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Abstract

Directed exploration strategies for reinforcement learning are critical for learning
an optimal policy in a minimal number of interactions with the environment. Many
algorithms use optimism to direct exploration, either through visitation estimates
or upper-confidence bounds, as opposed to data-inefficient strategies like ✏-greedy
that use random, undirected exploration. Most data-efficient exploration methods
require significant computation, typically relying on a learned model to guide
exploration. Least-squares methods have the potential to provide some of the
data-efficiency benefits of model-based approaches—because they summarize past
interactions—with the computation closer to that of model-free approaches. In
this work, we provide a novel, computationally efficient, incremental exploration
strategy, leveraging this property of least-squares temporal difference learning
(LSTD). We derive upper-confidence bounds on the action-values learned by
LSTD, with context-dependent (or state-dependent) noise variance. Such context-
dependent noise focuses exploration on a subset of variable states, and allows for
reduced exploration in other states. We empirically demonstrate that our algorithm
can converge more quickly than other incremental exploration strategies using
confidence estimates on action-values.

1 Introduction

Exploration is crucial in reinforcement learning, as the data gathering process significantly impacts
the optimality of the learned policies and values. The agent needs to balance the amount of time
taking exploratory actions to learn about the world, versus taking actions to maximize cumulative
rewards. If the agent explores insufficiently, it could converge to a suboptimal policy; exploring too
conservatively, however, results in many suboptimal decisions. The goal of the agent is data-efficient
exploration: to minimize how many samples are wasted in exploration, particularly exploring parts of
the world that are known, while still ensuring convergence to the optimal policy.

To achieve such a goal, directed exploration strategies are key. Undirected strategies, where random
actions are taken such as in ✏-greedy, are a common default. In small domains these methods are
guaranteed to find an optimal policy [35], because the agent is guaranteed to visit the entire space—
but may take many many steps to do so, as undirected exploration can interfere with improving
policies in incremental control. In this paper we explore the idea of constructing confidence intervals
around the agent’s value estimates. The agent can use these learned confidence intervals to select
actions with the highest upper-confidence bound ensuring actions selected are of high value or whose
values are highly uncertain. This optimistic approach is promising for directed exploration, but as yet
there are few such methods that are model-free, incremental and computationally efficient.

Directed exploration strategies have largely been explored under the framework of “optimism in
the face of uncertainty” [13]. These can generally be categorized into count-based approaches
and confidence-based approaches. Count-based approaches estimate the “known-ness” of a state,

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.



typically by maintaining counts for finite state-spaces [16, 6, 36, 37, 43] and extensions on counting
for continuous states [14, 10, 26, 19, 33, 15, 32, 21]. Confidence interval estimates, on the other
hand, depend on variance of the target, not just on visitation frequency for states. Confidence-based
approaches can be more data-efficient for exploration, because the agent can better direct exploration
where the estimates are less accurate. The majority of confidence-based approaches compute
confidence intervals on model parameters, both for finite state-spaces [12, 47, 16, 6, 2, 3, 9, 43, 29]
and continuous state-spaces [11, 27, 8, 1, 28]. There is early work quantifying uncertainty for value
estimates directly for finite state-spaces [22], describing the difficulties with extending the local
measures of uncertainty from the bandit literature to RL, since there are long-term dependencies.

These difficulties suggest why using confidence intervals directly on value estimates for exploration
in RL has been less explored, until recently. More approaches are now being developed that maintain
confidence intervals on the value function for continuous state-spaces, by maintaining a distribution
over value functions [8, 31], or by maintaining a randomized set of value functions from which to
sample [46, 31, 30, 34, 25]. Though significant steps forward, these approaches have limitations
particularly in terms of computational efficiency. Delayed Gaussian Process Q-learning (DGPQ)
[8] requires updating two Gaussian processes, which is cubic in the number of basis vectors for
the Gaussian process. RLSVI [31] is relatively efficient, maintaining a Gaussian distribution over
parameters with Thompson sampling to get randomized values. Their staged approach for finite-
horizon problems, however, does not allow for value estimates to be updated online, as the value
function is fixed per episode to gather an entire trajectory of data. Moerland et al. [25], on the
other hand, sample a new parameter vector from the posterior distribution each time an action is
considered, which is expensive. The bootstrapping approaches can be efficient, as they simply have
to store several value functions, either for training on a bootstrapped subset of samples—such as in
Bootstrapped DQN [30]—or for maintaining a moving bootstrap around the changing parameters
themselves, for UCBootstrap [46]. For both of these approaches, however, it is unclear how many
value functions would be required, which could be large depending on the problem.

In this paper, we provide an incremental, model-free exploration algorithm with fast converging upper-
confidence bounds, called UCLS: Upper-Confidence Least-Squares. We derive the upper-confidence
bounds for Least-Squares Temporal Difference learning (LSTD), taking advantage of the fact that
LSTD has an efficient summary of past interaction to facilitate computation of confidence intervals.
Importantly, these upper-confidence bounds have context-dependent variance, where variance is
dependent on state rather than a global estimate, focusing exploration on states with higher-variance.
Computing confidence intervals for action-values in RL has remained an open problem, and we
provide the first theoretically sound result for obtaining upper-confidence bounds for policy evaluation
under function approximation, without making strong assumptions on the noise. We demonstrate
in several simulated domains that UCLS outperforms DGPQ, UCBootstrap, and RLSVI. We also
empirically show the benefit of using UCLS to a simplified version that uses a global variance
estimate, rather than context-dependent variance.

2 Background

We focus on the problem of learning an optimal policy for a Markov decision process, from on-
policy interaction. A Markov decision process consists of (S,A,Pr, r, �) where S is the set of
states; A is the set of actions; Pr : S ⇥ A ⇥ S ! [0,1) provides the transition probabilities;
r : S ⇥ A ⇥ S ! R is the reward function; and � : S ⇥ A ⇥ S ! [0, 1] is the transition-based
discount function which enables either continuing or episodic problems to be specified [45]. On each
step, the agent selects action At in state St, and transitions to St+1, according to Pr, receiving reward
Rt+1

def
= r(St, At, St+1) and discount �t+1

def
= �(St, At, St+1). For a policy ⇡ : S ⇥ A ! [0, 1],

where
P

a2A ⇡(s, a) = 1 8s 2 S, the value at a given state s, taking action a, is the expected
discounted sum of future rewards, with actions selected according to ⇡ into the future,

Q⇡(s, a) = E
h
Rt+1 + �t+1

X

a2A

⇡(St+1, a)Q
⇡(St+1, a)

���St = s,At = a
i

For problems in which Q
⇡ can be stored in a table, a fixed point for the action-values Q⇡ exists for a

given ⇡. In most domains, Q⇡ must be approximated by Q
⇡
w, parametrized by w 2 W ⇢ Rd.

In the case of linear function approximation, state-action features x(st, at) are used to approximate
action-values Q⇡

w(st, at) = x(st, at)>w. The weights w can be learned with a stochastic approx-
imation algorithm, called temporal difference (TD) learning [39]. The TD update [39] processes
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samples one at a time, w = w + ↵�tzt, with �t
def
= Rt+1 + �t+1x>

t+1w � x>
t w for xt

def
= x(St, At).

The eligibility trace zt = xt+�t+1�zt�1 facilitates multi-step updates via an exponentially weighted
memory of previous feature activations decayed by � 2 [0, 1] and z0 = 0. Alternatively, we can
directly compute the weight vector found by TD using least-squares temporal difference learning
(LSTD) [5]. The LSTD solution is more data-efficient, and can avoid the need to tune TD’s stepsize
parameter ↵ > 0. The LSTD update can be efficiently computed incrementally without approximation
or storing the data [5, 4], by maintaining a matrix AT and vector bT ,

AT
def
=

1

T

T�1X

t=0

zt(xt � �t+1xt+1)
> bT

def
=

1

T

T�1X

t=0

ztRt+1 (1)

The value function approximation at time step T is the weights that satisfy the linear system ATw =
bT . In practice, the inverse of the matrix A�1 is maintained using a Sherman-Morrison update, with
a small regularizer ⌘ added to the matrix A to guarantee invertibility [41].

One approach to ensure systematic exploration is to initialize the agent’s value estimates optimistically.
The action-value function must be initialized to predict the maximum possible return (or greater)
from each state and action. For example, for cost-to-goal problems, with -1 per step, the values can
be initialized to zero. For continuing problems, with constant discount �c < 1, the values can be
initialized to Gmax = Rmax/(1� �c), if the maximum reward Rmax is known. For fixed features that
are non-negative and encode locality—such as tile coding or radial basis functions—the weights w
can be simply set to Gmax, to make Qw optimistic.

More generally, however, it can be problematic to use optimistic initialization. Optimistic initialization
assumes the beginning of time is special—a period when systematic exploration should be performed
after which the agent should more or less exploit its current knowledge. Many problems are
non-stationary—or at least benefit from a tracking approach due to aliasing caused by function
approximation—and benefit from continual exploration. Further, unlike for fixed features, it is
unclear how to set and maintain initial values at Gmax for learned features, such as with neural
networks. Optimistic initialization is also not straightforward for algorithms like LSTD, which
completely overwrite the estimate w on each step with a closed-form solution. In fact, we have found
that this issue with LSTD has been obfuscated, because the regularizer ⌘ has inadvertently played a
role in providing optimism (see Appendix A). Rather, to use optimism in LSTD for control, we need
to explicitly compute upper-confidence bounds.

Confidence intervals around action-values, then, provide another mechanism for exploration in
reinforcement learning. Consider action selection with explicit confidence intervals around mean
estimates Q̂w(St, At), with estimated radius Û(St, At). The action selection is greedy w.r.t. to these
optimistic values, argmaxa Q̂w(St, a) + Û(St, a), which provides a high-confidence upper bound
on the best possible value for that action. The use of upper-confidence bounds on value estimates for
exploration has been well-studied and motivated theoretically in online learning [7]. In reinforcement
learning, there have only been a few specialized proofs for particular algorithms using optimistic
estimates [8, 31], but the result can be expressed more generally by using the idea of stochastic
optimism. We extract the central argument by Osband et al. [31] to provide a general Optimistic
Values Theorem in Appendix B. In particular, similar to online learning, we can guarantee that
greedy-action selection according to upper-confidence values will converge to the optimal policy,
if the confidence interval radius shrinks to zero, if the algorithm to estimate action-values for a
policy converges to the corresponding actions and if upper-confidence estimates are stochastically
optimal—remain above the optimal action-values in expectation.

Motivated by this result, we pursue principled ways to compute upper-confidence bounds for the
general, online reinforcement learning setting. We make a step towards computing such values
incrementally, under function approximation, by providing upper-confidence bounds for value
estimates made by LSTD, for a fixed policy. We approximate these bounds to create a new algorithm
for control—called Upper-Confidence-Least-Squares (UCLS).

3 Estimating Upper-Confidence Bounds for Policy Evaluation using LSTD

Consider the goal of obtaining a confidence interval around value estimates learned incrementally by
LSTD for a fixed policy ⇡. The value estimate is x>w for state-action features x for the current state
and action. We would like to guarantee, with probability 1� p for a small p > 0, that the confidence
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interval around this estimate contains the value x>w⇤ given by the optimal w⇤ 2 W . To estimate
such an interval without parametric assumptions, we use Chebyshev’s inequality which—unlike other
concentration inequalities like Hoeffding or Bernstein—does not require independent samples.

To use this inequality, we need to determine the variance of the estimate x>w; the variance of the
estimate, given x, is due to the variance of the weights. Let w⇤ be fixed point solution for the
projected Bellman operator for the �-return—the TD fixed point, for a fixed policy ⇡. To characterize
the noise for this optimal estimator, let ⌫t be the TD-error for the optimal weights w⇤, where

rt+1 = (xt � �xt+1)
>w⇤ + ⌫t with E[⌫tzt] = 0. (2)

The expectation is taken across all states weighted by the sampling distribution, typically the stationary
distribution d⇡ : S ! [0,1) or in the off-policy case the stationary distribution of the behaviour
policy. We know that E[⌫tzt] = 0, by the definition of the Projected Bellman Error fixed point.

This noise ⌫t is incurred from the variability in the reward, the variability in the transition dynamics
and potentially the capabilities of the function approximator. A common assumption—when using
linear regression for contextual bandits [20] and for reinforcement learning [31]—is that the variance
of the target is a constant value �

2 for all contexts x. Such an assumption, however, is likely to
produce larger confidence intervals than necessary. For example, consider a one-state world with
two actions, where one action has a high variance reward and the other has a lower variance reward
(see Appendix A, Figure 4). A global sample variance will encourage both actions to be taken many
times. For data-efficient exploration, however, the agent should take the high-variance action more,
and only needs a few samples from the low-variance action.

We derive a confidence interval for LSTD, in Theorem 1. We also derive the confidence interval
assuming a global variance in Corollary 1, to provide a comparison. We compare to using this global-
variance upper-confidence bound in our experiments, and show that it results in significantly worse
performance than using a context-dependent variance. Note that we do not assume AT is invertible;
if we did, the big-O term in (3) below would disappear. We include this term for preciseness of the
result—even though we will not estimate it—because for smaller T , AT is unlikely to be invertible.
However, we expect this big-O term to get small quickly, and be dominated by the other terms. In our
algorithm, therefore, we ignore the big-O term.

Theorem 1. Let ⌫̄T
def
= 1

T

PT�1
t=0 zt⌫t and wT = A+

T bT where A+
T is the pseudoinverse of AT .

Let ✏⇤T
def
= (A+

TAT � I)w⇤ reflect the degree to which AT is not invertible; it is zero when AT

is invertible. Assume that the following are all finite: E[A+
T ⌫̄T + ✏⇤T ], V[A

+
T ⌫̄T + ✏⇤T ] and all

state-action features x. With probability at least 1� p, given state-action features x,

x>w⇤  x>wT +
q

p+1
p

q
x>E[A+

T ⌫̄T ⌫̄>
T A+>

T ]x+O
�
E[(x>✏⇤T )

2]
�

(3)

Proof: First we compute the mean and variance for our learned parameters. Because rt+1 =
(xt � �xt+1)>w⇤ + ⌫t,

wT =

 
1
T

T�1X

t=0

zt(xt � �xt+1)
>

!�1 
1
T

T�1X

t=0

ztrt+1

!

= A+
T

 
1
T

T�1X

t=0

zt((xt � �xt+1)
>w⇤ + ⌫t)

!

= A+
TATw

⇤ +A+
T

 
1
T

T�1X

t=0

zt⌫t

!

= w⇤ +A+
T ⌫̄T + ✏⇤T

This estimate has a small amount of bias, that vanishes asymptotically. But, for a finite sample,

E
"
A+

T

 
1
T

T�1X

t=0

zt⌫t

!#
6= E[A+

T ]E
"

1
T

T�1X

t=0

zt⌫t

#
= 0.

Further, because AT may not be invertible, there is an additional error ✏⇤T term which will vanish
with enough samples, i.e., once AT can be guaranteed to be invertible.
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For covariance, because

wT � E[wT ] =
�
w⇤ +A+

T ⌫̄T + ✏⇤T
�
� E

⇥
w⇤ +A+

T ⌫̄T + ✏⇤T )
⇤

= A+
T ⌫̄T + ✏⇤T � E

⇥
A+

T ⌫̄T + ✏⇤T
⇤

the covariance of the weights is

V[wT ] = V
⇥
A+

T ⌫̄T + ✏⇤T
⇤

The goal for computing variances is to use a concentration inequality. Chebyshev’s inequality1 states
that for a random variable X , if the E[X] and V[X] are bounded, then for any ✏ � 0:

Pr
⇣
|X � E[X]| < ✏

p
V[X]

⌘
� 1� 1

✏2

If we set ✏ =
p
1/p, then this gives

Pr
⇣
|X � E[X]| <

q
1
p

p
V[X]

⌘
� 1� p

Now we have characterized the variance of the weights, but what we really want is to characterize the
variance of the value estimates. Notice that the variance of the value-estimate, for state-action x is

V[x>wT |x] = E[x>wTw
>
T x|x]� E[x>wt|x]2

= x> �E[wTw
>
T ]� E[wT ]E[wT ]

>�x
= x>V[wT ]x

Therefore, the variance of the estimate is characterized by the variance of the weights. With high
probability,
��x>wT � x>w⇤�� =

��x>(wT � E[wT ]) + x>(E[wT ]�w⇤)
��


��x>(wT � E[wT ])

��+
��x>(E[wT ]�w⇤)

��

 1
p
p

q
x>V

⇥
A+

T ⌫̄T + ✏⇤T
⇤
x+

��x>E[A+
T ⌫̄T + ✏⇤T ]

�� (4)

=
1
p
p

q
x>
�
E
⇥
A+

T ⌫̄T ⌫̄>
T A+>

T +⌃⇤
T

⇤
� µ⇤

Tµ
⇤>
T

�
x+

q
x>µ⇤

Tµ
⇤>
T x (5)

where Equation 4 uses Chebyshev’s inequality, and the last step is a rewriting of Equation 4 using the
definitions µ⇤

T
def
= E[A+

T ⌫̄T + ✏⇤T ] and ⌃⇤
T

def
= A+

T ⌫̄T ✏⇤>T + ✏⇤T (A
+
T ⌫̄T )> + ✏⇤T ✏

⇤>
T .

To simplify (5), we need to determine an upper bound for the general formula c
p
a2 � b2 + b where

a � b � 0. Because p < 1, we know that c =
p

1/p � 1. Therefore, the extremal points for b, b = a

and b = 0, both result in an upper bound of ca. Taking the derivative of the objective, gives a single
stationary point in-between [0, a], with b = ap

c2+1
. The value at this point evaluates to be a

p
c2 + 1.

Therefore, this objective is upper-bounded by a
p
c2 + 1.

Now for a
2 = x>E

⇥
A+

T ⌫̄T ⌫̄>
T A+>

T +⌃⇤
T

⇤
x, the term involving x>E [⌃⇤

T ]x should quickly
disappear, since it is only due to the potential lack of invertibility of AT . This term is equal to
E
⇥
2(x>A+

T ⌫̄T )(x>✏⇤T ) + (x>✏⇤T )
2
⇤
, which results in the additional O(E[(x>✏⇤T )

2]) in the bound.

⌅
Corollary 1. Assume that ⌫t are i.i.d., with mean zero and bounded variance �

2. Let z̄T =
1
T

PT�1
t=0 zt and assume that the following are finite: E[✏⇤T ], V[✏⇤T ], E[A

+
T z̄T z̄

>
TA

+>
T ] and all state-

action features x. With probability at least 1� p, given state-action features x,

x>w⇤  x>wT + �

q
p+1
p

q
x>E[A+

T z̄T z̄
>
TA

+>
T ]x+O

�
E[(x>✏⇤T )

2]
�

(6)
1Bernstein’s inequality cannot be used here because we do not have independent samples. Rather, we

characterize behaviour of the random variable w, using variance of w, but cannot use bounds that assume w is
the sum of independent random variables. The bound with Chebyshev will be loose, but we can better control
the looseness of the bound with the selection of p and the constant in front of the square root.
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Proof: The result follows similarly to above, with some simplifications due to global-variance:

E
⇥
A+

T ⌫̄T

⇤
= E

h
E
h
A+

T ⌫̄T

���S0, ...., ST

ii
= E

"
A+

T
1
T

T�1X

t=0

ztE
h
⌫t

���S0, ...., ST

i#
= 0

E[A+
T ⌫̄T ⌫̄

>
T A+>

T ] = �
2E[A+

T z̄T z̄
>
TA

+>
T ] ⌅

4 UCLS: Estimating upper-confidence bounds for LSTD in control

In this section, we present Upper-Confidence-Least-Squares (UCLS)2, a control algorithm, which
incrementally estimates the upper-confidence bounds provided in Theorem 1, for guiding on-policy
exploration. The upper-confidence bounds are sound without requiring i.i.d. assumptions; however,
they are derived for a fixed policy. In control, the policy is slowly changing, and so instead we will be
slowly tracking this upper bound. The general strategy, like policy iteration, is to slowly estimate both
the value estimates and the upper-confidence bounds, under a changing policy that acts greedily with
respect to the upper-confidence bounds. Tracking these upper bounds incurs some approximations;
we identify and address potential issues here. The complete psuedocode for UCLS is given in the
Appendix (Algorithm 2).

First, we are not evaluating one fixed policy; rather, the policy is changing. The estimates AT and bT

will therefore be out-of-date. As is common for LSTD with control, we use an exponential moving
average, rather than a sample average, to estimate AT , bT and the upper-confidence bound. The
exponential moving average uses AT = (1� �)AT�1 + �zT (xt � �xt+1)>, for some � 2 [0, 1].
If � = 1/T , then this reduces to the standard sample average; otherwise, for a fixed �, such as
� = 0.01, more recent samples have a higher weight in the average. Because an exponential average
is unbiased, the result in Theorem 1 would still hold, and in practice the update will be more effective
for the control setting.

Second, we cannot obtain samples of the noise ⌫t = rt+1 + �t+1x>
t+1w

⇤ � x>
t w

⇤, which is the
TD-error for the optimal value function parameters w⇤ (see Equation (2)). Instead, we use �t as a
proxy. This proxy results in an upper bound that is too conservative—too loose—because �t is likely
to be larger than ⌫t. This is likely to ensure sufficient exploration, but may cause more exploration
than is needed. The moving average update

⌫̄t = ⌫̄t�1 + �t(�tzt � ⌫̄t�1) (7)

should also help mitigate this issue, as older �t are likely larger than more recent ones.

Third, the covariance matrix C estimating E[A�1

T ⌫̄T ⌫̄>
T A�1

T ] could underestimate covariances, de-
pending on a skewed distribution over states and depending on the initialization. This is particularly
true in early learning, where the distribution over states is skewed to be higher near the start state;
a sample average can result in underestimates in as yet unvisited parts of the space. To see why,
let a = A�1

T ⌫̄T . The covariance estimate Cij = E[aiaj ] corresponds to feature i and j. The agent
begins in a certain region of the space, and so features that only become active outside of this region
will be zero, providing samples aiaj = 0. As a result, the covariance is artificially driven down
in unvisited regions of the space, because the covariance accumulates updates of 0. Further, if
the initialization to the covariance Cii is an underestimate, a visited state with high variance will
artificially look more optimistic than an unvisited state.

We propose two simple approaches to this issue: updating C based on locality and adaptively
adjusting the initialization to Cii. Each covariance estimate Cij for features i and j should only be
updated if the sampled outer-product is relevant, with the agent in the region where i and j are active.
To reflect this locality, each Cij is updated with the aiaj only if the eligibility traces is non-zero for i
and j. To adaptively update the initialization, the maximum observed a2i is stored, as cmax, and the
initialization c0 to each Cii is retroactively updated using

Cii = Cii � (1� �)cic0 + (1� �)cicmax

2We do not characterize the regret of UCLS, and instead similarly to policy iteration, rely on a sound update
under a fixed policy to motivate incrementally estimating these values as if the policy is fixed and then acting
according to them. The only model-free algorithm that achieves a regret bound is RLSVI, but that bound is
restricted to the finite horizon, batch, tabular setting. It would be a substantial breakthrough to provide such a
regret bound, and is beyond the scope of this work.
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where ci is the number of times Cii has been updated. This update is equivalent to having initialized
Cii = cmax. We provide a more stable retroactive update to Cii, in the pseudocode in Algorithm 2,
that is equivalent to this update.

Fourth, to improve the computational complexity of the algorithm, we propose an alternative,
incremental strategy for estimating w, that takes advantage of the fact that we already need to
estimate the inverse of A for the upper bound. In order to do so, we make use of the summarized
information in A to improve the update, but avoid directly computing A�1 as it may be poorly
conditioned. Instead, we maintain an approximation B ⇡ A�> that uses a simple gradient descent
update, to minimize kA>Bxt � xtk22. If B is the inverse of A>, then this loss is zero; otherwise,
minimizing it provides an approximate inverse. This estimate B is useful for two purposes in the
algorithm. First, it is clearly needed to estimate the upper-confidence bound. Second, it also provides
a pre-conditioner for the iterative update w = w +G(b�Aw), for preconditioner G. The optimal
preconditioner is in fact the inverse of A, if it exists. We use G = B> + ⌘I for a small ⌘ > 0
to ensure that the preconditioner is full rank. Developing this stable update for LSTD required
significant empirical investigation into alternatives; in addition to providing a more practical UCLS
algorithm, we hope it can improve the use of LSTD in other applications.

5 Experiments

We conducted several experiments to investigate the benefits of UCLS’ directed exploration against
other methods that use confidence intervals for action selection, to evaluate sensitivity of UCLS’s
performance with respect to its key parameter p, and to contrast the advantage contextual variance
estimates offer over global variance estimates in control. Our experiments were intentionally con-
ducted in small—though carefully selected—simulation domains so that we could conduct extensive
parameter sweeps, hundreds of runs for averaging, and compare numerous state-of-the-art exploration
algorithms (many of which are computationally expensive on larger domains). We believe that such
experiments constitute a significant contribution, because effectively using confidence bounds for
model free-exploration in RL is still in its infancy—not yet at the large-scale demonstration state–with
much work to be done. This point is highlighted nicely below as we demonstrate that several recently
proposed exploration methods fail on these simple domains.

5.1 Algorithms

We compare UCLS to DGPQ [8], UCBootstrap [46], our extension of LSPI-Rmax to an incremental
setting [19] and RLSVI [31]. In-depth descriptions of each algorithm and implementation details
can be found in the Appendix. These algorithms are chosen because they either keep confidence
intervals explicitly, as in UCBootstrap, or implicitly as in DGPQ and RLSVI. In addition, we included
LSPI-Rmax as a natural alternative approach to using LSTD to maintain optimistic value estimates.

We also include Sarsa with ✏-greedy, with ✏ optimized over an extensive parameter sweep. Though
✏-greedy is not a generally practical algorithm, particularly in larger worlds, we include it as a
baseline. We do not include Sarsa with optimistic initialization, because even though it has been a
common heuristic, it is not a general strategy for exploration. Optimistic initialization can converge
to suboptimal solutions if initial optimism fades too quickly [46]. Further, initialization only happens
once, at the beginning of learning. If the world changes, then an agent relying on systematic
exploration due to its initialization may not react, because it no longer explores. For completeness
comparing to previous work using optimistic initialization, we include such results in Appendix G.

5.2 Environments

Sparse Mountain Car is a version of classic mountain car problem Sutton and Barto [40], only
differing in the reward structure. The agent only receives a reward of +1 at the goal and 0 otherwise,
and a discounted, episodic � of 0.998. The start state is sampled from the range [�0.6,�0.4] with
velocity zero. This domain is used to highlight how exploration techniques perform when the reward
signal is sparse, and thus initializing the value function to zero is not optimistic.

Puddle World is a continuous state 2-dimensional world with (x, y) 2 [0, 1]2 with 2 puddles: (1)
[0.45, 0.4] to [0.45, 0.8], and (2) [0.1, 0.75] to [0.45, 0.75] - with radius 0.1 and the goal is the region
(x, y) 2 ([0.95, 1.0], [0.95, 1.0]). The agent receives a reward of �1�400⇤d on each time step, where
d denotes the distance between the agent’s position and the center of the puddle, and an undiscounted,
episodic � of 1.0. The agent can select an action to move 0.05 + ⇣, ⇣ ⇠ N(µ = 0,�2 = 0.01).
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Figure 1: A comparison of speed of learning in Sparse Mountain Car, Puddle World and River Swim.
In plots (a) and (b) lower on y-axis are better, whereas in (c) curves higher along y-axis are better.
Sparse Mountain Car and Puddle World are episodic problems with a fixed experience budget. Thus
the length of the lines in plots (a) and (b) indicate how many episodes each algorithm completed over
50,000 steps, and the height on the y-axis indicates the quality of the learned policy—lower indicates
better performance. Note RLSVI did not show significant learning after 50,000 steps. The RLSVI
result in Puddle World uses a budget of 1 million.

The agent’s initial state is uniformly sampled from (x, y) 2 ([0.1, 0.3], [0.45, 0.65]). This domain
highlights a common difficulty for traditional exploration methods: high magnitude negative rewards,
which often cause the agent to erroneously decrease its value estimates too quickly.

River Swim is a standard continuing exploration benchmark [42] inspired by a fish trying to swim
upriver, with high reward (+1) upstream which is difficult to reach and, a lower but still positive
reward (+0.005), which is easily reachable downstream. We extended this domain to continuous states
in [0, 1], with a stochastic displacement of 0.1 when taking an action up or down, with low-probability
of success for up. The starting position is sampled uniformly in [0, 0.1], and � = 0.99.

5.3 Experimental Setup

We investigate a learning regime where the agents are allowed a fixed budget of interaction steps with
the environment, rather than allowing a finite number of episodes of unlimited length. Our primary
concern is early learning performance, thus each experiment is restricted to 50,000 steps, with an
episode cutoff (in Sparse Mountain Car and Puddle World) at 10,000 steps. In this regime, an agent
that spends a significant time exploring the world during the first episode may not be able to complete
many episodes, the cutoff makes exploration easier given the strict budget on experience. Whereas,
in the more common framework of allowing a fixed number of episodes, an agent can consume many
steps during the first few episodes exploring, which is difficult to detect in the final performance
results. We average over 100 runs in River Swim and 200 runs for the other domains . For all the
algorithms that utilize eligibility traces we set � to be 0.9. For algorithms which use exponential
averaging, � is set to 0.001, and the regularizer ⌘ is set to be 0.0001. The parameters for UCLS
are fixed. RLSVI’s weights are recalculated using all experienced transitions at the beginning of
an episode in Puddle World and Sparse Mountain Car, and every 5,000 steps in River Swim. The
parameters of competitors, where necessary, are selected as the best from a large parameter sweep.

All the algorithms except DGPQ use the same representation: (1) Sparse Mountain Car - 8 tilings
of 8x8, hashed to a memory space of 512, (2) River Swim - 4 tilings of granularity 32, hashed to a
memory space of 128, and (3) Puddle World - 5 tilings of granularity 5x5, hashed to a memory space
of 128. DGPQ uses its own kernel-based representation with normalized state information.

5.4 Results & Analysis

Our first experiment simply compares UCLS against other control algorithms in all the domains.
Figure 1 shows the early learning results across all three domains. In all three domains UCLS achieves
the best final performance. In Sparse Mountain Car, UCLS learns faster than the other methods,
while in River Swim DGPQ learns faster initially. UCBootstrap and UCLS learn at a similar rate in
Puddle World, which is a cost-to-goal domain. UCBootstrap, and bootstrapping approaches generally,
can suffer from insufficient optimism, as they rely on sufficiently optimistic or diverse initialization
strategies [46, 30]. LSPI-Rmax and RLSVI do not perform well in any of the domains. DGPQ does
not perform as well as UCLS in Puddle World, and exhibits high variance compared with the other
methods. In Puddle World, UCLS goes on to finish 1200 episodes in the alloted budget of steps,
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whereas in River Swim both UCLS and DGPQ get close to the optimal policy by the end of the
experiment.

The DGPQ algorithm uses the maximum reward (Rmax) to initialize the Gaussian processes. In
Sparse Mountain Car this effectively converts the problem back into the traditional -1 per-step
formulation. In this traditional variant of Mountain Car UCLS significantly outperforms DGPQ
(Appendix G). Sarsa with ✏-greedy learns well in Puddle world as it is a cost-to-goal problem in
which by default Sarsa uses optimistic initialization, and therefore is reported in the Appendix. .

Next we investigated the impact of the confidence level 1� p, on the performance of UCLS in River
Swim. The confidence interval radius is proportional to

p
1 + 1/p; smaller p should correspond to a

higher rate of exploration. In Figure 2, smaller p resulted in a slower convergence rate, but all values
eventually reach the optimal policy.

Finally, we investigate the benefit using contextual variance estimates over global variance estimates
within UCLS. In Figure 2, we also show the effect of various p values on the performance of the
algorithm resulting from Corollary 1, which we call Global Variance-UCB (GV-UCB) (see Appendix
E.1 for more details about this algorithm). For this range of p, UCLS still converges to the optimal
policy, albeit at different rates. Using a global variance estimates (GV-UCB), on the other hand,
results in significant over-estimates of variance, resulting in poor performance.

6 Conclusion and Discussion

This paper develops a sound upper-confidence bound on the value estimates for least-squares tem-
poral difference learning (LSTD), without making i.i.d. assumptions about noise distributions. In
particular, we allow for context-dependent noise, where variability could be due to noise in rewards,
transition dynamics or even limitations of the function approximator. We then introduce an algorithm,
called UCLS, that estimates these upper-confidence bounds incrementally, for policy iteration. We
demonstrate empirically that UCLS requires far fewer exploration steps to find high-quality policies
compared to several baselines, across domains chosen to highlight different exploration difficulties.

The goal of this paper is to provide an incremental, model-free, data-efficient, directed exploration
strategy. The upper-confidence bounds for action-values for fixed policies are one of the few available
under function approximation, and so a step towards exploration with optimistic values in the general
case. A next step is to theoretically show that using these upper bounds for exploration ensures
stochastic optimism, and so converges to optimal policies.

One promising aspect of UCLS is that it uses least-squares to efficiently summarize past experience,
but is not tied to a specific state representation. Though we considered a fixed representation for
UCLS, it is feasible that an analysis for the non-stationary case could be used as well for the setting
where the representation is being adapted over time. If the representation drifts slowly, then UCLS
may be able to similarly track the upper-confidence bounds. Recent work has shown that combining
deep Q-learning with Least-squares can result in significant performance gains over vanilla DQN[18].
We expect that combining deep networks and UCLS could result in even larger gains, and is a natural
direction for future work.
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