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Abstract

We consider distributed statistical optimization in one-shot setting, where there
are m machines each observing n i.i.d. samples. Based on its observed samples,
each machine then sends an O(log(mn))-length message to a server, at which a
parameter minimizing an expected loss is to be estimated. We propose an algorithm
called Multi-Resolution Estimator (MRE) whose expected error is no larger than
Õ
(
m−1/max(d,2)n−1/2

)
, where d is the dimension of the parameter space. This

error bound meets existing lower bounds up to poly-logarithmic factors, and is
thereby order optimal. The expected error of MRE, unlike existing algorithms,
tends to zero as the number of machines (m) goes to infinity, even when the number
of samples per machine (n) remains upper bounded by a constant. This property of
the MRE algorithm makes it applicable in new machine learning paradigms where
m is much larger than n.

1 Introduction

The rapid growth in the size of datasets has given rise to distributed models for statistical learning, in
which data is not stored on a single machine. In several recent learning applications, it is commonplace
to distribute data across multiple machines, each of which processes its own data and communicates
with other machines to carry out a learning task. The main bottleneck in such distributed settings is
often the communication between machines, and several recent works have focused on designing
communication-efficient algorithms for different machine learning applications [Duchi et al., 2012,
Braverman et al., 2016, Chang et al., 2017, Diakonikolas et al., 2017, Lee et al., 2017].

In this paper, we consider the problem of statistical optimization in a distributed setting as follows.
Consider an unknown distribution P over a collection, F , of differentiable convex functions with
Lipschitz first order derivatives, defined on a convex region in Rd. There are m machines, each
observing n i.i.d sample functions from P . Each machine processes its observed data, and transmits
a signal of certain length to a server. The server then collects all the signals and outputs an estimate
of the parameter θ∗ that minimizes the expected loss, i.e., minθ Ef∼P

[
f(θ)

]
. See Fig. 1 for an

illustration of the system model.

We focus on the distributed aspect of the problem considering arbitrarily large number of machines
(m) and

a) present an order optimal algorithm with b = O(logmn) bits per transmission, whose
estimation error is no larger than Õ

(
m−1/max(d,2)n−1/2

)
, meeting the lower bound in

[Salehkaleybar et al., 2019] up to a poly-logarithmic factor (cf. Theorem 1);

b) we present an algorithm with a single bit per message with expected error no larger than
Õ
(
m−1/2 + n−1/2

)
(cf. Proposition 1).
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1.1 Background

The distributed setting considered here has recently employed in a new machine learning paradigm
called Federated Learning [Konečnỳ et al., 2015]. In this framework, training data is kept in users’
computing devices due to privacy concerns, and the users participate in the training process without
revealing their data. As an example, Google has been working on this paradigm in their recent project,
Gboard [McMahan and Ramage, 2017], the Google keyboard. Besides communication constraints,
one of the main challenges in this paradigm is that each machine has a small amount of data. In other
words, the system operates in a regime that m is much larger than n [Chen et al., 2017].

A large body of distributed statistical optimization/estimation literature considers “one-shot" setting,
in which each machine communicates with the server merely once [Zhang et al., 2013]. In these
works, the main objective is to minimize the number of transmitted bits, while keeping the estimation
error as low as the error of a centralized estimator, in which the entire data is co-located in the server.

If we impose no limit on the communication budget, then each machine can encode its entire data
into a single message and sent it to the server. In this case, the sever acquires the entire data from all
machines, and the distributed problem reduces to a centralized problem. We call the sum of observed
functions at all machines as the centralized empirical loss, and refer to its minimizer as the centralized
solution. It is part of the folklore that the centralized solution is order optimal and its expected error
is Θ

(
1/
√
mn
)

[Lehmann and Casella, 2006, Zhang et al., 2013]. Clearly, no algorithm can beat the
performance of the best centralized estimator.

Zhang et al. [2012] studied a simple averaging method where each machine obtains the empirical
minimizer of its observed functions and sends this minimizer to the server through an O(logmn)
bit message. Output of the server is then the average of all received empirical minimizers. Zhang
et al. [2012] showed that the expected error of this algorithm is no larger than O

(
1/
√
mn + 1/n

)
,

provided that: 1- all functions are convex and twice differentiable with Lipschitz continuous second
derivatives, and 2- the objective function Ef∼P

[
f(θ)

]
is strongly convex at θ∗. Under the extra

assumption that the functions are three times differentiable with Lipschitz continuous third derivatives,
Zhang et al. [2012] also present a bootstrap method whose expected error is O

(
1/
√
mn + 1/n1.5

)
.

It is easy to see that, under the above assumptions, the averaging method and the bootstrap method
achieve the performance of the centralized solution if m ≤ n and m ≤ n2, respectively. Recently,
Jordan et al. [2018] proposed to optimize a surrogate loss function using Taylor series expansion.
This expansion can be constructed at the server by communicating O(m) number of d-dimensional
vectors. Under similar assumption on the loss function as in [Zhang et al., 2012], they showed that
the expected error of their method is no larger than O

(
1/
√
mn + 1/n9/4

)
. It, therefore, achieves

the performance of the centralized solution for m ≤ n3.5. However, note that when n is fixed, all
aforementioned bounds remain lower bounded by a positive constant, even when m goes to infinity.

For the problem of sparse linear regression, Braverman et al. [2016] proved that any algorithm that
achieves optimal minimax squared error, requires to communicate Ω(m×min(n, d)) bits in total
from machines to the server. Later, Lee et al. [2017] proposed an algorithm that achieves optimal
mean squared error for the problem of sparse linear regression when d < n.

Recently, Salehkaleybar et al. [2019] studied the impact of communication constraints on the expected
error, over a class of first order differentiable functions with Lipschitz continuous derivatives. In
parts of their results, they showed that under the assumptions of Section 2 of this paper in the case
of logmn bits communication budget, the expected error of any estimator is lower bounded by
Ω̃
(
m−1/max(d,2)n−1/2

)
. They also showed that if the number of bits per message is bounded by a

constant and n is fixed, then the expected error remains lower bounded by a constant, even when the
number of machines goes to infinity.

Other than one-shot communication, there is another major communication model that allows for
several transmissions back and forth between the machines and the server. Most existing works of
this type [Bottou, 2010, Lian et al., 2015, Zhang et al., 2015, McMahan et al., 2017] involve variants
of stochastic gradient descent, in which the server queries at each iteration the gradient of empirical
loss at certain points from the machines. The gradient vectors are then aggregated in the server to
update the model’s parameters. The expected error of such algorithms typically scales as O

(
1/k
)
,

where k is the number of iterations.
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1.2 Our contributions

We study the problem of one-shot distributed learning under milder assumptions than previously
available in the literature. We assume that loss functions, f ∈ F , are convex and differentiable with
Lipschitz continuous first order derivatives. This is in contrast to the works of [Zhang et al., 2012]
and [Jordan et al., 2018] that assume Lipschitz continuity of second or third derivatives. The reader
should have in mind this model differences, when comparing our bounds with the existing results.

Unlike existing works, our results concern the regime where the number of machines m is large, and
our bounds tend to zero as m goes to infinity, even if the number of per-machine observations n
is bounded by a constant. This is contrary to the algorithms in [Zhang et al., 2012], whose errors
tend to zero only when n goes to infinity. In fact, when n = 1, a simple example1 shows that the
expected errors of the simple averaging and bootstrap algorithms in [Zhang et al., 2012] remain lower
bounded by a constant, for all values of m. The algorithm in [Jordan et al., 2018] suffers from the
same problem and its expected error may not go to zero when n = 1.

In this work, we present an algorithm with O
(

log(mn)
)

bits per message, which we call Multi-
Resolution Estimator for Convex landscapes and logmn bits communication budget (MRE-C-log)
algorithm. We show that the estimation error of MRE-C-log algorithm meets the aforementioned
lower bound up to a poly-logarithmic factor. More specifically, we prove that the expected error of
MRE-C-log algorithm is no larger than O

(
m−1/max(d,2)n−1/2

)
. In this algorithm, each machines

reports not only its empirical minimizer, but also some information about the derivative of its empirical
loss at some randomly chosen point in a neighborhood of this minimizer. To provide insight into
the underlying idea behind MRE-C-log algorithm, we also present a simple naive approach whose
error tends to zero as the number of machines goes to infinity. Comparing with the lower bound
in [Salehkaleybar et al., 2019], the expected error of MRE-C-log algorithm meets the lower bound
up to a poly-logarithmic factor. Moreover, for the case of having constant bits per message, we
present a simple algorithm whose error goes to zero with rate Õ

(
m−1/2 + n−1/2

)
, when m and n go

to infinity simultaneously. We evaluate performance of the MRE-C-log algorithm in two different
machine learning tasks and compare with the existing methods in [Zhang et al., 2012]. We show via
experiments, for the n = 1 regime, that MRE-C-log algorithm outperforms these algorithms. The
observations are also in line with the expected error bounds we give in this paper and those previously
available. In particular, in the n = 1 regime, the expected error of MRE-C-log algorithm goes to zero
as the number of machines increases, while the expected errors of the previously available estimators
remain lower bounded by a constant.

1.3 Outline

The paper is organized as follows. We begin with a detailed model and problem definition in
Section 2. In Section 3, we present our algorithms and main upper bounds. We then report our
numerical experiments in Section 4. Finally, in Section 5 we discuss our results and present open
problems and directions for future research. The proofs of the main results and optimality of the
MRE-C-log algorithm are given in the appendix.

2 Problem Definition

Consider a positive integer d and a collection F of real-valued convex functions over [−1, 1]d. Let P
be an unknown probability distribution over the functions in F . Consider the expected loss function

F (θ) = Ef∼P
[
f(θ)

]
, θ ∈ [−1, 1]d. (1)

Our goal is to learn a parameter θ∗ that minimizes F :
θ∗ = argmin

θ∈[−1,1]d
F (θ). (2)

1Consider two convex functions f0(θ) = θ2+θ3/6 and f1(θ) = (θ−1)2+(θ−1)3/6 over [0, 1]. Consider
a distribution P that associates probability 1/2 to each function. Then, EP [f(θ)] = f0(θ)/2 + f1(θ)/2, and
the optimal solution is θ∗ = (

√
15− 3)/2 ≈ 0.436. On the other hand, in the averaging method proposed in

[Zhang et al., 2012], assuming n = 1, the empirical minimizer of each machine is either 0 if it observes f0, or
1 if it observes f1. Therefore, the server receives messages 0 and 1 with equal probability , and E

[
θ̂
]
= 1/2.

Hence, E
[
|θ̂ − θ∗|

]
> 0.06, for all values of m.
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Figure 1: A distributed system of m machines, each having access to n independent sample functions
from an unknown distribution P . Each machine sends a signal to a server based on its observations.
The server receives all signals and output an estimate θ̂ for the optimization problem in (2).

The expected loss is to be minimized in a distributed fashion, as follows. We consider a distributed
system comprising m identical machines and a server. Each machine i has access to a set of n inde-
pendently and identically distributed samples {f i1, · · · , f in} drawn from the probability distribution
P . Based on these observed functions, machine i then sends a signal Y i to the server. We assume that
the length of each signal is limited to b bits. The server then collects signals Y 1, . . . , Y m and outputs
an estimation of θ∗, which we denote by θ̂. See Fig. 1 for an illustration of the system model.2

Assumption 1 We let the following assumptions on F and P be in effect throughout the paper.

• Every f ∈ F is once differentiable and convex.

• Each f ∈ F has bounded and Lipschitz continuous derivatives. More concretely, for any
f ∈ F and any θ, θ′ ∈ [−1, 1]d, we have |f(θ)| ≤

√
d, ‖∇f(θ)‖ ≤ 1, and ‖∇f(θ) −

∇f(θ′)‖ ≤ ‖θ − θ′‖.

• Distribution P is such that F (defined in (1)) is strongly convex. More specifically, there
is a constant λ > 0 such that for any θ1, θ2 ∈ [−1, 1]d, we have F (θ2) ≥ F (θ1) +
∇F (θ1)T (θ2 − θ1) + λ‖θ2 − θ1‖2.

• The minimizer of F lies in the interior of the cube [−1, 1]d. Equivalently, there exists
θ∗ ∈ (−1, 1)d such that∇F (θ∗) = 0.

3 Algorithms and Main Results

In this section, we propose estimators to minimize the expected loss, organized in a sequence of three
subsections. In the first subsection, we consider the case of constant bits per signal transmission,
whereas in the last two subsections we allow for logmn bits per signal transmission. For the latter
regime, we first present in Subsection 3.2, a simple naive approach whose estimation error goes to
zero for large values of m, even when n = 1. Afterwards, in Subsection 3.3, we describe our main
estimator, establish an upper bound on its estimation error, and show that it is order optimal.

3.1 Constant number of bits per transmission

Here, we consider a simple case with a one-dimensional domain (d = 1) and one-bit signal per
transmission (b = 1). We show that the expected error can be made arbitrarily small as m and n go
to infinity simultaneously.

Proposition 1 Suppose that d = 1 and b = 1. There exists a randomized estimator θ̂ such that

E
[
(θ̂ − θ∗)2

]1/2
= O

(
1√
n

+
1√
m

)
.

2The considered model here is similar to the one in [Salehkaleybar et al., 2019].
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The proof is given in Appendix A. There, we assume for simplicity that the domain is the [0, 1]
interval and propose a simple randomized algorithm in which each machine i first computes an
O(1/

√
n)-accurate estimation θi based on its observed functions. It then sends a Y i = 1 signal with

probability θi. The server then outputs the average of the received signals as the finial estimate.

Based on Proposition 1, there is an algorithm that achieves any desired accuracy even with budget of
one bit, provided that m and n go to infinity simultaneously. In contrary, it was shown in Proposition
1 of [Salehkaleybar et al., 2019] that no estimator yields error better than a constant if n = 1 and
the number of bits per transmission is a constant independent of m. We conjecture that the bound
in Proposition 1 is tight. More concretely, for constant number of bits per transmission and any
randomized estimator θ̂, we have E[(θ̂ − θ∗)2]1/2 = Ω̃

(
1/
√
n+ 1/

√
m
)
.

3.2 A simple naive approach with logmn bits per transmission

We now consider the case where the number of bits per transmission is O(logm). In order to set
the stage for our main algorithm given in the next subsection, here we present a simple algorithm
and show that its estimation error decays as O(m−1/3). The underlying idea is that unlike existing
estimators, in this algorithm each machine encodes in its signal some information about the shape of
its observed functions at a point that is not necessarily close to its own private optimum. To simplify
the presentation, here we confine our setting to one dimensional domain (d = 1) with each machine
observing a single sample function (n = 1). The algorithm is as follows:

Consider a regular grid of size 3
√
m/ log(m) over the [−1, 1] interval. Each machine i selects

a grid point θi uniformly at random. The machine then forms a signal comprising two parts:
1- The location of θi, and 2- The derivative of its observed function f i at θi. In other words,
the signal Y i of the i-th machine is an ordered pair of the form

(
θi, f

′i(θi)
)
, where f

′i(θi)

is the derivative of f i at θi. In this encoding, we use O(logm) bits to represent both θi and
f
′i(θi). In the server, for each grid point θ, the average of f

′i is computed over all machines
i with θi = θ. We denote this average by F̂ ′(θ). The server then outputs a point θ that
minimizes

∣∣F̂ ′(θ)∣∣.
This algorithm learns an estimation of derivatives of F , and finds a point that minimizes the size of
this derivative. The following lemma shows that the estimation error of this algorithm is Õ(1/ 3

√
m).

The proof is given in Appendix B.

Proposition 2 Let θ̂ be the output of the above estimator. For any α > 1,

Pr

(∣∣θ̂ − θ∗∣∣ > 3α log(m)

λ 3
√
m

)
= O

(
exp

(
− α2 log3m

))
.

Consequently, for any k ≥ 1, we have E
[
|θ̂ − θ∗|k

]
= O

(
(log(m)/ 3

√
m)k

)
.

We now turn to the general case with arbitrary values for d and n, and present our main estimator.

3.3 The Main Algorithm

In this part, we propose our main algorithm and an upper bound on its estimation error. In the proposed
algorithm, transmitted signals are designed such that the server can construct a multi-resolution view
of gradient of function F (θ) around a promising grid point. Then, we call the proposed algorithm
“Multi-Resolution Estimator for Convex landscapes with logmn bits communication budget (MRE-
C-log)". The description of MRE-C-log is as follows:

Each machine i observes n functions and sends a signal Y i comprising three parts of the form
(s, p,∆). The signals are of length O(log(mn)) bits and the three parts s, p, and ∆ are as follows.
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Figure 2: An illustration of grid G and cube Cs centered at point s for d = 2. The point p belongs to
G̃2
s and p′ is the parent of p.

• Part s: Consider a grid G with resolution log(mn)/
√
n over the d-dimensional cube. Each

machine i computes the minimizer of the average of its first n/2 observed functions,

θi = argmin
θ∈[−1,1]d

n/2∑
j=1

f ij(θ). (3)

It then lets s be the closest grid point to θi.
• Part p: Let

δ , 4
√
d

(
log5(mn)

m

) 1
max(d,2)

. (4)

Note that δ = Õ
(
m−1/max(d,2)

)
. Let t = log(1/δ). Without loss of generality we assume

that t is an integer. Let Cs be a d-dimensional cube with edge size 2 log(mn)/
√
n centered

at s. Consider a sequence of t+1 grids on Cs as follows. For each l = 0, . . . , t, we partition
the cube Cs into 2ld smaller equal sub-cubes with edge size 2−l+1 log(mn)/

√
n. The lth

grid G̃ls comprises the centers of these smaller cubes. Then, each G̃ls has 2ld grid points.
For any point p′ in G̃ls, we say that p′ is the parent of all 2d points in G̃l+1

s that are in the(
2−l × (2 logmn)/

√
n
)
-cube centered at p′ (see Fig. 2). Thus, each point G̃ls (l < t) has

2d children.
To select p, we randomly choose an l from 0, . . . , twith probability 2(d−2)l/(

∑t
j=0 2(d−2)j).

We then let p be a uniformly chosen random grid point in G̃ls. Note that O(d log(1/δ)) =
O(d log(mn)) bits suffice to identify p uniquely.

• Part ∆: We let

F̂ i(θ) ,
2

n

n∑
j=n/2+1

f ij(θ), (5)

and refer to it as the empirical function of the ith machine. If the selected p in the previous
part is in G̃0

s, i.e., p = s, then we set ∆ to the gradient of F̂ i at θ = s. Otherwise, if p is in
G̃ls for l ≥ 1, we let

∆ , ∇F̂ i(p)−∇F̂ i(p′),
where p′ ∈ G̃l−1

s is the parent of p. Note that ∆ is a d-dimensional vector whose entries are
in the range

(
2−l
√
d log(mn)/

√
n
)
×
[
− 1,+1

]
. This is due to the Lipschitz continuity

of the derivative of the functions in F (cf. Assumption 1) and the fact that ‖p − p′‖ =

2−l
√
d log(mn)/

√
n. Hence, we can use O(d log(mn)) bits to represent ∆ within accuracy

2δ log(mn)/
√
n.

At the server, we choose an s∗ ∈ G that has the largest number of occurrences in the received signals.
Then, base on the signals corresponding to G̃0

s∗ , we approximate the gradient of F at s∗ as

∇̂F (s∗) =
1

Ns∗

∑
Signals of the form
Y i=(s∗,s∗,∆)

∆,
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where Ns∗ is the number of signals containing s∗ in the part p. Then, for any point p ∈ G̃ls∗ with
l ≥ 1, we compute

∇̂F (p) = ∇̂F (p′) +
1

Np

∑
Signals of the form
Y i=(s∗,p,∆)

∆, (6)

where Np is the number of signals having point p in their second argument. Finally, the sever lets θ̂
be a grid point p in G̃ts∗ with the smallest ‖∇̂F (p)‖.
In the MRE-C-log algorithm the signals are of length d/(d + 1) logm + d log n bits, which is no
larger than d logmn. Please refer to Section 5 for discussions on how the MRE-C-log algorithm can
be extended to work under more general communication constraints.

Theorem 1 Let θ̂ be the output of the above algorithm. Then,

Pr

(
‖θ̂ − θ∗‖ > 8d log

5
max(d,2)

+1(mn)

λm
1

max(d,2)n
1
2

)
= exp

(
− Ω

(
log2(mn)

))
.

The proof is given in Appendix C. The proof goes by first showing that s∗ is a closest grid point of G
to θ∗ with high probability. We then show that for any l ≤ t and any p ∈ G̃ls∗ , the number of received
signals corresponding to p is large enough so that the server obtains a good approximation of∇F at
p. Once we have a good approximation ∇̂F of ∇F at all points of G̃ts∗ , a point at which ∇̂F has the
minimum norm lies close to the minimizer of F .

Corollary 1 Let θ̂ be the output of the above algorithm. There is a constant η > 0 such that for any
k ∈ N,

E
[
‖θ̂ − θ∗‖k

]
< η

(
8d log

5
max(d,2)

+1(mn)

λm
1

max(d,2)n
1
2

)k
.

Moreover, η can be chosen arbitrarily close to 1, for large enough values of mn.

The upper bound in Theorem 1 matches the lower bound in Theorem 2 of [Salehkaleybar et al.,
2019] up to a polylogarithmic factor. In this view, the MRE-C-log algorithm has order optimal
error. Moreover, as we show in Appendix C, in the course of computations, the server obtains
an approximation F̂ of F such that for any θ in the cube Cs∗ , we have ‖∇F̂ (θ) − ∇F (θ)‖ =

Õ
(
m−1/dn−1/2). Therefore, the server not only finds the minimizer of F , but also obtains an

approximation of F at all points inside Cs∗ . In the special case that n = 1, we have Cs∗ = [−1, 1]d,
and as a result, the server would acquire an approximation of F over the entire domain. This
observation suggests the following insight: In the extreme distributed case (n = 1), finding an
O
(
m−1/d)-accurate minimizer of ∇F is as hard as finding an O

(
m−1/d)-accurate approximation of

F for all points in the domain.

4 Experiments

We evaluated the performance of MRE-C-log on two learning tasks and compared with the averaging
method (AVGM) in [Zhang et al., 2012]. Recall that in AVGM, each machine sends the empirical
risk minimizer of its own data to the server and the average of received parameters at the server is
returned in the output.

The first experiment concerns the problem of ridge regression. Here, each sample (X,Y ) is generated
based on a linear model Y = XT θ∗ + E, where X , E, and θ∗ are sampled from N(0, Id×d),
N(0, 0.01), and uniform distribution over [0, 1]d, respectively. We consider square loss function with
l2 norm regularization: f(θ) = (θTX − Y )2 + 0.1‖θ‖22. In the second experiment, we perform a
logistic regression task, considering sample vector X generated according to N(0, Id×d) and labels
Y randomly drawn from {−1, 1} with probability Pr(Y = 1|X, θ∗) = 1/(1 + exp(−XT θ∗)). In
both experiments, we consider a two dimensional domain (d = 2) and assumed that each machine
has access to one sample (n = 1).
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Figure 3: The average of MRE-C-log and AVGM algorithms versus the number of machines in two
different learning tasks.

In Fig. 3, the average of ‖θ̂ − θ∗‖2 is computed over 100 instances for the different number of
machines in the range [104, 106]. Both experiments suggest that the average error of MRE-C-log
keep decreasing as the number of machines increases. This is consistent with the result in Theorem 1,
according to which the expected error of MRE-C-log is upper bounded by Õ(1/

√
mn). It is evident

from the error curves that MRE-C-log outperforms the AVGM algorithm in both tasks. This is
because where m is much larger than n, the expected error of the AVGM algorithm typically scales
as O(1/n), independent of m.

5 Discussion

We studied the problem of statistical optimization in a distributed system with one-shot communi-
cations. We proposed an algorithm, called MRE-C-log , with O

(
log(mn)

)
-bits per message, and

showed that its expected error is optimal up to a poly-logarithmic factor. Aside from being order
optimal, the MRE-C-log algorithm has the advantage over the existing estimators that its error tends
to zero as the number of machines goes to infinity, even when the number of samples per machine is
upper bounded by a constant. This property is in line with the out-performance of the MRE-C-log
algorithm in the m� n regime, as discussed in our experimental results.

The main idea behind the MRE-C-log algorithm is that it essentially computes, in an efficient way,
an approximation of the gradient of the expected loss over the entire domain. It then outputs a
norm-minimizer of this approximate gradients, as an estimate of the minimizer of the expected loss.
Therefore, MRE-C-log carries out the intricate and seemingly redundant task of approximating the
loss function for all points in the domain, in order to resolve the apparently much easier problem
of finding a single approximate minimizer for the loss function. In this view, it is quite counter-
intuitive that such algorithm is order optimal in terms of expected error and sample complexity. This
observation provides the interesting insight that in a distributed system with one shot communication,
finding an approximate minimizer is as hard as finding an approximation of the function derivatives
for all points in the domain.

Our algorithms and bounds are designed and derived for a broader class of functions with Lipschitz
continuous first order derivatives, compared to the previous works that consider function classes with
Lipschitz continuous second or third order derivatives. The assumption is indeed both practically
important and technically challenging. For example, it is well-known that the loss landscapes involved
in learning applications and neural networks are highly non-smooth. Therefore, relaxing assumptions
on higher order derivatives is actually a practically important improvement over the previous works.
On the other hand, considering Lipschitzness only for the first order derivative renders the problem
way more difficult. To see this, note that when n > m, the existing upper bound O(1/

√
mn+ 1/n)

for the case of Lipschitz second derivatives goes below the O(m1/dn1/2) lower bound in the case of
Lipschitz first derivatives.
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A drawback of the MRE-C-log algorithm is that each machine requires to know m in order to set the
number of levels for the grids. This however can be resolved by considering infinite number of levels,
and letting the probability that p is chosen from level l decrease exponentially with l. Moreover,
although communication budget of the MRE-C-log algorithm is O(d logmn) bits per signal, the
algorithm can be extended to work under more general communication constraints, via dividing each
signal to subsignals of length O(d logmn) each containing an independent independent signal of the
MRE-C-log algorithm. The expected loss of this modified algorithm can be shown to still matches
the existing lower bounds up to logarithmic factors. Please refer to Salehkaleybar et al. [2019] for a
thorough treatment.

We also proposed, for d = 1, an algorithm with communication budget of one bit per transmission,
whose error tends to zero in a rate of O

(
1/
√
m+ 1/

√
n
)

as m and n go to infinity simultaneously.
We conjecture that this algorithms is order-optimal, in the sense that no randomized constant-bit
algorithm has expected error smaller than O

(
1/
√
m+ 1/

√
n
)
.

There are several open problems and directions for future research. The first group of problems
involve the constant bit regime. It would be interesting if one could verify whether or not the bound in
Proposition 1 is order optimal. Moreover, the constant bit algorithm in Subsection 3.1 is designed for
one-dimensional domains and one-bit per transmission. Decent extensions of this algorithm to higher
dimensions with vanishing errors under one bit per transmission constraint seem to be non-trivial.
Investigating the power of more bits per transmission (constants larger than one bit) in reducing the
expected error is another interesting direction.

Another important group of problems concerns the more restricted class of functions with Lipschitz
continuous second order derivatives. Despite several attempts in the literature, the optimal scaling of
expected error for this class of functions in the m� n regime is still an open problem.
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