Part of Advances in Neural Information Processing Systems 31 (NeurIPS 2018)
Sham M. Kakade, Jason D. Lee
The \emph{Cheap Gradient Principle}~\citep{Griewank:2008:EDP:1455489} --- the computational cost of computing a $d$-dimensional vector of partial derivatives of a scalar function is nearly the same (often within a factor of $5$) as that of simply computing the scalar function itself --- is of central importance in optimization; it allows us to quickly obtain (high-dimensional) gradients of scalar loss functions which are subsequently used in black box gradient-based optimization procedures. The current state of affairs is markedly different with regards to computing sub-derivatives: widely used ML libraries, including TensorFlow and PyTorch, do \emph{not} correctly compute (generalized) sub-derivatives even on simple differentiable examples. This work considers the question: is there a \emph{Cheap Sub-gradient Principle}? Our main result shows that, under certain restrictions on our library of non-smooth functions (standard in non-linear programming), provably correct generalized sub-derivatives can be computed at a computational cost that is within a (dimension-free) factor of $6$ of the cost of computing the scalar function itself.