Modeling Dynamic Missingness of Implicit Feedback for Recommendation

Part of Advances in Neural Information Processing Systems 31 (NeurIPS 2018)

Bibtex Metadata Paper Reviews Supplemental

Authors

Menghan Wang, Mingming Gong, Xiaolin Zheng, Kun Zhang

Abstract

Implicit feedback is widely used in collaborative filtering methods for recommendation. It is well known that implicit feedback contains a large number of values that are \emph{missing not at random} (MNAR); and the missing data is a mixture of negative and unknown feedback, making it difficult to learn user's negative preferences. Recent studies modeled \emph{exposure}, a latent missingness variable which indicates whether an item is missing to a user, to give each missing entry a confidence of being negative feedback. However, these studies use static models and ignore the information in temporal dependencies among items, which seems to be a essential underlying factor to subsequent missingness. To model and exploit the dynamics of missingness, we propose a latent variable named ``\emph{user intent}'' to govern the temporal changes of item missingness, and a hidden Markov model to represent such a process. The resulting framework captures the dynamic item missingness and incorporate it into matrix factorization (MF) for recommendation. We also explore two types of constraints to achieve a more compact and interpretable representation of \emph{user intents}. Experiments on real-world datasets demonstrate the superiority of our method against state-of-the-art recommender systems.