Part of Advances in Neural Information Processing Systems 31 (NeurIPS 2018)
Zehong Hu, Yitao Liang, Jie Zhang, Zhao Li, Yang Liu
Incentive mechanisms for crowdsourcing are designed to incentivize financially self-interested workers to generate and report high-quality labels. Existing mechanisms are often developed as one-shot static solutions, assuming a certain level of knowledge about worker models (expertise levels, costs for exerting efforts, etc.). In this paper, we propose a novel inference aided reinforcement mechanism that acquires data sequentially and requires no such prior assumptions. Specifically, we first design a Gibbs sampling augmented Bayesian inference algorithm to estimate workers' labeling strategies from the collected labels at each step. Then we propose a reinforcement incentive learning (RIL) method, building on top of the above estimates, to uncover how workers respond to different payments. RIL dynamically determines the payment without accessing any ground-truth labels. We theoretically prove that RIL is able to incentivize rational workers to provide high-quality labels both at each step and in the long run. Empirical results show that our mechanism performs consistently well under both rational and non-fully rational (adaptive learning) worker models. Besides, the payments offered by RIL are more robust and have lower variances compared to existing one-shot mechanisms.