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Abstract

We propose a new sampling method, the thermostat-assisted continuously-tempered
Hamiltonian Monte Carlo, for Bayesian learning on large datasets and multimodal
distributions. It simulates the Nosé-Hoover dynamics of a continuously-tempered
Hamiltonian system built on the distribution of interest. A significant advantage of
this method is that it is not only able to efficiently draw representative i.i.d. samples
when the distribution contains multiple isolated modes, but capable of adaptively
neutralising the noise arising from mini-batches and maintaining accurate sampling.
While the properties of this method have been studied using synthetic distributions,
experiments on three real datasets also demonstrated the gain of performance over
several strong baselines with various types of neural networks plunged in.

1 Introduction
Bayesian learning via Markov chain Monte Carlo (MCMC) methods is appealing for its inborn nature
of characterising the uncertainty within the learnable parameters. However, when the distributions of
interest contain multiple modes, rapid exploration on the corresponding multimodal landscapes w.r.t.
the parameters becomes difficult using classic methods [7, 16]. In particular, given a large number of
modes, some “distant” ones might be beyond the reach from others; this would potentially lead to the
so-called pseudo-convergence [1], where the guarantee of ergodicity for MCMC methods breaks.
To make things worse, Bayesian learning on large datasets is typically conducted in an online setting:
at each of the iterations, only a subset, i.e. a mini-batch, of the dataset is utilised to update the model
parameters [24]. Although the computational complexity is substantially reduced, those mini-batches
inevitably introduce noise into the system and therefore increase the uncertainty within the parameters,
making it harder to properly sample multimodal distributions.
In this paper, we propose a new sampling method, referred to as the thermostat-assisted continuously-
tempered Hamiltonian Monte Carlo, to address the aforementioned problems and to facilitate Bayesian
learning on large datasets and multimodal posterior distributions. We extend the classic Hamiltonian
Monte Carlo (HMC) with the scheme of continuous tempering stemming from the recent advances in
physics [8] and chemistry [15]. The extended dynamics governs the variation on effective temperature
for the distribution of interest in a continuous and systematic fashion such that the sampling trajectory
can readily overcome high energy barriers and rapidly explore the entire parameter space. In addition
to tempering, we also introduce a set of Nosé-Hoover thermostats [18, 11] to handle the noise arising
from the use of mini-batches. The thermostats are integrated into the tempered dynamics so that the
mini-batch noise can be effectively recognised and automatically neutralised. In short, the proposed
method leverages continuous tempering to enhance the sampling efficiency, especially for multimodal
distributions; it makes use of Nosé-Hoover thermostats to adaptively dissipate the instabilities caused
by mini-batches so that the desired distributions can be recovered. Various experiments are conducted
to demonstrate the effectiveness of the new method: it consistently outperforms several samplers and
optimisers on the accuracy of image classification with different types of neural network.
∗Equal
†Correspondence to: j.wang@cs.ucl.ac.uk

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.



2 Preliminaries

We review HMC [6] and continuous tempering [8, 15], the two bases of our model, where the former
serves as a de facto standard for Bayesian sampling and the latter is a state-of-the-art solution to the
acceleration of molecular dynamics simulations on complex physical systems.

2.1 Hamiltonian Monte Carlo for posterior sampling

Bayesian posterior sampling aims at efficiently generating i.i.d. samples from the posterior ρ(θ |D) of
the variable of interest θ given some dataset D. Provided the prior ρ(θ) and the likelihood L(θ; D)
along with the dataset D = {xi} with |D| independent data points xi , the target posterior to generate
samples from can be formulated as

ρ(θ |D) ∝ ρ(θ)L(θ; D) = ρ(θ)
|D|∏
i

`(θ; xi), with the likelihood per data point `(θ; xi). (1)

In a typical HMC setting [16], a physical system is constructed and connected with the target posterior
in Eq. (1) via the system’s potential, which is defined as

U(θ) = − log ρ(θ |D) = − log ρ(θ) −
|D|∑
i=1

log `(θ; xi) − const . (2)

In this system, the variable of interest θ ∈ RD , referred to as the system configuration, is interpreted
as the joint position of all physical objects within that system. An auxiliary variable pθ ∈ RD is then
introduced as the conjugate momentum w.r.t. θ to describe its rate of change. The tuple Γ = (θ,pθ )
represents the state of the physical system that uniquely determines the characteristics of that system.
A predefined constant matrix Mθ = diag[mθi ] specifies the masses of the objects associated with θ
and can be leveraged for preconditioning.

The energy function H(Γ) of the physical system, referred to as the Hamiltonian, is essentially the sum
of the potential in Eq. (2) and the conventional quadratic kinetic energy: H(Γ) = U(θ) + p>θM−1

θ pθ/2.
The Hamiltonian dynamics, i.e. the Hamilton’s equations of motion, can be derived by applying the
Hamiltonian formalism [ Ûθ = ∂pθ H, Ûpθ = −∂θH] to H(Γ), where Ûθ and Ûpθ denote the time derivatives.

The Hamiltonian dynamics, on one hand, describes the time evolution of system from a microscopic
perspective. The principle of statistical physics, on the other hand, states in a macroscopic sense that
given a physical system in thermal equilibrium with a heat bath at a fixed temperature T , the states Γ
of that system are distributed as a particular distribution related to the system’s Hamiltonian H(Γ):

π(Γ) =
1

ZΓ(T)
e−H (Γ)/T , with the normalising constant ZΓ(T) =

∑
Γ

e−H (Γ)/T . (3)

Such distribution is referred to as the canonical distribution. Note that by setting T = 1 and U(θ) as
in Eq. (2), the canonical distribution in Eq. (3) can be marginalised as the posterior in Eq. (1).

2.2 Continuous tempering

In physical chemistry, continuous tempering [8, 15] is currently a state-of-the-art method to accelerate
molecular dynamics simulations by means of continuously and systematically varying the temperature
of a physical system. It extends the original system by coupling with additional degrees of freedom,
namely the tempering variable ξ ∈ R with mass mξ as well as its conjugate momentum pξ ∈ R, which
control the effective temperature of the original system in a continuous fashion via the Hamiltonian
dynamics of the extended system. With a suitable choice of coupling function λ(ξ) and a compatible
confining potential W(ξ), the Hamiltonian of the extended system can be designed as

H(Γ) = λ(ξ)U(θ) +W(ξ) + p>θM−1
θ pθ/2 + p2

ξ/2mξ , (4)

where Γ = (θ, ξ,pθ, pξ ) represents the state of the extended system with the position of the tempering
variable ξ and its momentum pξ appended to the state of the original system (θ,pθ ). λ(ξ) ∈ R+ maps
the tempering variable to a multiplier of temperature so that the effective temperature of the original
system T/λ(ξ) can vary; its domain domλ(ξ) ⊂ R is a finite interval regulated by W(ξ).
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3 Thermostat-assisted continuously-tempered Hamiltonian Monte Carlo

We propose a sampling method, called the thermostat-assisted continuously-tempered Hamiltonian
Monte Carlo (TACT-HMC), for multimodal posterior sampling in the presence of unknown noise.
TACT-HMC leverages the extended Hamiltonian in Eq. (4) to raise and vary the effective temperature
continuously; it efficiently lowers the energy barriers between modes and hence accelerates sampling.
Our method also incorporates the Nosé-Hoover thermostats to effectively recognise and automatically
neutralise the noise arising from the use of mini-batches.

3.1 System dynamics with the Nosé-Hoover augmentation

In solving for the system dynamics, we apply the Hamiltonian formalism to the extended Hamiltonian
in Eq. (4), which requires the potential U(θ) and gradient ∇θU(θ). We define hereafter the negative
gradient of the potential U(θ) as the induced force f (θ) = −∇θU(θ). Because the calculation of either
U(θ) or f (θ) involves the full dataset D = {xi}, it is computationally expensive or even unaffordable
to calculate the actual values for large |D|. Instead, we consider the mini-batch approximations:

Ũ(θ) = − log ρ(θ) −
|D|

|S|

|S|∑
k=1

log `(θ; xik ) and f̃ (θ) = ∇θ log ρ(θ) +
|D|

|S|

|S|∑
k=1
∇θ log `(θ; xik ),

where xik denotes the data point sampled from mini-batches S= {xik } ⊂ Dwith the size |S| � |D|.
It is clear that Ũ(θ) and f̃ (θ) are unbiased estimators of U(θ) and f (θ).

As we assume xik to be mutually independent, Ũ(θ) and f̃ (θ) are sums of |S| i.i.d. random variables,
where the Central Limit Theorem (CLT) applies; the mini-batch approximations converge to Gaussian
variables, i.e. Ũ(θ) →N(U(θ), vU (θ)) and f̃ (θ) →N(f (θ),V f (θ)) with variances vU (θ) and V f (θ).
As random variables, Ũ(θ) and f̃ (θ) inevitably inject noise into the system dynamics. We incorporate a
set of independent Nosé-Hoover thermostats [18, 11] – apparatuses originally devised for temperature
stabilisation in molecular dynamics simulations – to adaptively cancel the effect of noise. The system
dynamics with the augmentation of thermostats – we call Nosé-Hoover dynamics – is formulated as

dθ
dt
= M−1

θ pθ,
dpθ
dt
= λ(ξ)f̃ (θ) − λ2(ξ)Sθpθ,

ds 〈i, j 〉θ

dt
=
λ2(ξ)

κ
〈i, j 〉
θ

[ pθi pθ j
mθi

− Tδi j

]
,

dξ
dt
=

pξ
mξ

,
dpξ
dt
= −λ′(ξ)Ũ(θ) −W ′(ξ) −

[
λ′(ξ)

]2sξ pξ ,
dsξ
dt
=

[
λ′(ξ)

]2

κξ

[ p2
ξ

mξ
− T

]
, (5)

where Sθ and sξ denote the Nosé-Hoover thermostats coupled with θ and ξ. Specifically, Sθ =
[
s 〈i, j 〉θ

]
is a D ×D matrix with the (i, j)-th elements s 〈i, j 〉θ dependent upon the multiplicative term pθi pθ j /mθi .
κ
〈i, j 〉
θ and κξ are constants that denote the “thermal inertia” corresponding to s 〈i, j 〉θ and sξ , respectively.

Intuitively, the thermostats Sθ and sξ act as negative feedback controllers on the momenta pθ and pξ .
Consider the dynamics of sξ in Eq. (5), when p2

ξ/mξ exceeds the reference T , the thermostat sξ will
increase, leading to a greater friction −sξ pξ in updating pξ ; the friction in turn reduces the magnitude
of pξ , resulting in a decrease in the value of p2

ξ/mξ . The negative feedback loop is thus established.
With the help of thermostats, the noise injected into the system can be adaptively neutralised.

We define the diffusion coefficients bU (θ) B vU (θ) dt/2 and B f (θ) =
[
b〈i, j 〉
f
(θ)

]
B V f (θ) dt/2 such

that the variances vU (θ) and V f (θ) of the mini-batch approximations evaluated at each of the discrete
iterations can be embedded in the Fokker-Planck equation (FPE) [20] established in continuous time.
FPE translates the microscopic motion of particles, formulated by SDEs, into the macroscopic time
evolution of the state distribution in the form of PDEs. With FPE leveraged, we establish the theorem
as follows to characterise the invariant distribution:
Theorem 1. The system governed by the dynamics in Eq. (5) has the invariant distribution:

π(Γ,Sθ, sξ ) ∝ e
−

[
H(Γ) +

(
sξ−

bU (θ)
mξT

)2
κξ /2 +

∑
i , j

(
s
〈i , j〉
θ −

b
〈i , j〉
f

(θ)

mθ j
T

)2

κ
〈i , j〉
θ

/
2

] /
T

, (6)

where Γ = (θ, ξ,pθ, pξ ) denotes the extended state as presented in Eq. (4).
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Proof. Recall FPE in its vector form [20]:

∂

∂t
π(x, t) = −

∂

∂x
·

[
µx(x, t)π(x, t)

]
+

[
∂

∂x
∂>

∂x

]
·

[
Bx(x, t)π(x, t)

]
, (7)

where x = vec(Γ,Sθ, sξ ) denotes the vectorisation of the collection of all variables defined in Eq. (6),
µx and Bx represent the drift and diffusion terms associated with the dynamics in Eq. (5), respectively,
and the dot operator · defines the composition of summation after element-wise multiplication.

We substitute the corresponding elements within Eq. (5) into the drift and diffusion of FPE in Eq. (7).
As we presume that the introduced thermostats are mutually independent with each other, the invariant
distribution can hence be factorised into marginals as π(x) = πΓπsξ

∏
i, j πs〈i , j〉θ

. It is straightforward
to verify that those deterministic parts with the dependency only on Γ cancel exactly with each other.
The remnants are the stochastic parts as well as the deterministic ones that depend on the thermostats
Sθ and sξ , which can be formulated as

∂

∂t
π(x, t) =

∂

∂pξ

[ [
λ′(ξ)

]2sξ pξπ
]
−

∑
i, j

∂

ds 〈i, j 〉
θ

[
λ2(ξ)

κ
〈i, j 〉
θ

[ pθi pθ j
mθi

− Tδi j

]
π

]
+

∂2

∂pξ

[ [
λ′(ξ)

]2bU (θ)π
]

+
∂

∂pθ
·

[
λ2(ξ)Sθpθπ

]
−

∂

∂sξ

[ [
λ′(ξ)

]2

κξ

[ p2
ξ

mξ
− T

]
π

]
+

[
∂

∂pθ
∂>

∂pθ

]
·

[
λ2(ξ)B f (θ)π

]
. (8)

We solve for the invariant distribution π(x) by equating Eq. (8) to zero. The resulted formulae for the
marginals πsξ and π

s
〈i , j〉
θ

are obtained under the assumption of factorisation in the form of

1
πsξ

∂πsξ

∂sξ
= −

κξ

T

[
sξ −

bU (θ)
mξT

]
and

1
π
s
〈i , j〉
θ

∂π
s
〈i , j〉
θ

∂s 〈i, j 〉θ

= −
κ
〈i, j 〉
θ

T

[
s 〈i, j 〉θ −

b〈i, j 〉
f
(θ)

mθ jT

]
. (9)

The solutions to Eq. (9) are clear: both πsξ and π
s
〈i , j〉
θ

are Gaussian distributions determined uniquely
by the coefficients. The marginals πsξ and π

s
〈i , j〉
θ

, along with the canonical distribution πΓ w.r.t. H(Γ),
constitute the invariant distribution defined in Eq. (6). �

Theorem 1 states that, when the system reaches equilibrium, the system state is distributed as Eq. (6),
and the mini-batch noise is absorbed into the thermostats from the system dynamics in Eq. (5). Thus,
we can marginalise out both Sθ and sξ to drop the noise, and then obtain the canonical distribution in
Eq. (3). As we are seeking for the recovery of the target posterior from the canonical distribution, we
can assign specific values to the tempering variable ξ = ξ∗ such that the effective temperature of the
original system is held fixed at unity T/λ(ξ∗) = 1. Hence, the posterior ρ(θ |D) equals to the marginal
distribution w.r.t. θ given ξ∗ satisfying λ(ξ∗) = T , which is obtained by the marginalisation of pθ and
pξ over the canonical distribution as follows:

π(θ |ξ∗) =
∑

pθ ,pξ
π(Γ|ξ∗) =

∑
pθ ,pξ e−H (Γ|ξ

∗)/T∑
Γ\ξ e−H (Γ|ξ

∗)/T
=

e−U(θ)∑
θ e−U(θ)

=
1

Zθ(T)
e−U(θ) = ρ(θ |D),

where H(Γ|ξ∗) = λ(ξ∗)U(θ) +W(ξ∗) + p>θM−1
θ pθ/2 + p2

ξ/2mξ represents the extended Hamiltonian
conditioning on the tempering variable ξ = ξ∗, when λ(ξ∗) = T holds.

3.2 Tempering enhancement via adaptive biasing force

A necessary condition for the tempering scheme to be well-functioning is that the tempering variable
ξ can properly explore the majority of the domain of the coupling function domλ(ξ); this ensures the
expected variation on the effective temperature during sampling. For complex systems, however, it is
often the case that the tempering variable is subject to a strong instantaneous force that prevents ξ
from proper exploration of domλ(ξ) and therefore hinders the efficiency of tempering. The adaptive
biasing force (ABF) algorithm [3] has emerged as a promising solution to such problem ever since its
inception [4], where it was introduced to address the problem on fast calculation of the free energy of
complex chemical or biochemical systems. Intuitively, ABF maintains and updates an estimate of the
average force, i.e. the average of the instantaneous force exerted on the target variable. It then applies
the estimate to the target variable in the opposite direction to counteract the instantaneous force and
reduce it into small zero-mean fluctuations so that the variable undergoes random walks.
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Algorithm 1 Thermostat-assisted continuously-tempering Hamiltonian Monte Carlo
Input: stepsize ηθ, ηξ ; level of injected noise cθ, cξ ; thermal inertia γθ, γξ ; # of steps for unit interval K
1: rθ ∼N(0, ηθI) and rξ ∼N(0, ηξ ); (zθ, zξ ) ← (cθ, cξ )
2: INITIALISE( θ, ξ,abf,samples )
3: for k = 1,2,3, . . . do
4: λ← LAMBDA( ξ ); δλ← LAMBDADERIVATIVE( ξ )

5: zξ ← zξ + δλ2 [
r2
ξ − ηξ

] /
γξ

6: zθ ← zθ + λ2 [
r>θ rθ j /dim(rθ ) − ηθ

] /
γθ

7: S← NEXTBATCH( D, k ); δA← abf[ ABFINDEXING( ξ ) ]
8: Ũ ← MODELFORWARD( θ,S ); f̃ ← MODELBACKWARD( θ,S )
9: rξ ← rξ − δλ

[
ηξŨ +N(0,2cξηξ )

]
− δλ2zξrξ + ηξ δA

10: rθ ← rθ + λ
[
ηθ f̃ +N(0,2cθηθI)

]
− λ2zθrθ

11: ABFUPDATE( abf, ξ, δλ,Ũ, k )
12: ξ ← ξ + rξ
13: if ISINSIDEWELL( ξ ) = false then . ξ is restricted by the well of infinite height.
14: rξ ← −rξ ; ξ ← ξ + rξ . ξ bounces back when hitting the wall.
15: θ ← θ + rθ
16: if k = 0 mod K and λ = 0 then
17: APPEND( samples,θ ) . θ is collected as a new sample in samples.
18: rθ ∼N(0, ηθI) and rξ ∼N(0, ηξ ) . rθ,rξ is optionally resampled.

19: function ABFUPDATE( abf, ξ, δλ,Ũ, k )
20: j ← ABFINDEXING( ξ ) . ξ is mapped to the index j of the associated bin.
21: abf[ j ] ← [1 − 1/k]abf[ j ] + [1/k]δλ · Ũ

Formally, the function of free energy w.r.t. ξ is defined by convention in the form of
A(ξ) = −T log π(ξ) + const, where π(ξ) =

∑
Γ\ξ

π(Γ) with the extended state Γ = (θ, ξ,pθ, pξ ).
The equation of pξ in Eq. (5) is then augmented with the derivative of A(ξ) such that

dpξ
/

dt = −λ′(ξ)Ũ(θ) −W ′(ξ) + A′(ξ) −
[
λ′(ξ)

]2sξ pξ , (10)
where A′(ξ) is referred to as the adaptive biasing force induced by the free energy as

A′(ξ) = −
T
π(ξ)

dπ
dξ
=

∑
Γ\ξ

[
∂H
∂ξ

]
e−H (Γ)/T∑

Γ\ξ e−H (Γ)/T
B

〈
∂H
∂ξ

����ξ〉 . (11)

The brackets 〈·|ξ〉 denote the conditional average, i.e. the average on the canonical distribution π(Γ)
with ξ held fixed. A′(ξ) is the average of the reversed instantaneous force on ξ. It is proved [14] that
ABF converges to the equilibrium at which ξ’s free energy landscape is flattened, even though the
augmentation in Eq. (10) alters the equations of motion originally defined in Eq. (5).

3.3 Implementation
As proved in Theorem 1, the dynamics in Eq. (5) is capable of preserving the correct distribution in
the presence of noise. In principle, it requires the thermostat Sθ to be of size D2 for the D-dimensional
parameter θ; however, the storage is unaffordable for complex models in high dimensions. A plausible
option to mitigate this issue is to assume homogeneous θ and isotropic Gaussian noise such that the
mass Mθ = mθI and the variance V f (θ) = v f (θ)I; this simplifies the high-dimensional Sθ to scalar sθ .
The confining potential W(ξ) that determines the range of the tempering variable ξ is implemented as
a well of infinite height. When colliding with the boundary of W(ξ), ξ bounces back elastically with
the velocity reversed. The Euler’s method is then applied such that dt → ∆t.
In Eq. (11), the calculation of A′(ξ) involves the ensemble average 〈∂H/∂ξ |ξ〉, hence being intractable.
Here we instead calculate the time average

∑
k
∂H/∂ξ |ξk , which is equivalent to the ensemble average

in the long-time limit under the assumption of ergodicity; it can be readily calculated in a recurrent
form during sampling. To maintain the runtime estimates of A′(ξ), the range of ξ is divided uniformly
into J bins of equal length with memory initialised in each of those bins. At each time step k, ABF
determines the index j of the bin in which the tempering variable ξ = ξk is currently located, and then
updates the time average using the record in memory and the current force ∂H/∂ξ |ξk evaluated at ξk .
With all components assembled, we establish the TACT-HMC algorithm as Algorithm. 1 with

rθ =
pθ∆t
mθ

, rξ =
pξ ∆t
mξ

, zθ = sθ∆t, zξ = sξ ∆t, ηθ =
∆t2

mθ
, ηξ =

∆t2

mξ
, γθ =

κθ
mθD

, γξ =
κξ

mξ

applied as the change of variables for the convenience of implementation. Furthermore, we introduce
additional Gaussian noises N(0,2cξηξ ) and N(0,2cθηθI) in momenta updates to improve ergodicity.
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system temperature during simulation, with the standard reference of unity temperature marked by red line.

Figure 1: Experiment on sampling a 1d synthetic distribution.

4 Related work

Since the inception of the stochastic gradient Langevin dynamics (SGLD) [24], algorithms originated
from stochastic approximation [21] have received increasing attention on tasks of Bayesian learning.
By adding the right amount of noise to the updates of the stochastic gradient descent (SGD), SGLD
manages to properly sample the posterior in a random-walk fashion akin to the full-batch Metropolis-
adjusted Langevin algorithm (MALA) [22]. To enable the Hamiltonian dynamics for efficient state
space exploration, Chen et al. [2] extended the mechanism designed for SGLD to HMC, and proposed
the stochastic gradient Hamiltonian Monte Carlo (SGHMC). As is shown that the stochastic gradient
drives the Hamiltonian dynamics to deviate, SGHMC estimates the unknown noise from the stochastic
gradient with the Fisher information matrix, and then compensates the estimated noise by augmenting
the Hamiltonian dynamics with an additive friction derived from the estimated Fisher matrix. It turns
out that the friction can be linked to the momentum term within a class of accelerated gradient-based
methods [19, 17, 23] in optimisation. Shortly after SGHMC, Ding et al. [5] came up with the idea of
incorporating the Nosé-Hoover thermostat [18, 11] into the Hamiltonian dynamics in replacement of
the constant friction in SGHMC, and hence developed the stochastic gradient Nosé-Hoover thermostat
(SGNHT). The thermostat in SGNHT serves as an adaptive friction which adaptively neutralises the
mini-batch noise from the stochastic gradient into the system [12].

Parallel to those aforementioned studies, recent advances in the development of continuous tempering
[8, 15] as well as its applications in machine learning [25, 9] are of particular interest. Ye et al. [25]
proposed the continuously tempered Langevin dynamics (CTLD), which leverages the mechanism of
continuous tempering and embeds the tempering variable in an extended stochastic gradient second-
order Langevin dynamics. CTLD facilitates exploration on rugged landscapes of objective functions,
locating the “good” wide valleys on the landscape and preventing early trapping in the “bad” narrow
local minima. Nevertheless, CTLD is designed to be an initialiser for training deep neural networks; it
serves as an enhancement of the subsequent gradient-based optimisers instead of a Bayesian solution.
From the Bayesian perspective, Graham et al. [9] developed the continuously-tempered Hamiltonian
Monte Carlo (CTHMC) operating in a full-batch setting. CTHMC augments the Hamiltonian system
with an extra continuously-varying control variate borrowed from the scheme of continuous tempering,
which enables the extended Hamiltonian dynamics to bridge between sampling a complex multimodal
target posterior and a simpler unimodal base distribution. Albeit beneficial for mixing, its dynamics
lacks the ability to handle the mini-batch noise, and thus fails to function properly with mini-batches.

5 Experiment

Two sets of experiments are carried out. We first conduct an ablation study with synthetic distributions,
where we visualise the system dynamics and validate the efficacy of TACT-HMC. We then evaluate
the performance of our method against several strong baselines on three real datasets.
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Figure 2: Experiments on sampling two 2d synthetic distributions. Left: The distributions to sample;
Mid-left: Histograms sampled by TACT-HMC; Mid-right: Histograms by the well-tempered sampler
without thermostatting; Right: Histograms by the thermostat-assisted sampler without tempering.

5.1 Multimodal sampling of synthetic distributions

We run TACT-HMC on three 1d/2d synthetic distributions. In the meantime, two ablated alternatives
are initiated in parallel with the same setting: one is equipped with thermostats but without tempering
for sampling acceleration, the other is well-tempered but without thermostatting against noise. The
distributions are synthesised to contain multiple distant modes; the calculation of gradient is perturbed
by Gaussian noise that is unknown to all samplers.

Figure 1 summarises the result of sampling a mixture of three 1d Gaussians. As the figure indicates,
only TACT-HMC is capable of correctly sampling from the target. The sampler without thermostatting
is heavily influenced by the noise in gradient, resulting in a spread histogram; while the one without
tempering gets trapped by those energy barriers and hence fails to explore the entire space of system
configurations. The sampling trajectory and properties of TACT-HMC are illustrated in details in Fig.
1b, which justifies the correctness of TACT-HMC. The autocorrelation of samples ρ(k) is calculated
and shown in Fig. 1b(IV), which decreases monotonically from ρ(0) = 1 down to ρ(∞) → 0+. The
effective sample size (ESS) can thus be readily evaluated through the formula

ESS =
n

1 + 2
∑∞

k=1 ρ(k)
, with ρ(k) as the autocorrelation at lag k .

The ESS for TACT-HMC in this 1d Gaussian mixture case is 2.1096 × 104 out of n = 105 samples,
which is roughly 60.2% of the value for SGHMC and 50.9% of that for SGNHT. We believe that
the non-linear interaction between the parameter of interest θ and the tempering variable ξ via the
multiplicative term λ(ξ)U(θ) results in a longer autocorrelation time and hence a lower ESS value.
We also investigate the variation of the effective system temperature during sampling. A snapshot of
the trajectory regarding the effective system temperature is demonstrated in Fig. 1b(V): it constantly
oscillates between higher and lower temperatures, and returns to the unity temperature occasionally.

We further conduct two 2d sampling experiments as shown in Fig. 2. Comparing between columns,
we find that TACT-HMC recovers those multiple modes for both distributions while neutralising the
influence of the noise in gradient; however, the samplings by the ablated alternatives are impaired
either by the noise in gradient or by the energy barriers as discovered in the 1d scenario.

5.2 Bayesian learning on real datasets

Stepping out of the study on the synthetic cases, we then move on to the tasks of image classification
on three real datasets: EMNIST3, Fashion-MNIST4 and CIFAR-10. The performance is evaluated
and compared in terms of the accuracy of classification on three types of neural networks: multilayer
perceptrons (MLPs), recurrent neural networks (RNNs), and convolutional neural networks (CNNs).
Two recent samplers are chosen as part of the baselines, namely SGNHT [5] and SGHMC [2]; besides,
two widely-used gradient-based optimisers, Adam [13] and momentum SGD [23], are compared.

Each method will keep running for 1000 epochs in either sampling or training before the evaluation
and comparison. We further apply random permutation to a certain percentage (0%, 20%, and 30%)
of the training labels at the beginning of each epoch for demonstrating the robustness of our method.

3https://www.nist.gov/itl/iad/image-group/emnist-dataset
4https://github.com/zalandoresearch/fashion-mnist
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Table 1: Result of Bayesian learning experiments on real datasets
MLP on EMNIST RNN on Fashion-MNIST CNN on CIFAR-10

% permuted labels 0% 20% 30% 0% 20% 30% 0% 20% 30%

Adam [13] 83.39% 80.27% 80.63% 88.84% 88.35% 88.25% 69.53% 72.39% 71.05%
momentum SGD [23] 83.95% 82.64% 81.70% 88.66% 88.91% 88.34% 64.25% 65.09% 67.70%
SGHMC [2] 84.53% 82.62% 81.56% 90.25% 88.98% 88.49% 76.44% 73.87% 71.79%
SGNHT [5] 84.48% 82.63% 81.60% 90.18% 89.10% 88.58% 76.60% 73.86% 71.37%

TACT-HMC (Alg. 1) 84.85% 82.95% 81.77% 90.84% 89.61% 89.01% 78.93% 74.88% 73.22%

All four baselines are tuned to their best on each task; the setting of TACT-HMC will be specified for
each task in the corresponding subsection. For the baseline samplers, the accuracy of classification
is calculated from Monte Carlo integration on all sampled models; for the baseline optimisers, the
performance is evaluated directly on test sets after training. The result is summarised in Table. 1.

EMNIST classification with MLP. The MLP herein defines a three-layered fully-connected neural
network with the hidden layer consisting of 100 neurons. EMNIST Balanced is selected as the dataset,
where 47 categories of images are split into a training set of size 112,800 and a complementary test set
of size 18,800. The batch size is fixed at 128 for all methods in both sampling and training tests. For
readability, we introduce a 7-tuple [ηθ, ηξ , cθ, cξ , γθ, γξ ,K] as the specification to set up TACT-HMC
(see Alg. 1). In this specification, [ηθ, cθ, γθ ] denote the step size, the level of the injected Gaussian
noise and the thermal inertia, all w.r.t. the parameter of interest θ; similarly, [ηξ , cξ , γξ ] represent the
quantities corresponding to the tempering variable ξ; K defines the number of steps in simulating a
unit interval. In this experiment, TACT-HMC is configured as [0.0015,0.0015,0.05,0.05,1.0,1.0,50].

Fashion-MNIST classification with RNN. The RNN contains a LSTM layer [10] as the first layer,
with the input/output dimensions being 28/128. It takes as the input via scanning a 28 × 28 image
vertically each line of a time. After 28 steps of scanning, the LSTM outputs a representative vector of
length 128 into ReLU activation, which is followed by a dense layer of size 64 with ReLU activation.
The prediction regarding 10 categories is generated through softmax activation in the output layer.
The batch size is fixed at 64 for all methods in comparison. The specification of TACT-HMC in this
experiment is determined as [0.0012,0.0012,0.15,0.15,1.0,1.0,50].

CIFAR-10 classification with CNN. The CNN comprises of four learnable layers: from the bottom
to the top, a 2d convolutional layer using the kernel of size 3×3×3×16, and another 2d convolutional
layer with the kernel of size 3×3×16×16, then two dense layers of size 100 and 10. ReLU activations
are inserted between each of those learnable layers. For each convolutional layer, the stride is set to
1 × 1, and a pooling layer with 2 × 2 stride is appended after the ReLU activation. Softmax function
is applied for generating the final prediction over 10 categories. The batch size is fixed at 64 for all
methods. Here, TACT-HMC’s specification is set as [0.0010,0.0010,0.10,0.10,1.0,1.0,50].

Discussion. As summarised in Table. 1, TACT-HMC outperforms all four baselines on the accuracy
of classification. Specifically, TACT-HMC demonstrates advantages on complicated tasks, e.g. the
CIFAR-10 classification with CNN where the model has relatively higher complexity and the dataset
contains multiple channels. For the RNN task, our method outperforms others with roughly 0.5% on
accuracy. The performance gain on the MLP task is rather limited; we believe the reason for this is that
the complexities of both model and dataset are essentially moderate. When the random permutation
is applied to a larger portion of training labels, TACT-HMC still maintains robust performance on the
accuracy of classification, even though the landscape of the objective function becomes rougher and
the system dynamics gathers more noise.

6 Conclusion

We developed a new sampling method, which is called the thermostat-assisted continuously-tempered
Hamiltonian Monte Carlo, to facilitate Bayesian learning with large datasets and multimodal posterior
distributions. The method builds a well-tempered Hamiltonian system by incorporating the scheme of
continuous tempering in the system for classic HMC, and then simulates the dynamics augmented by
Nosé-Hoover thermostats. This sampler is designed for two substantial demands: first, to efficiently
generate representative i.i.d. samples from complex multimodal distributions; second, to adaptively
neutralise the noise arising from mini-batches. Extensive experiments have been carried out on both
synthetic distributions and real-world applications. The result validated the efficacy of tempering and
thermostatting, demonstrating great potentials of our sampler in accelerating deep Bayesian learning.
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