Proximal Graphical Event Models

Debarun Bhattacharjya Dharmashankar Subramanian Tian Gao
IBM Research
Thomas J. Watson Research Center, Yorktown Heights, NY, USA
{debarunb,dharmash,tgao}@us.ibm.com

Abstract

Event datasets involve irregular occurrences of events over the timeline and are
prevalent in numerous domains. We introduce proximal graphical event models
(PGEMs) as a representation of such datasets. PGEMs belong to a broader family
of graphical models that characterize relationships between various types of events;
in a PGEM, the rate of occurrence of an event type depends only on whether or
not its parents have occurred in the most recent history. The main advantage over
state-of-the-art models is that learning is entirely data driven and without the need
for additional inputs from the user, which can require knowledge of the domain
such as choice of basis functions and hyper-parameters. We theoretically justify our
learning of parental sets and their optimal windows, proposing sound and complete
algorithms in terms of parent structure learning. We present efficient heuristics for
learning PGEMs from data, demonstrating their effectiveness on synthetic and real
datasets.

1 Introduction and Related Work

Event datasets are sequences of events of various types that typically occur as irregular and asyn-
chronous continuous-time arrivals. This is in contrast to time series data, which are observations of
continuous-valued variables over regular discrete epochs in time. Examples of event datasets include
logs, transactions, notifications and alarms, insurance claims, medical events, political events, and
financial events.

It is well known that a multivariate point process is able to capture the dynamics of events occurring
in continuous time, under reasonable regularity conditions, using conditional intensity functions.
These are akin to hazard rates in survival analysis and represent the rate at which an event type
occurs, conditioned on the history of event occurrences. Learning arbitrary history-dependent
intensity functions can be difficult and impractical, thus the literature makes various simplifying
assumptions. Some examples of such point processes include continuous time noisy-or (CT-NOR)
models [Simma et al.,[2008], Poisson cascades [[Simma and Jordan,[2010]], Poisson networks [Rajaram
et al.L[2005]], piecewise-constant conditional intensity models [Gunawardana et al., 201 1]}, forest-based
point processes [Weiss and Pagel [2013]], multivariate Hawkes processes [Zhou et al.l 2013]], and
non-homogeneous Poisson processes [Goulding et al.,2016].

Graphical event models (GEMs) have been proposed as a graphical representation for multivariate
point processes [Didelezl 2008 Meek, 2014, |Gunawardana and Meek! 2016|]. Unlike graphical
models for discrete-time dynamic uncertain variables such as dynamic Bayesian networks [Dean
and Kanazawa, |1989, Murphy} 2002] and time series graphs [Eichler, |1999, |Dahlhaus, |[2000], GEMs
capture continuous-time processes. They also differ from continuous-time Bayesian networks
[Nodelman et al., [2002], which represent homogeneous Markov models of the joint trajectories of
discrete variables rather than models of event streams in continuous time. GEMs provide a framework
that generalizes many of the afore-mentioned history-dependent models for event datasets, many of
which make the assumption of piece-wise constant conditional intensity functions. The literature

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

12 13

b
°
0g likelihood

6.0 =

Wee & g B

Figure 1: An example involving M = 3 event labels: a) Event dataset; b) Example PGEM,; c) Surface plot of
log likelihood for node C, given parents A and B, as a function of windows wg. and wpe.

takes varying approaches to the representation and learning of such functions, including decision
trees [Gunawardana et al., 2011]], forests [Weiss and Pagel 2013, and generalized linear models
[Rajaram et al.l 2005].

A major drawback in these existing approaches is that they require the user to specify a set of
basis functions in the form of relevant time intervals in the history. It is not obvious beforehand
in most applications how to specify such a basis. Alternatively, if a basis is chosen in a manner
that is exhaustively data-adaptive, i.e. using all historical epochs of event arrivals to define all
historical time intervals of interest, one ends up with a prohibitively large basis set that makes any
learning impractical. Thus there is a need to investigate approaches that don’t require such a basis set
specification and yet provide practical learning algorithms.

In this paper, we introduce proximal graphical event models (PGEMs), where the intensity of an event
label depends on occurrences of its parent event labels in the graph within the most recent history, i.e.
in temporal proximity (see Figure[T[b) for an example). Although PGEMs are a special case from
the piece-wise constant conditional intensity family, there are several advantages of such models
and our work on learning them from data: 1) They are practical models, capturing the assumption
that the most recent history is sufficient for understanding how the future may unfold. We argue
that PGEMs are particularly interpretable event models and could be useful for providing insights
about the dynamics in an event dataset to political or financial analysts or medical practitioners or
scientists; 2) Importantly, we present data-driven algorithms that learn a PGEM from an event dataset
without additional user information, unlike the state-of-the-art models; 3) We present polynomial
time heuristic algorithms that make PGEM learning computationally more tractable and therefore
amenable to large event datasets, possibly with a large number of event types.

2 Notation and Model Formulation

2.1 Preliminaries

An event dataset is denoted D = {(I;,t;)}X,, where ¢; is the occurrence time of the i'" event,
t; € R™, and [; is an event label/type belonging to a finite alphabet £ with cardinality |£| = M. We
assume a temporally ordered dataset, t; < t; for i < j, with initial time to = 0 < ¢; and end time
tn41 =T > ty, where T is the total time period. Figure[T[a) shows an example event dataset with
N = 7 events from the event label set £ = {A, B, C} over T' = 20 days.

In this paper, we propose learning algorithms that are data-driven; specifically, we will rely on
inter-event times between event labels in the dataset. We denote the set of times from the most recent
occurrence of Z, if Z has occurred, to every occurrence of X (Z # X) as {t.,}. We use {..} to
denote inter-event times between Z occurrences, including the time from the last occurrence of Z to

the final time 7T'. In the Figure a) example, {t..} = {2,8}, {foe} = {1,7} and {ty,} = {3,7,7}.

2.2 PGEM Formulation

An event dataset can be modeled using marked point processes, whose parameters are conditional
intensity functions; in the most general case, the conditional intensity for event label X is a function
of the entire history, A (t|h:), where h; includes all events up to time ¢, hy = {(l;,¢;) : t; < t}. We
use lower case = wherever we refer to label X in subscripts or parentheses. A graphical representation
of a marked point process can help specify the historical dependence. For graph G = (£, £) where
nodes correspond to event labels, the conditional intensity for label X depends only on historical
occurrences of its parent event labels, therefore A, (t|h:) = Az (¢|[h(U)]¢), where U are parents of
node X in G and [h(U)]y is the history restricted to event labels in set U [Gunawardana and Meek,
2016]. We refer to nodes and event labels interchangeably.

A proximal graphical model M consists of a graph along with a set of (time) windows and conditional
intensity parameters, M = {G, W, A}. There is a window for every edge in the graph, W = {w,, :
VX € L}, where w, = {w,, : VZ € U} denotes the set of all windows corresponding to incoming
edges from X’s parents U. A = {Aﬁ]ﬁ : VX € L} is the set of all conditional intensity parameters.
For node X, there is a parameter for every instantiation u of its parent occurrences, depending
on whether a parent event label has occurred in its window; thus there are 2!Vl parameters for X,
making the PGEM parametrization analogous to a Bayesian network with binary variables. To
avoid notational clutter, we will hide the window superscript for conditional intensities. Figure [[(b)
provides an illustrative PGEM graph along with the windows. In this example, parameter)‘C\af_)
signifies the rate at which C occurs at any time ¢ given that A has occurred at least once in the interval
[t — Wae, t) and that B has not occurred in [t — wpe,).

3 Learning PGEMs

The learning problem is as follows: given an event dataset D, estimate a PGEM M = {G, W, A},
i.e. parents, windows, and conditional intensity parameters for each event label. In this section, we
first discuss learning windows and parameters for a node given its parents, and then present some
theoretical results to help with parent search. We end the section with practical heuristic algorithms.

3.1 Learning Windows

When the parents U of all nodes X are known, the log likelihood of an event dataset given a PGEM
can be written in terms of the summary statistics of counts and durations in the data and the conditional
intensity rates of the PGEM:

IOgL Z Z —Az \u + N(.T ll) ln(AT\u))a (D

where N(x;u) is the number of times that X is observed in the dataset and that the condi-
tion u (from 2/Yl possible parental combinations) is true in the relevant preceding windows,
and D(u) is the duration over the entire time period where the condition u is true. Formally,

N(zsu) = Y00 I(l; = X)I¥=(t;) and D(w) = Y104 [Iw=(t)dt, where I+ (t) is an indica-
tor for whether u is true at time ¢ as a function of the relevant windows w,,. Note that we have hidden

the dependence of the summary statistics on windows w,, for notational simplicity.

From Equation[I] it is easy to see that the maximum likelihood estimates (MLEs) of the conditional

intensity rates are Am|u = ND(ZC ‘)’) The following theorem uses this to provide a high-level recipe for

finding optimal windows for a node given its parents. N (z) denotes counts of event label X in the
data.

Theorem 1. The log likelihood maximizing windows for a node X with parents U are those that

maximize the KL divergence between a count-based distribution with probabilities N]\(,f;)l) and a

D(u)
T

duration-based distribution with probabilities

Note that for each time ¢ € [0, T, there is some one parental state u(h:, w,,) that is active. Since

the number of such parental states over [0, 7] is finite (upper bounded by min(2/Y!, 2V') and further
limited by what the data D and windows w,, allow), this leads to a finite partition of [0, T]. Each

member in this partition corresponds to some parental state u, and in general, it is a union of a
collection of non-intersecting half-open or closed time intervals that are subsets of [0,7]. Each
member thus has a net total duration, which sums to 7" across the above partition, and similarly a net
total count of the number of arrivals of type X. As such, w, taken with D is equivalent to two finite
distributions (histograms) whose support is over the above set of partition members, one each for
counts and the durations. The above theorem observes that the optimal w, is one where the count
histogram across the partition members maximally differs from the corresponding duration histogram,
as per KL divergence. (All proofs are in the supplementary section.) In informal terms, the windows
w, that lead to MLE estimates for conditional intensities are the ones where the summary statistics
of empirical arrival rates differ maximally across the above parental state partition.

The challenge with applying Theorem [I]to the practical issue of finding the optimal windows is that
this is in general a difficult combinatorial optimization problem with a non-linear objective function.
Figure T[c) displays the shape of the log likelihood function for node C as a function of windows
from its parents A and B in the PGEM from Figure[I[b). Note that the maximization over regionally
convex areas results in several local maxima.

Next we provide an upper bound on the optimal window from parent Z to node X regardless of other
considerations.

Theorem 2. The log likelihood maximizing window w . from parent Z to a node X is upper bounded
by max{t..}, where {t} denotes inter-event times, which is also taken to include the inter-event time
between the last arrival of Z and T (end of the horizon).

The following theorem shows that when a node has a single parent, one can discover a small number
of local maxima from the inter-event times in the data, thereby easily computing the global maximum
by exhaustively comparing all local maxima.

Theorem 3. For a node X with a single parent Z, the log likelihood maximizing window w .., either
belongs to or is a left limit of a window in the candidate set W* = {t,,} U max{t,,}, where {t}
denotes inter-event times.

In the proof of Theorem [3] we show that the candidate window set arises primarily because the
counts N (z; z) only change at the inter-event times {.,. }. Note that the counts are step functions
and therefore discontinuous at the jump points; this is the reason why the optimal window can be
a left limit of an element in W*. We deal with this practically by searching over both W* as well
as W* — e (e = 0.001 is chosen for all experiments). Next, we show that the optimal window from
parent Z to node X given other parents and their windows also belongs to a grid, albeit a finer one
than in Theorem[3

Theorem 4. For a node X and parent(s) Y, the log likelihood maximizing window for a new parent
Z, Wy, given the windows corresponding to nodes from'Y to X, either belongs to or is a left limit of
a window in the candidate set W* = {tzx} U Cy.., where {t} denotes inter-event times and C,
are change points across the set of the piecewise linear functions D(y, z) (multiple functions, due to
multiple parental state combinations) that are obtainable from Algorithm([I]

C'yyz captures all the change points that are pertinent to any of the functions D(y, z) when a window
w is varied over [0, W], where W = max{#..} is an upper bound on the optimal w (Theorem .

We will use the above two theorems in our heuristics for finding the optimal windows and parameters
given a parent set.

3.2 Optimal Parent Set Search

In the literature on Bayesian networks, various scores such as Akaike information criterion (AIC),
Bayesian information criterion (BIC), and Bayesian Dirichlet equivalent uniform (BDeu) are used to
learn the graphical structure from data. These scores can be viewed as combining the log likelihood
of the data with a term that penalizes the complexity of the model. Prior work has shown that these
criteria enjoy some properties that can help parent search by eliminating non-optimal parent sets
quickly, reducing the search space size and speeding up learning [Teyssier and Koller 2005/ (Campos
and Ji, 2011]]. Here we provide similar theoretical results on parent set search in PGEMs. We use the

Algorithm 1 Change points in w across all of piece-wise linear functions D(y, z)

Inputs: Dataset D, Labels X, Z, given parent set Y with windows wy,,y € Y
Outputs: Cy ., initialized to (
Initialize: S = {[t. ;, tz,i+1]}£\]:(1z), ordered inter-arrival intervals of Z, with ¢, ()41 = T.
forallyinY do
for all S; = [tz71;,tz7i+1] in S do
Let: Cl(Si) = maxk{ty}ﬂty,k < tz7i}
Let: iIl(Sl') = {ty k|ty k S (tz iytz i+1)}
Cy .= Cy ZU changepoints(s;, c1(s;),in(s;),y)
Cy.=Cy U {tzz }, i.e. add the set of the N (z) ascending order statistics of label Z inter-event
times {tzz }, including the inter-event time between the last arrival of Z and T'

changepoints(s;, c1(s;), in(s;),y):
Initialize: Stack o = (),C =0
if (c1(s;) + wy.) < t. 41 then
if (Cl(Si) + wyz) S (tzﬂ‘,tzﬂq_l) then
o.push(cl(s;) + wy. —t. ;)
for all ¢ in in(s;) do
if o not empty then

tail =o.top
else

tail =-1
if t < tail then

o.pop
else

o.push(t — ¢, ;)
if (t + Wy > tz,i+1) then
break
else
o.push(t + wy, —t. ;)
C = set(o)
return C

BIC score in our experiments, defined for a PGEM as:

BIC(D) = logL(D ZQ‘Ul)

First, we state a simple way to discard parent sets for a node in a PGEM, as used in [Teyssier and
Koller [2005]], |Campos and Ji|[2011].

Lemma 5. Let X be an arbitrary node of G, a candidate PGEM graph where the parent set of X is
U’ If U C U’ such that sx (U) > sx (U’), where s is BIC, AIC, BDeu or a derived scoring criteria,
then U’ is not the parent set of X in the optimal PGEM graph G*.

While Lemma [5] provides a way to eliminate low scoring structures locally, one still needs to
compute the scores of all possible parent sets and then remove the redundant ones. The search still
requires M x 2™ asymptotic score computation and the same complexity for parent score storage,
although the space can be reduced after applying Lemma[5] We present the following two lemmas
to reduce some of these computations. We focus on the BIC score but similar results should hold
for other scores. Since BIC is decomposable, the local BIC score for node X can be expressed as
sx(U) = Lx(U) — tx(U), where Lx (U) is the log likelihood term and ¢x (U) is the structure
penalty term, tx (U) = InT - 2Y.

Theorem 6. Using BIC as the score function, suppose that X and U are such that 219 >
w + N(z), where 2Vl is the total size of all possible parent combinations, N (z)
is the total count of X in the data and T is the maximal time horizon. If U’ is a proper superset of U,
then U’ is not the parent set of X in the optimal PGEM graph.

Algorithm 2 Forward Backward Search

Inputs: Event label X, event dataset D
Outputs: Parents U, windows w,,, lambdas)\z‘u, score such as BIC

Forward Search: Initialize U =); S = —c0
while score cannot be improved or no more parents can be added do
for all Z notin U do

Find all optimal windows and As with Z added to U and corresponding score S(U U Z)

if maxz{S(UU Z)} > S then
Add Zto U, S =maxz{S(UU Z)}

Backward Search: Start with parent set U and .S from forward search
while score cannot be improved or U = () do
for all Z in U do
Find all optimal windows and As with Z removed from U and corresponding score S(U\ Z)
if maxz {S(U\Z)} > S then
Remove Z from U, S = maxz{S(U\Z)}

Corollary 7. Using BIC as the score function, the optimal graph G* has at most O(logy N(z))
parents for each node X.

Theorem @ and Corollaryensure that we only need to compute O(> ,Elif‘f N(@)] (M-1)) elements
for each variable X.

The next theorem does not directly improve the theoretical size bound of the parent set size that is
achieved by Corollary[7] but it helps in practice as it is applicable to cases where Theorem [6]is not,
implying even fewer parent sets need to be tested.

Theorem 8. Using BIC as score function s, let X be a node with two possible parent sets U C U’
such that tx (U’) + sx (U) > 0. Then U’ and all its supersets U” > U’ are not optimal parent sets
for X in the optimal PGEM graph.

Hence, Theorem [§]can be used to discard additional parents sets without computing its local scores.
Every time the score of a parent set U of X is about to be computed, we can take the best score of
any its subsets and test it against the theorem. If the condition applies, we can safely discard U and
all its supersets. To summarize, we would need to build all possible parent sets up to O(log, N(z))
for each X and then use Theorem §|and then Lemma [5]to test the optimal parent set.

3.3 A Forward-Backward Search Algorithm

We propose a forward-backward search (FBS) algorithm to learn the structure of a PGEM as shown
in Algorithm 2] Since a PGEM can include cycles, there are no acyclicity constraints like in Bayesian
networks, therefore we can run Algorithm [2]on each node/label X separately. This local learning
approach is similar to local learning in Bayesian networks [[Gao and Wei, [2018]] but can contain
cycles.

Given an event data set D and a target label X, FBS first initializes the parent set U to be empty. At
each step of a forward search, FBS iteratively chooses a parent candidate Z that is not in U, and find
the best window and rates A that maximize the score S(U U Z) with parent set UU Z (as discussed in
Section 3.1)). If the maximized S(U U Z) is better than the current best score S, then FBS chooses to
add Z to U and update S. It runs until all variables have been tested or no parent set would improve
the score (as discussed in Section[3.2). Then during the backward search step, FBS iteratively tests if
each variable Z in U can be removed, i.e. if the removed set U \ Z would give a better score. If so,
Z would be removed from U. Backward search runs until score S cannot be improved or U becomes
empty.

With the optimal parent set search with bounded sizes and determination of optimal windows and
conditional intensity rates given a graph, one can show the soundness and completeness of Algorithm 2]
under mild assumptions. (Gunawardana and Meek|[2016] show that backward and forward search with

BIC scores is sound and complete for a family of GEMs. Assuming that the underlying distribution
can be captured uniquely by a PGEM model, then since PGEMs can be considered a sub-class of
this family and Algorithm E]is a similar forward-and-backward search, soundness and completeness
applies in this instance as well.

Theorem 9. Under the large sample limit and no detailed balance assumptions [|Gunawardana and
Meek, [2016)], Algorithm[2]is sound and complete.

Jointly optimizing the windows for multiple parents simultaneously is a hard problem in general.
We instead realize two efficient heuristics based on the above FBS procedure, namely FBS-IW and
FBS-CW. In FBS-IW, we independently optimize the window for each parent relative to label X,
using the finite characterization of single-parent optimal windows presented in Theorem[3] After each
individual parent’s window has been independently optimized, we compute the corresponding finite
partition of [0, 7] in terms of parental states, and use the sufficient statistics in each partition member
to estimate the corresponding conditional intensity rates. In FBS-CW, we appeal to Theorem] and
realize a block coordinate ascent strategy (over parent labels) for optimizing the windows. For each
parent that is added in the forward search, we optimize its window while keeping all the other existing
parents fixed at their current windows. The rate estimation is then as described above for FBS-IW.
We add parents in the forward search if there is a score improvement based on the new windows and
rates. For the backward search, we delete a parent, retain existing windows for remaining parents and
only recompute the intensity rates in both FBS-IW and FBS-CW.

Theorem 10. If all event labels occur in the dataset in similar proportions, the worst case complexity
of the FBS-IW and FBS-CW algorithms are O(N? + M3N) and O(M?3N?) respectively.

4 Experiments

We consider 2 baselines for our experiments. A superposition of independent Poisson (SIP) arrivals
is a weak baseline that treats every event label as an independent Poisson process and is equivalent
to a PGEM without edges. We also test the CPCIM algorithm [Parikh et al.|[2012], shown to be an
improved version over piecewise constant intensity model (PCIM) [Gunawardana et al.| 2011]] and
other variants, to compare the performance of the proposed algorithm. For CPCIM, we used the
following hyper-parameters. The conjugate prior for conditional intensity has two parameters, the
pseudo-count o and pseudo-duration 3 for each label. We used the same values for all labels, by
computing a ratio p of the total number of all arrivals over all labels to the total duration for all labels
(the product of the number of labels and the horizon 7" under consideration). This ratio provides an
empirically based estimate of the arrival rate. We ran experiments using « = Kp, = K, for various
values of K = 10, 20, ..., where higher values of K correspondingly increase the influence of the
prior on the results. Experimental results presented in this section are for K = 20. The structural
prior k was fixed at 0.1 [Gunawardana et al.,[2011]]. We also experimented with MFPP [Weiss and
Pagel 2013 which is based on random forests, but we observed high sensitivity to forest parameters
as well as randomness in the optimized log likelihood values which went to negative infinity in many
runs. We therefore present comparisons with only SIP and CPCIM in the experi ments. Both PGEM
learning algorithms use e = 0.001 to search for left limiting points.

4.1 Synthetic Datasets

We generate PGEMs for a label set £ of size M through the following process. For each node, we
select the number of its parents K uniformly from the parameters K,,;, > 0, , Kipge < M in
integer increments; a random subset of size K from L is then chosen as its parent set. We generate
windows for each edge uniformly from w;,;;, t0 Wy,q, in increments of Aw. For the conditional
intensity rates, we assume that each node’s parent either has a multiplicative amplification or damping
rate beyond a baseline rate of /M (r = 1 implies an overall rate of one label per time period in
the dataset). Nodes that always increase occurrence rate for their children are obtained by randomly
choosing a subset £ 4 of size K 4 from L. Nodes in the sets £ 4 and £\ L 4 have an amplification and
damping rate of 74 and yp respectively.

Figure [2] compares models using 6 PGEMs generated from the afore-mentioned process; the top and
bottom rows have PGEMs with M = 5 and M = 10 labels respectively. Other details about the model
generating parameters are described in the supplementary material. For each model, we generated 10
event datasets over 7' = 1000 days (around 3 years) from a synthetic PGEM generator. Windows

Log Likelihood
Log Likelihood

-1475
-2050 -2350

Log Likelihood

-1500

- -2400
2100 .

-2100
1850 -1350
57 -2150
-1900
-1400 -2200
-1950 -1425 -2250
-2000 -1450 _2300

-2450

CPCIM PGEM-CW PGEM-W SIP True CPCIM PGEM-CW PGEM-W SIP True CPCIM PGEM-CW PGEM-W SIP True
a) PGEM #1 b) PGEM #2 c) PGEM #3
-2600 -2000
-3000 3it0
3 g 2100 B -2200 E’
2 -0 2 2 o
K] 2 2800 L
< 3200 . = 2400
g g g
3 3 000 3 -2500
-3300 2600
—3000 -2700
CPCIM PGEM-CW PGEM-W SIP True CPCIM PGEM-CW PGEM-W SIP True CPCIM PGEM-CW PGEM-W SIP True
c) PGEM #4 d) PGEM #5 e) PGEM #6

Figure 2: Model comparisons with 10 synthetic event datasets generated from 6 PGEMs. The top and bottom
rows have PGEMs with M = 5 and M = 10 labels respectively. Both PGEM learning algorithms (FBS-IW and
-CW) are compared with baseline models SIP and CPCIM as well as the true model.

Table 1: Log likelihood of models for experiments on the books dataset
Dataset SIP PGEM CPCIM

Leviathan (M = 10) -19432 -18870 -19237
Leviathan (M =20) -36398 -35179 -36055
Bible (M = 10) -76097 -72013 -72801
Bible (M = 20) -147706 -138190 -140327

were chosen to range from between a fortnight to 2 months. For CPCIM, we used intervals of the
form [t — t*,t) as basis functions, where t* € {1,2,3,4,5,6,7,15,30,45,60,75,90,180}. The
boxplots indicate that the PGEM learning algorithms beat the baselines and come close to matching
the log likelihood of the true model on the datasets. We observed in these and other experiments that
the PGEM learning algorithms perform comparably; we therefore restrict our attention to the more
efficient FBS-IW algorithm in subsequent experiments.

4.2 Real Datasets

Books. We consider two books from the SPMF data mining library [Fournier-Viger et al.,[2014]:
Leviathan, a book by Thomas Hobbes from the 1600s, and the Bible. We ignore the 100 most frequent
words to remove stop-words and only retain the next most frequent M words; this provides us with
large event datasets where every word in scope is an event label and its index in the book is the occur-
rence time. For the Bible with M = 20, there are N = 19009 words. Table [I] shows that PGEM has
greater log likelihood than the baselines on the four datasets considered. For CPCIM, we used intervals
of the form [t — t*,t) as basis functions, where t* € {25, 50, 100, 200, 300, 400, 500, 1000, 5000}
These datasets revealed to us how challenging it could be to identify basis functions, thereby reinforc-
ing the benefits of PGEMs.

From Table[T} we see that PGEM outperforms both SIP and CPCIM consistently on the book datasets,
while CPCIM is better than SIP. PGEM achieves the best result on all 4 datasets, with the smallest
margin of 400 in LL and up to 2000 over CPCIM.

ICEWS. We consider the Integrated Crisis Early Warning System (ICEWS) political relational
event dataset [[O’Brien, [2010]], where events take the form ‘who does what to whom’, i.e. an event z
involves a source actor a, performing an action/verb v, on a target actor a’,, denoted z = (a,, v,, a’).
In ICEWS, actors and actions come from the Conflict and Mediation Event Observations (CAMEQ)

Table 2: Log likelihood of models for experiments on the ICEWS dataset
Dataset SIP PGEM CPCIM

Argentina -11915 -8412 -10631
Brazil -14289 -8856 -11706
Colombia -4621 -2965 -3557
Mexico -7895 -6011 -5676
Venezuela -8922 -5454 -6757

ontology [Gerner et al., [2002]]. Actors in this ontology could either be associated with generic
actor roles and organizations (ex: Police (Brazil)) or they could be specific people (ex: Hugo
Chavez). Actions in the CAMEO framework are hierarchically organized into 20 high-level base
coded actions that range 1-20. For our experiment, we restricted attention to five countries, namely,
Brazil, Argentina, Venezuela, Mexico and Colombia over a four year time period, Jan 1 2012 to
Dec 31, 2015. We included only 5 types of actors, namely, Police, Citizen, Government, Head of
Government and Protester, normalizing for actual heads of governments (i.e. mapping Hugo Chavez
to Head of Government (Venezuela) for e.g.). We considered 5 types of actions, namely, Neutral
[1-2], Verbal cooperation [3-5], Material cooperation [6-8], Verbal conflict [9-13] and Material
conflict [14-20], where the numbers in the brackets show how the action categories map to the
CAMEQO codes. For CPCIM, we used intervals of the form [t — t*,¢) as basis functions, where
t* € {7,15,30,45,60,75,90,180}. From Table we see that PGEM outperforms both SIP and
CPCIM on 4 out of 5 countries, while CPCIM is better than PGEM for Mexico.

5 Conclusions

In this paper, we introduce a novel model for event datasets — proximal graphical event models
— with the following major contributions: 1) We study the optimal window size in PGEMs and
conduct theoretical analysis; 2) We derive efficient parent set size bounds in PGEMs for usage in
structure learning algorithms; 3) We propose a forward-backward search algorithm, with two efficient
heuristics, to learn the structure and parameters of PGEMs; 4) We demonstrate PGEM’s superior
modeling power on multiple synthetic and real datasets. PGEMs do not require careful tuning of
many hyper-parameters compared to existing methods, making them useful along with interpretable.
In practice, given the underlying parametric assumptions of a PGEM and the proposed heuristic ap-
proach to obtaining windows, the learning approach could potentially mis-characterize causal/acausal
relationships between event types in more complex underlying distributions. Nevertheless, we believe
that PGEMs are readily suitable for many real world applications.

Acknowledgments

We thank Nicholas Mattei and Karthikeyan Shanmugam for helpful discussions, Christian Shelton
for help with the CPCIM code, and three anonymous reviewers for their valuable feedback.
References

C. P. de Campos and Q. Ji. Efficient structure learning of Bayesian networks using constraints.
Journal of Machine Learning Research, 12(Mar):663-689, 2011.

R. Dahlhaus. Graphical interaction models for multivariate time series. Metrika, 51:157—-172, 2000.

T. Dean and K. Kanazawa. A model for reasoning about persistence and causation. Computational
Intelligence, 5:142-150, 1989.

V. Didelez. Graphical models for marked point processes based on local independence. Journal of
the Royal Statistical Society, Ser. B, 70(1):245-264, 2008.

M. Eichler. Graphical Models in Time Series Analysis. PhD thesis, University of Heidelberg,
Germany, 1999.

P. Fournier-Viger, A. Gomariz, T. Gueniche, A. Soltani, C. Wu., and V. S. Tseng. SPMF: A Java Open-
Source Pattern Mining Library. Journal of Machine Learning Research (JMLR), 15:3389-3393,
2014.

T. Gao and D. Wei. Parallel Bayesian network structure learning. In Proceedings of the International
Conference on Machine Learning (ICML), pages 1671-1680, 2018.

D. J. Gerner, P. A. Schrodt, O. Yilmaz, and R. Abu-Jabr. Conflict and mediation event observa-
tions (CAMEO): A new event data framework for the analysis of foreign policy interactions.
International Studies Association (ISA) Annual Convention, 2002.

J. Goulding, S. Preston, and G. Smith. Event series prediction via non-homogeneous Poisson process
modelling. In Proceedings of the Sixteenth IEEE Conference on Data Mining (ICDM), pages
161-170, 2016.

A. Gunawardana and C. Meek. Universal models of multivariate temporal point processes. In
Proceedings of the Nineteenth International Conference on Artificial Intelligence and Statistics
(AISTATS), pages 556-563, 2016.

A. Gunawardana, C. Meek, and P. Xu. A model for temporal dependencies in event streams. In
Proceedings of Advances in Neural Information Processing Systems (NIPS), pages 1962—-1970,
2011.

C. Meek. Toward learning graphical and causal process models. In Proceedings of Uncertainty
in Artificial Intelligence Workshop on Causal Inference: Learning and Prediction, pages 43-48,
2014.

K. Murphy. Dynamic Bayesian Networks: Representation, Inference and Learning. PhD thesis,
University of California Berkeley, USA, 2002.

U. Nodelman, C. R. Shelton, and D. Koller. Continuous time Bayesian networks. In Proceedings
of the Eighteenth International Conference on Uncertainty in Artificial Intelligence (UAI), pages
378-378, 2002.

S. P. O’Brien. Crisis early warning and decision support: Contemporary approaches and thoughts on
future research. International Studies Review, 12:87-104, 2010.

A. P. Parikh, A. Gunawardana, and C. Meek. Conjoint modeling of temporal dependencies in event
streams. In Proceedings of Uncertainty in Artificial Intelligence Workshop on Bayesian Modeling
Applications, August 2012.

S. Rajaram, T. Graepel, and R. Herbrich. Poisson-networks: A model for structured point processes. In
Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics (AISTATS),
pages 277-284, 2005.

A. Simma and M. I. Jordan. Modeling events with cascades of Poisson processes. In Proceedings of
the Twenty-Sixth International Conference on Uncertainty in Artificial Intelligence (UAI), pages
546-555, 2010.

A. Simma, M. Goldszmidt, J. MacCormick, P. Barham, R. Black, R. Isaacs, and R. Mortie. CT-NOR:
Representing and reasoning about events in continuous time. In Proceedings of the Twenty-Fourth
International Conference on Uncertainty in Artificial Intelligence (UAI), pages 484—493, 2008.

M. Teyssier and D. Koller. Ordering-based search: A simple and effective algorithm for learning
Bayesian networks. In Proceedings of the Twenty-First Conference on Uncertainty in Artificial
Intelligence, pages 584-590. AUAI Press, 2005.

J. C. Weiss and D. Page. Forest-based point process for event prediction from electronic health
records. In Machine Learning and Knowledge Discovery in Databases, pages 547-562, 2013.

K. Zhou, H. Zha, and L. Song. Learning triggering kernels for multi-dimensional Hawkes processes.
In Proceedings of the International Conference on Machine Learning (ICML), pages 1301-1309,
2013.

10

