

Lemma 1 (Perturbation penalty of ADA-FTRL). Consider any sequences (xt)
T

t=1 and (x̃t)
T

t=1 in
X , and any sequence (gt)

T

t=1 in Rd. Then, the regret R(f+�)
T

of the sequence (xt)
T

t=1 satisfies

R
(f+�)
T

=
TX

t=1

(hgt, x̃t � x
⇤i+ �(x̃t)� �(x⇤)) + ✏̃1:T + �1:T �B1:T , (7)

where ✏̃t = hgt, xt � x̃ti+ �(xt)� �(x̃t), �t = hrft(xt)� gt, xt � x
⇤i and Bt = Bft(x

⇤
, xt).

Since gt is an unbiased estimate of rft(xt) (conditionally given xt), �1:T is zero in expectation
0, and for x̃t given by (6), the first summation is bounded by Theorem 1. Also note that when
the ft are (star-)convex, �B1:T  0. Thus, to bound the regret of Perturbed-ADA-FTRL, it only

5

remains to control the “perturbation penalty” terms ✏̃t capturing the difference in the composite linear
loss hgt, ·i+ � between xt and x̃t. In Appendix A, we use the stability of ADA-FTRL algorithms
(Lemma 3) to control ✏̃1:T , under a specific perturbation structure (coming from delayed updates to ẑt)
that captures the evolution of the state of asynchronous dual-averaging algorithms like ASYNCADA
and HEDGEHOG. Unlike Duchi et al. [10], our derivation applies to any convex constraint set X and,
crucially, to ADA-FTRL updates incorporating non-zero � and a perturbed counter t̂t. The following
(informal) theorem, whose formal version is given in Appendix A, captures the result.
Theorem 4 (informal). Under appropriate independence, regularity, and structural assumptions on
the regularizers and the perturbations, the Perturbed-ADA-FTRL update (5) satisfies

E
n
R

(f+�)
T

o
 E

(
r0:T (x

⇤) +
TX

t=1

1 + p⇤⌫t +

P
s:t2Os

⌧s
⌫s

2
kgtk2(t,⇤) +

�t

⌫t

!
�B1:T

)
,

where p⇤, ⌫t, ⌧t and �t measure, respectively, the sparsity of the gradient estimates gt, the difference
t̂t�t, and the amount of perturbations in ẑt�1, and r̂0:t�1, while Os is the set of time steps whose
attributed perturbations affect iteration s (i.e., their updates are delayed beyond s).
As we show next, we can control the effect of p⇤,⌧t and �t in the bound by appropriately tuning t̂t,
resulting in linear speed-ups for ASYNCADA and HEDGEHOG.

5 ASYNCADA: Asynchronous Composite Adaptive Dual Averaging
In this section, we introduce and analyze ASYNCADA for asynchronous noisy online optimization.
ASYNCADA consists of ⌧ processes running in parallel (e.g., threads on the same physical machine
or computing nodes distributed over a network accessing a shared data store). The processes can
access a shared memory, consisting of a dual vector z 2 Rd to store the sum of observed gradient
estimates gt, a step-size vector ⌘ 2 Rd, and an integer t, referred to as the clock, to track the number
of iterations completed at each point in time. The processes run copies of Algorithm 1 concurrently.

Algorithm 1: ASYNCADA: Asynchronous Composite Adaptive Dual Averaging
1 repeat
2 ⌘̂ a full (lock-free) read of the shared step-sizes ⌘
3 ẑ a full (lock-free) read of the shared dual vector z
4 t t+ 1 // atomic read-increment
5 t̂ t+ � // denote ẑt�1 = ẑ, ⌘̂t = ⌘̂, t̂t = t̂
6 Receive ⇠t
7 Compute the next iterate: xt prox(t̂t�,�ẑt�1, ⌘̂t) // prox defined in (3)
8 Obtain the noisy gradient estimate: gt gt(xt, ⇠t)

9 for j such that g(j)
t
6= 0 do z

(j) z
(j) + g

(j)
t

// atomic update
10 Update the shared step-size vector ⌘
11 until terminated

Inconsistent reads. The processes access the shared memory without necessarily acquiring a lock:
as in previous Hogwild!-style algorithms [30, 20, 18, 17, 27], we only assume that operations on
single coordinates of z and ⌘, as well as on t

0, are atomic. This in particular means that the values of
ẑ or ⌘̂ read by a process may not correspond to an actual state of z or ⌘ at any given point in time, as
different processes can modify the coordinates in parallel while the read is taking place. A process ⇡
is in write-conflict with another process ⇡0 (equivalently, ⇡0 is in read-conflict with ⇡) if ⇡0 reads parts
of the memory which should have been updated by ⇡ before. To limit the effects of asynchrony, we
assume that a process can be in write- and read conflicts with at most ⌧c�1 processes, respectively.

The role of �. ASYNCADA uses an over-estimate t̂t of the current global clock t by an additional �.
This over-estimation enables us to better handle the effect of asynchrony when composite objectives
are involved, in particular ensuring the appropriate tuning of ⌫t in Theorem 4; see Appendix C.
ASYNCADA can nevertheless be run without � (i.e., with � = 0).7

7 In Theorems 2, 5 and 6, we set � based on ⌧⇤ := max{⌧c, ⌧}. The analysis is still possible, and
straightforward, with � = 0, but results in a worst constant factor in the rate, as well as an extra additive term of
order O(⌧2⇤�) where � = supx,y2X {�(x)� �(y)} is the diameter of X w.r.t. �. This term does not diminish
with p⇤ and may be unnecessarily large, affecting convergence in early stages of the optimization process.

6

Exact vs estimated clock. ASYNCADA as given in Algorithm 1 maintains the exact global clock t.
However, this option may not be desirable (or available) in certain asynchronous computing scenarios.
For example, if the processes are distributed over a network, then maintaining an exact global clock
amounts to changing the pattern of asynchrony and delaying the computations by repeated calls over
a network. To mitigate this requirement, in Appendix B we provide ASYNCADA(⇢), a version of
ASYNCADA in which the processes update the global clock only every ⇢ iterations. ASYNCADA as
presented in Algorithm 1 is equivalent to ASYNCADA(⇢) with ⇢ = 1, and both algorithms enjoy the
same rate of convergence and linear speed-up. Obviously, when � ⌘ 0 and t is not used for setting
the step-sizes ⌘ either, there is no need to maintain t physically, and Line 4 can be omitted.

Updating the step-sizes ⌘: In Line 10 of Algorithm 1, the step-size ⌘ has to be updated based on
the information received. The exact way this is done depends on the specific step-size sched-
ule. In particular, we consider two situations: First, when the step-size is either constant or
a simple function of t (or t̂t in case of ASYNCADA(⇢)), and second, when diagonal ADA-
GRAD step-sizes are used. In the first case, the vector ⌘ need not be kept in the shared mem-
ory explicitly, and Lines 2 and 10 can be omitted. In the second case, following [10], we
store the sum of squared gradients in the shared ⌘, i.e., Line 10 is implemented as follows:

10* for j such that g(j)
t
6= 0 do

�
⌘
(j)
�2

�
⌘
(j)
�2

+ ↵
2
⇣
g
(j)
t

⌘2
// atomic update

for a fixed hyper-parameter ↵ > 0. In this case, we are storing the square of ⌘ in the shared memory,
so a square root operation needs to be applied after reading the shared memory in Line 2 to retrieve ⌘.

Forming the output x̄T for stochastic optimization: For stochastic optimization, the algorithm
needs to output the average (or randomized) iterate x̄T at the end. However, this needs no further
coordination between the processes. To form the average iterate, it suffices for each process to keep a
local running sum of the iterates it produces and the number of updates it makes. At the end, x̄T is
built from these sums and the total number of updates. Alternatively, we can return a random iterate
as x̄T by terminating the algorithm, with probability 1/T , after calculating x in Line 7.

5.1 Analysis of ASYNCADA

The analysis of ASYNCADA is based on treating it as a special case of Perturbed-ADA-FTRL. In
order to be able to use Theorem 4, we start with the following independence assumption on ⇠t:
Assumption 1 (Independence of ⇠t). For all t = 1, 2, . . . , T , the t-th sample ⇠t is independent of the
history Ĥt :=

�
(⇠s, ẑs, ⌘̂s+1)

t�1
s=1

.

This, in turn, implies that ⇠t is independent of xt as well as xs and ⇠s for all s < t.

For general (non-box-shaped) X , Assumption 1 is plausible, as ASYNCADA needs to read z (and ⌘)
completely and independently of ⇠t. If X is box-shaped and � is coordinate-separable, however, the
values of x(j)

t
for different coordinates j can be calculated independently. In this, case, the algorithm

may first sample ⇠t, and then only read the relevant coordinates j from z (and ⌘) for which gt may
be non-zero, as calculating other values of x(j)

t
is unnecessary for calculating gt. As mentioned by

Mania et al. [20], this violates Assumption 1. This is because multiple other processes are updating z

and ⌘, and the updates that are included the value read for ẑt�1 (and ⌘̂t) would then depend on ⇠t.
Previous papers either assume that this independence holds in their analysis, e.g., by enforcing a full
read of z and ⌘, [20, 18, 17, 27], or rely on the smoothness of the objective to bound the effect of
the possible change in the read values [20, Appendix A]. It seems possible to adapt the argument of
Mania et al. [20, Appendix A] to ASYNCADA for box-shaped X , by comparing xt to the iterate
that would have been created based on the content of the shared memory right before the start of the
execution of the t-th iteration. This makes the analysis more complicated, and is not necessary when
X is not box-shaped; hence, we do not further pursue this construction in this paper.

Sparsity of the gradient estimates. For t 2 [T] and j 2 [d], let pt,j to denote the probability that
the j-th coordinate of gt is non-zero given the history Ĥt, that is, pt,j = P

�
g
(j)
t
6= 0

��Ĥt

. Let p⇤

denote an upper-bound on maxt2[T],j2[d] pt,j . We use p⇤ as a measure of the sparsity of the problem.8

8 In stochastic optimization with a finite-sum objective f =
Pm

i=1 fi, where gt = rf⇠t(xt) and ⇠t 2 [m]
is an index at time t sampled uniformly at random and independently of the history, one could measure the

7

Non-adaptive and time-decaying step-sizes. We first study the case when ⌘t is either a constant,
or varies only as a function of the estimated iteration count t̂t. Recall that each concurrent iteration of
the algorithms can be in read- and write-conflict with at most ⌧c � 1 other iterations, respectively,
and that the algorithm uses ⌧ parallel processes. Define ⌧⇤ = max{⌧c, ⌧}. The next theorem gives
bounds on the regret of ASYNCADA under various scenarios. It is proved in Appendix C, where a
similar result is also given for ASYNCADA(⇢) (Theorem 5).
Theorem 2. Suppose that either all ft, t 2 [T] are convex, or � ⌘ 0 and ft ⌘ f for some star-convex
function f . Consider ASYNCADA running under Assumption 1 for T > ⌧

2
⇤ updates, using � = 2⌧2⇤ .

Let ⌘0 > 0. Then:

(i) If E
�
kgtk22

 G

2
⇤ for all t 2 [T], then using a fixed ⌘t = ⌘0

p
T or a time-varying ⌘t = ⌘0

p
t̂t,

1

T
E
n
R

(f+�)
T

o
 1p

T

✓
⌘0kx⇤k22 +

2(1 + p⇤⌧
2
⇤)

⌘0
G

2
⇤

◆
. (8)

(ii) If ft = f = E⇠⇠P⌅ {F (x, ⇠)}, �2
⇤ := E

�
krF (x⇤

, ·)k22

, and for all ⇠ 2 ⌅, F (·, ⇠) is convex
and 1-smooth w.r.t. the norm k · kl for some l 2 Rd with positive entries, then given a constant
c0 > 8(1 + p⇤⌧

2
⇤) and using a fixed ⌘t,i = c0li + ⌘0

p
T or a time-varying ⌘t,i = c0li + ⌘0

p
t̂t,

1

T
E
n
R

(f+�)
T

o
 c0kx⇤k2

l

T
+

2p
T

✓
⌘0kx⇤k22 +

4(1 + p⇤⌧
2
⇤)

⌘0
�
2
⇤

◆
. (9)

(iii) If � is µ-strongly-convex and E
�
kgtk22

 G

2
⇤ for all t 2 [T], then using ⌘t ⌘ 0 or, equivalently,

prox(t̂t�,�z, 0) := argminx2X t̂t�(x) + hz, xi = r�⇤(�z/t̂t),
1

T
E
n
R

(f+�)
T

o
 (1 + p⇤⌧

2
⇤)G

2
⇤(1 + log(T))

µT
. (10)

Remark 1. If c = p⇤⌧
2
⇤ is constant, the bounds match the corresponding serial bounds [16] up to

constant factors, implying a linear speed-up. This also extends the analysis of ASYNC-DA [10] to
non-box-shaped X , non-zero �, time-varying step sizes, and smooth and strongly-convex objectives.9

Remark 2. Note that (10) holds for all time steps, and converges to zero as T grows, without
the knowledge of T or epoch-based updates. In case of ASYNCADA(⇢), the algorithm does not
maintain an exact clock either. To our knowledge, this makes ASYNCADA(⇢) the first Hogwild!-style
algorithm with an any-time guarantee without maintaining a global clock.
Remark 3. Since strongly convex functions have unbounded gradients on unbounded domains, it
is not possible to impose a uniform bound on the gradient of f + � in part (iii) for unconstrained
optimization (i.e., when X = Rd). However, we only require the gradients of f , the non-strongly-
convex part of the objective, to be bounded, which is a feasible assumption. Similarly, Nguyen
et al. [24] analyzed strongly-convex optimization with unconstrained Hogwild! while avoiding the
aforementioned uniform boundedness assumption,s using a global clock. ASYNCADA(⇢) achieves
the same result, but applies to arbitrary convex X and �, without requiring a global clock.

Adaptive step-sizes. Due to space constraints, we relegate the analysis of ASYNCADA(⇢) with
AdaGrad step-sizes given by Line 10* to Appendix D.

6 HEDGEHOG: Hogwild-Style Hedge

Next, we present HEDGEHOG, which is, to our knowledge the first asynchronous version of the EG
algorithm. The parallelization scheme is very similar to ASYNCADA, the difference being that EG
uses multiplicative updates rather than additive SGD-style updates. We focus only on the case of
� ⌘ 0. Each processe runs Lines 3–10 of Algorithm 2 concurrently with the other processes, sharing
the dual vector z.
sparsity of the problem through a “conflict graph” [30, 20, 17, 27], which is a bi-partite graph with fi, i 2 [m]
on the left and coordinates j 2 [d] on the right, and an edge between fi and coordinate j ifrfi(x)(j) can be
non-zero for some x 2 X . In this graph, let �j denote the degree of the node corresponding to coordinate j and
�r be the largest �j , j 2 [d]. Then, it is straightforward to see that pt,j  �j/m. Thus, p⇤ = �r/m is a valid
upper-bound, and gives the sparsity measure used, e.g., by Leblond et al. [17] and Pedregosa et al. [27].

9Note that under the conditions considered in [10], which include that X is box-shaped and � = 0, ASYNC-
DA requires a less restrictive sparsity regime of p⇤⌧⇤  c for linear speed-up.

8

Algorithm 2: HEDGEHOG!: Asynchronous Stochastic Exponentiated Gradient.
Input: Step size ⌘

1 Initialization
2 Let z 0 be the shared sum of observed gradient estimates
3 repeat in parallel by each process
4 ẑ a full lock-free read of the shared dual vector z // t t+ 1, denote ẑt�1 = ẑ
5 Receive ⇠t
6 Compute the next iterate: w(i)

t
 exp

⇣
�ẑ(i)

t�1/⌘

⌘
, i = 1, 2, . . . , d

7 Normalize: xt wt/kwtk1
8 Obtain the noisy gradient estimate: gt gt(xt, ⇠t)

9 for j such that g(j)
t
6= 0 do z

(j) z
(j) + g

(j)
t

// atomic update
10 until terminated

As in ASYNCADA(⇢), we index the iterations by the time they finish the reading of z in Line 4
of HEDGEHOG (“after-read” labeling [18]). Similarly, we use Ĥt =

n
(⇠s, ẑs)

t�1
s=1

o
to denote the

history of HEDGEHOG at time t, and use Ĥt to define the sparsity measure p⇤ as in Section 5.1. Then,
we have the following regret bound for HEDGEHOG.

Theorem 3. Let X be the probability simplex X = {x|x(j)
> 0, kxk1 = 1}, and suppose that either

ft are all convex, or ft ⌘ f for a star-convex f . Assume that for all t 2 [T], the sampling of ⇠t in
Line 5 of HEDGEHOG is independent of the history Ĥt. Then, after T updates, HEDGEHOG satisfies

E
n
R

(f)
T

o
 ⌘ log(d) +

TX

t=1

E
⇢
1 +
p
p⇤⌧⇤

2⌘
kgtk21

�
.

Remark 4. As in the case of ASYNCADA, as long as pp⇤⌧⇤ is a constant, the rate above matches
the worst-case rate of serial EG up to constant factors, implying a linear speed-up. In particular,
given an upper-bound G⇤ on E{kgtk1} and setting ⌘ = G⇤/

p
T log(d), we recover the well-known

O(G⇤
p
T log(d)) rate for EG [14], but in the paralell asynchronous setting.

7 Conclusion, limitations, and future work

We presented and analyzed ASYNCADA, a parallel asynchronous online optimization algorithm
with composite, adaptive updates, and global convergence rates under generic convex constraints and
convex composite objectives which can be smooth, non-smooth, or non-strongly-convex. We also
showed a similar global convergence for the so-called “star-convex” class of non-convex functions.
Under all of the aforementioned settings, we showed that ASYNCADA enjoys linear speed-ups when
the data is sparse. We also derived and analyzed HEDGEHOG, to our knowledge the first Hogwild-
style asynchronous variant of the Exponentiated Gradient algorithm working on the probability
simplex, and showed that HEDGEHOG enjoyed similar linear speed-ups.

To derive and analyze ASYNCADA and HEDGEHOG, we showed that the idea of perturbed iterates,
used previously in the analysis of asynchronous SGD algorithms, naturally extends to generic dual-
averaging algorithms, in the form of a perturbation in the “state” of the algorithm. Then, building on
the work of Duchi et al. [10], we studied a unified framework for analyzing generic adaptive dual-
averaging algorithms for composite-objective noisy online optimization (including ASYNCADA
and HEDGEHOG as special cases). Possible directions for future research include applying the
analysis to other problem settings, such as multi-armed bandits. In addition, it remains an open
problem whether such an analysis is obtainable for constrained adaptive Mirror Descent without
further restrictions on the regularizers (e.g., smoothness of the regularizer seems to help). Finally, the
derivation of such data-dependent bounds for the final (rather than the average) iterate in stochastic
optimization, without the usual strong-convexity and smoothness assumptions, remains an interesting
open problem.

9

References

[1] Heinz H Bauschke and Patrick L Combettes. Convex analysis and monotone operator theory
in Hilbert spaces. Springer Science & Business Media, 2011.

[2] Loris Cannelli et al. “Asynchronous Parallel Algorithms for Nonconvex Big-Data Optimization.
Part I: Model and Convergence”. In: arXiv preprint arXiv:1607.04818 (2017).

[3] Loris Cannelli et al. “Asynchronous Parallel Algorithms for Nonconvex Big-Data Optimization.
Part II: Complexity and Numerical Results”. In: arXiv preprint arXiv:1701.04900 (2017).

[4] Loris Cannelli et al. “Asynchronous parallel algorithms for nonconvex optimization”. In: arXiv
preprint arXiv:1607.04818 (2016).

[5] Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction, Learning, and Games. New York, NY,
USA: Cambridge University Press, 2006.

[6] Damek Davis, Brent Edmunds, and Madeleine Udell. “The sound of apalm clapping: Faster
nonsmooth nonconvex optimization with stochastic asynchronous palm”. In: Advances in
Neural Information Processing Systems. 2016, pp. 226–234.

[7] Christopher De Sa et al. “Taming the Wild: A Unified Analysis of Hogwild!-Style Algorithms”.
In: arXiv preprint arXiv:1506.06438 (2015).

[8] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. “SAGA: A fast incremental gradient
method with support for non-strongly convex composite objectives”. In: Advances in neural
information processing systems. 2014, pp. 1646–1654.

[9] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive Subgradient Methods for Online
Learning and Stochastic Optimization”. In: Journal of Machine Learning Research 12 (July
2011), pp. 2121–2159.

[10] John Duchi, Michael I Jordan, and Brendan McMahan. “Estimation, optimization, and paral-
lelism when data is sparse”. In: Advances in Neural Information Processing Systems. 2013,
pp. 2832–2840.

[11] Francisco Facchinei, Gesualdo Scutari, and Simone Sagratella. “Parallel selective algorithms
for nonconvex big data optimization”. In: IEEE Transactions on Signal Processing 63.7 (2015),
pp. 1874–1889.

[12] Olivier Fercoq and Peter Richtárik. “Optimization in high dimensions via accelerated, parallel,
and proximal coordinate descent”. In: SIAM Review 58.4 (2016), pp. 739–771.

[13] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical learning.
Vol. 1. Springer series in statistics Springer, Berlin, 2001.

[14] Elad Hazan. “Introduction to online convex optimization”. In: Foundations and Trends in
Optimization 2.3-4 (2016), pp. 157–325.

[15] Rie Johnson and Tong Zhang. “Accelerating stochastic gradient descent using predictive
variance reduction”. In: Advances in Neural Information Processing Systems. 2013, pp. 315–
323.

[16] Pooria Joulani, András György, and Csaba Szepesvári. “A Modular Analysis of Adaptive
(Non-) Convex Optimization: Optimism, Composite Objectives, and Variational Bounds”.
In: Proceedings of Machine Learning Research (Algorithmic Learning Theory 2017). 2017,
pp. 681–720.

[17] Rémi Leblond, Fabian Pederegosa, and Simon Lacoste-Julien. “Improved asynchronous
parallel optimization analysis for stochastic incremental methods”. In: arXiv preprint
arXiv:1801.03749 (2018).

[18] Rémi Leblond, Fabian Pedregosa, and Simon Lacoste-Julien. “ASAGA: asynchronous parallel
SAGA”. In: arXiv preprint arXiv:1606.04809 (2016).

[19] Ji Liu et al. “An asynchronous parallel stochastic coordinate descent algorithm”. In: arXiv
preprint arXiv:1311.1873 (2013).

[20] H. Mania et al. “Perturbed Iterate Analysis for Asynchronous Stochastic Optimization”. In:
ArXiv e-prints (July 2015). arXiv: 1507.06970 [stat.ML].

[21] H. Brendan McMahan. “A survey of Algorithms and Analysis for Adaptive Online Learning”.
In: Journal of Machine Learning Research 18.90 (2017), pp. 1–50.

[22] H. Brendan McMahan and Matthew Streeter. “Adaptive bound optimization for online convex
optimization”. In: Proceedings of the 23rd Conference on Learning Theory. 2010.

10

http://arxiv.org/abs/1507.06970

[23] Yurii Nesterov. Introductory lectures on convex optimization: A basic course. Vol. 87. Springer
Science & Business Media, 2013.

[24] Lam M Nguyen et al. “SGD and Hogwild! convergence without the bounded gradients
assumption”. In: arXiv preprint arXiv:1802.03801 (2018).

[25] Francesco Orabona, Koby Crammer, and Nicolò Cesa-Bianchi. “A generalized online mirror
descent with applications to classification and regression”. English. In: Machine Learning 99.3
(2015), pp. 411–435.

[26] Xinghao Pan et al. “Cyclades: Conflict-free asynchronous machine learning”. In: Advances in
Neural Information Processing Systems. 2016, pp. 2568–2576.

[27] Fabian Pedregosa, Rémi Leblond, and Simon Lacoste-Julien. “Breaking the Nonsmooth
Barrier: A Scalable Parallel Method for Composite Optimization”. In: Advances in Neural
Information Processing Systems. 2017, pp. 55–64.

[28] Zhimin Peng et al. “Arock: an algorithmic framework for asynchronous parallel coordinate
updates”. In: SIAM Journal on Scientific Computing 38.5 (2016), A2851–A2879.

[29] Meisam Razaviyayn et al. “Parallel successive convex approximation for nonsmooth nonconvex
optimization”. In: Advances in Neural Information Processing Systems. 2014, pp. 1440–1448.

[30] Benjamin Recht et al. “Hogwild: A Lock-Free Approach to Parallelizing Stochastic Gradient
Descent”. In: Advances in Neural Information Processing Systems 24. Ed. by J. Shawe-Taylor
et al. Curran Associates, Inc., 2011, pp. 693–701.

[31] Gesualdo Scutari, Francisco Facchinei, and Lorenzo Lampariello. “Parallel and distributed
methods for constrained nonconvex optimization—Part I: Theory”. In: IEEE Transactions on
Signal Processing 65.8 (2016), pp. 1929–1944.

[32] Gesualdo Scutari and Ying Sun. “Parallel and distributed successive convex approximation
methods for big-data optimization”. In: Multi-agent Optimization. Springer, 2018, pp. 141–
308.

[33] Gesualdo Scutari et al. “Parallel and distributed methods for constrained nonconvex
optimization-part ii: Applications in communications and machine learning”. In: IEEE Trans-
actions on Signal Processing 65.8 (2016), pp. 1945–1960.

[34] Shai Shalev-Shwartz. “Online learning and online convex optimization”. In: Foundations and
Trends in Machine Learning 4.2 (2011), pp. 107–194.

[35] Tao Sun, Robert Hannah, and Wotao Yin. “Asynchronous coordinate descent under more real-
istic assumptions”. In: Advances in Neural Information Processing Systems. 2017, pp. 6182–
6190.

[36] Yu-Xiang Wang et al. “Parallel and distributed block-coordinate Frank-Wolfe algorithms”. In:
International Conference on Machine Learning. 2016, pp. 1548–1557.

[37] Lin Xiao. “Dual averaging method for regularized stochastic learning and online optimization”.
In: Advances in Neural Information Processing Systems. 2009, pp. 2116–2124. (Visited on
02/05/2015).

11

