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Abstract

Many neurons in the brain, such as place cells in the rodent hippocampus, have lo-
calized receptive fields, i.e., they respond to a small neighborhood of stimulus space.
What is the functional significance of such representations and how can they arise?
Here, we propose that localized receptive fields emerge in similarity-preserving
networks of rectifying neurons that learn low-dimensional manifolds populated by
sensory inputs. Numerical simulations of such networks on standard datasets yield
manifold-tiling localized receptive fields. More generally, we show analytically
that, for data lying on symmetric manifolds, optimal solutions of objectives, from
which similarity-preserving networks are derived, have localized receptive fields.
Therefore, nonnegative similarity-preserving mapping (NSM) implemented by
neural networks can model representations of continuous manifolds in the brain.

1 Introduction

A salient and unexplained feature of many neurons is that their receptive fields are localized in the
parameter space they represent. For example, a hippocampus place cell is active in a particular spatial
location [1], the response of a V1 neuron is localized in visual space and orientation [2], and the
response of an auditory neuron is localized in the sound frequency space [3]. In all these examples,
receptive fields of neurons from the same brain area tile (with overlap) low-dimensional manifolds.

Localized receptive fields are shaped by neural activity as evidenced by experimental manipulations
in developing and adult animals [4, 5, 6, 7]. Activity influences receptive fields via modification, or
learning, of synaptic weights which gate the activity of upstream neurons channeling sensory inputs.
To be biologically plausible, synaptic learning rules must be physically local, i.e., the weight of a
synapse depends on the activity of only the two neurons it connects, pre- and post-synaptic.

In this paper, we demonstrate that biologically plausible neural networks can learn manifold-tiling
localized receptive fields from the upstream activity in an unsupervised fashion. Because analyzing
the outcome of learning in arbitrary neural networks is often difficult, we take a normative approach,
Fig. 1. First, we formulate an optimization problem by postulating an objective function and
constraints, Fig. 1. Second, for inputs lying on a manifold, we derive an optimal offline solution and
demonstrate analytically and numerically that the receptive fields are localized and tile the manifold,
Fig. 1. Third, from the same objective, we derive an online optimization algorithm which can be
implemented by a biologically plausible neural network, Fig. 1. We expect this network to learn
localized receptive fields, the conjecture we confirm by simulating the network numerically, Fig. 1.

Optimization functions considered here belong to the family of similarity-preserving objectives which
dictate that similar inputs to the network elicit similar outputs [8, 9, 10, 11, 12]. In the absence of sign
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Figure 1: A schematic illustration of our normative approach.

constraints, such objectives are provably optimized by projecting inputs onto the principal subspace
[13, 14, 15], which can be done online by networks of linear neurons [8, 9, 10]. Constraining the sign
of the output leads to networks of rectifying neurons [11] which have been simulated numerically
in the context of clustering and feature learning [11, 12, 16, 17], and analyzed in the context of
blind source extraction [18]. In the context of manifold learning, optimal solutions of Nonnegative
Similarity-preserving Mapping objectives have been missing because optimization of existing NSM
objectives is challenging. Our main contributions are:

• Analytical optimization of NSM objectives for input originating from symmetric manifolds.
• Derivation of biologically plausible NSM neural networks.
• Offline and online algorithms for manifold learning of arbitrary manifolds.

The paper is organized as follows. In Sec. 2, we derive a simplified version of an NSM objective.
Much of our following analysis can be carried over to other NSM objectives but with additional
technical considerations. In Sec. 3, we derive a necessary condition for the optimal solution. In Sec. 4,
we consider solutions for the case of symmetric manifolds. In Sec. 5, we derive online optimization
algorithm and an NSM neural network. In Sec. 6, we present the results of numerical experiments,
which can be reproduced with the code at https://github.com/flatironinstitute/mantis.

2 A Simplified Similarity-preserving Objective Function

To introduce similarity-preserving objectives, let us define our notation. The input to the network is a
set of vectors, xt 2 Rn, t = 1, . . . , T , with components represented by the activity of n upstream
neurons at time, t. In response, the network outputs an activity vector, yt 2 Rm, t = 1, . . . , T , m
being the number of output neurons.

Similarity preservation postulates that similar input pairs, xt and xt0 , evoke similar output pairs, yt

and yt0 . If similarity of a pair of vectors is quantified by their scalar product and the distance metric
of similarity is Euclidean, we have

min
8t2{1,...,T}:yt2Rm

1
2

TX

t,t0=1

(xt · xt0 � yt · yt0)
2 = min

Y2Rm⇥T

1
2kX

>X�Y>Yk2F , (1)
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where we introduced a matrix notation X ⌘ [x1, . . . ,xT ] 2 Rn⇥T and Y ⌘ [y1, . . . ,yT ] 2 Rm⇥T

and m < n. Such optimization problem is solved offline by projecting the input data to the principal
subspace [13, 14, 15]. The same problem can be solved online by a biologically plausible neural
network performing global linear dimensionality reduction [8, 10].

We will see below that nonlinear manifolds can be learned by constraining the sign of the output and
introducing a similarity threshold, ↵ (here E is a matrix of all ones):

min
Y�0

1
2kX

>X� ↵E�Y>Yk2F = min
8t:yt�0

1
2

X

t,t0

(xt · xt0 � ↵� yt · yt0)
2, (2)

In the special case, ↵ = 0, Eq. (2) reduces to the objective in [11, 19, 18].

Intuitively, Eq. (2) attempts to preserve similarity for similar pairs of input samples but orthogonalizes
the outputs corresponding to dissimilar input pairs. Indeed, if the input similarity of a pair of samples
t, t0 is above a specified threshold, xt · xt0 > ↵, output vectors yt and yt0 would prefer to have
yt · yt0 ⇡ xt · xt0 �↵, i.e., it would be similar. If, however, xt · xt0 < ↵, the lowest value yt · yt0 for
yt,yt0 � 0 is zero meaning that that they would tend to be orthogonal, yt ·yt0 = 0. As yt and yt0 are
nonnegative, to achieve orthogonality, the output activity patterns for dissimilar patterns would have
non-overlapping sets of active neurons. In the context of manifold representation, Eq. (2) strives to
preserve in the y-representation local geometry of the input data cloud in x-space and let the global
geometry emerge out of the nonlinear optimization process.

As the difficulty in analyzing Eq. (2) is due to the quartic in Y term, we go on to derive a simpler
quadratic in Y objective function that produces very similar outcomes. To this end, we, first, introduce
an additional power constraint: TrY>Y  k as in [9, 11]. We will call the input-output mapping
obtained by this procedure NSM-0:

argmin
Y�0

TrY>Yk

1

2
kX>X� ↵E�Y>Yk2F = argmin

Y�0
TrY>Yk

�Tr((X>X� ↵E)Y>Y) +
1

2
kY>Yk2F ,

(NSM-0)
where we expanded the square and kept only the Y-dependent terms.

We can redefine the variables and drop the last term in a certain limit (see the Supplementary Material,
Sec. A.1, for details) leading to the optimization problem we call NSM-1:

min
Y�0

diag(Y>Y)�I

�Tr((X>X� ↵E)Y>Y) = min
8t2{1,...,T}:

yt�0, kytk2
2�

�
X

t,t0

(xt · xt0 � ↵)yt · yt0 . (NSM-1)

Conceptually, this type of objective has proven successful for manifold learning [20]. Intuitively, just
like Eq. (2), NSM-1 preserves similarity of nearby input data samples while orthogonalizing output
vectors of dissimilar input pairs. Indeed, a pair of samples t, t0 with xt · xt0 > ↵, would tend to have
yt ·yt0 as large as possible, albeit with the norm of the vectors controlled by the constraint kytk2  �.
Therefore, when the input similarity for the pair is above a specified threshold, the vectors yt and
yt0 would prefer to be aligned in the same direction. For dissimilar inputs with xt · xt0 < ↵, the
corresponding output vectors yt and yt0 would tend to be orthogonal, meaning that responses to these
dissimilar inputs would activate mostly nonoverlapping sets of neurons.

3 A Necessary Optimality Condition for NSM-1

In this section, we derive the necessary optimality condition for Problem (NSM-1). For notational
convenience, we introduce the Gramian D ⌘ X>X and use [z]+, where z 2 RT , for the component-
wise ReLU function, ([z]+)t ⌘ max(zt, 0).
Proposition 1. The optimal solution of Problem (NSM-1) satisfies

[(D� ↵E)y(a)]+ = ⇤y(a), (3)

where y(a) designates a column vector which is the transpose of the a-th row of Y and ⇤ =
diag(�1, . . . ,�T ) is a nonnegative diagonal matrix.
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The proof of Proposition 1 (Supplementary Material, Sec. A.2) proceeds by introducing Lagrange
multipliers ⇤ = diag(�1, . . . ,�T ) � 0 for the constraint diag(Y>Y)  �I, and writing down the
KKT conditions. Then, by separately considering the cases �tyat = 0 and �tyat > 0 we get Eq. (3).

To gain insight into the nature of the solutions of (3), let us assume �t > 0 for all t and rewrite it as

yat =


1
�t

X

t0

(Dtt0 � ↵)yat0
�

+

. (4)

Eq. (4) suggests that the sign of the interaction within each pair of yt and yt0 depends on the similarity
of the corresponding inputs. If xt and xt0 are similar, Dtt0 > ↵, then yat0 has excitatory influence on
yat. Otherwise, if xt and xt0 are farther apart, the influence is inhibitory. Such models often give rise
to localized solutions [21]. Since, in our case, the variable yat gives the activity of the a-th neuron
as the t-th input vector is presented to the network, such a solution would define a receptive field
of neuron, a, localized in the space of inputs. Below, we will derive such localized-receptive field
solutions for inputs originating from symmetric manifolds.

4 Solution for Symmetric Manifolds via a Convex Formulation

So far, we set the dimensionality of y, i.e., the number of output neurons, m, a priori. However, as
this number depends on the dataset, we would like to allow for flexibility of choosing the output
dimensionality adaptively. To this end, we introduce the Gramian, Q ⌘ Y>Y, and do not constrain
its rank. Minimization of our objective functions requires that the output similarity expressed by
Gramian, Q, captures some of the input similarity structure encoded in the input Gramian, D.

Redefining the variables makes the domain of the optimization problem convex. Matrices like D and
Q which could be expressed as Gramians are symmetric and positive semidefinite. In addition, any
matrix, Q, such that Q ⌘ Y>Y with Y � 0 is called completely positive. The set of completely
positive T ⇥ T matrices is denoted by CPT and forms a closed convex cone [22].

Then, NSM-1, without the rank constraint, can be restated as a convex optimization problem with
respect to Q belonging to the convex cone CPT :

min
Q2CPT

diag(Q)�I

�Tr((D� ↵E)Q). (NSM-1a)

Despite the convexity, for arbitrary datasets, optimization problems in CPT are often intractable for
large T [22]. Yet, for D with a high degree of symmetry, below, we will find the optimal Q.

Imagine now that there is a group G ✓ ST , ST being the permutation group of the set {1, 2, . . . , T},
so that Dg(t)g(t0) = Dtt0 for all g 2 G. The matrix with elements Mg(t)g(t0) is denoted as gM,
representing group action on M. We will represent action of g on a vector w 2 RT as gw, with
(gw)t = wg(t).

Theorem 1. If the action of the group G is transitive, that is, for any pair t, t0 2 {1, 2, . . . , T} there
is a g 2 G so that t0 = g(t), then there is at least one optimal solution of Problem (NSM-1a) with
Q = Y>Y,Y 2 Rm⇥T and Y � 0, such that

(i) for each a, the transpose of the a-th row of Y, termed y(a), satisfies

[(D� ↵E)y(a)]+ = �y(a), 8a 2 {1, 2, . . . ,m}, (5)

(ii) Let H be the stabilizer subgroup of y(1), namely, H = Stab y(1) ⌘ {h 2 G|hy(1) = y(1)}.
Then, m = |G/H| and Y can be written as

Y> = 1p
m
[g1y

(1)g2y
(1) . . . gmy(1)], (6)

where gi are members of the m distinct left cosets in G/H .

In other words, when the symmetry group action is transitive, all the Lagrange multipliers are the
same. Also the different rows of the Y matrix could be generated from a single row by the action
of the group. A sketch of the proof is as follows (see Supplementary Material, Sec. A.3, for further
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details). For part (i), we argue that a convex minimization problem with a symmetry always has a
solution which respects the symmetry. Thus our search could be limited to the G-invariant elements
of the convex cone, CPG = {Q 2 CPT |Q = gQ, 8g 2 G}, which happens to be a convex cone
itself. We then introduce the Lagrange multipliers and define the Lagrangian for the problem on
the invariant convex cone and show that it is enough to search over ⇤ = �I. Part (ii) follows from
optimality of Q = Y>Y implying optimality of Q̄ = 1

|G|
P

g gQ.

Eq. (5) is a non-linear eigenvalue equation that can have many solutions. Yet, if those solutions
are related to each other by symmetry they can be found explicitly, as we show in the following
subsections.

4.1 Solution for Inputs on the Ring with Cosine Similarity in the Continuum Limit

In this subsection, we consider the case where inputs, xt, lie on a one-dimensional manifold shaped
as a ring centered on the origin:

xt =
⇥
cos( 2⇡tT ), sin( 2⇡tT )

⇤>
,

where t 2 {1, 2, . . . , T}. Then, we have Dtt0 = cos
⇥ 2⇡(t�t0)

T

⇤
and Eq. (5) becomes

"
X

t0

⇣
cos

⇥ 2⇡(t�t0)
T

⇤
� ↵

⌘
yat0

#

+

= �yat, 8a 2 {1, 2, . . . ,m}. (7)

In the limit of large T , we can replace a discrete variable, t, by a continuous variable, ✓: 2⇡t
T ! ✓,

Dtt0 = cos
⇥ 2⇡(t�t0)

T

⇤
! cos(✓ � ✓0), yat ! Cu�(✓) and �! Tµ, leading to
"

1

2⇡

Z 2⇡

0

�
cos(✓ � ✓0)� ↵

 
u�(✓

0)d✓0
#

+

= µu�(✓), (8)

with C adjusted so that
R
u�(✓)2dm(�) = 1 for some measure m in the space of �, which is a

continuous variable labeling the output neurons. We will see that � could naturally be chosen as an
angle and the constraint becomes

R 2⇡
0 u�(✓)2d� = 1.

Eq. (8) has appeared previously in the context of the ring attractor [21]. While our variables have a
completely different neuroscience interpretation, we can still use their solution:

u�(✓) = A
⇥
cos(✓ � �)� cos( )]+ (9)

whose support is the interval [��  ,�+  ].

Eq. (9) gives the receptive fields of a neuron, �, in terms of the azimuthal coordinate, ✓, shown
in the bottom left panel of Fig. 1. The dependence of µ and  on ↵ is given parametrically (see
Supplementary Material, Sec. A.4). So far, we have only shown that Eq. (9) satisfies the necessary
optimality condition in the continuous limit of Eq. (8). In Sec. 6, we confirm numerically that the
optimal solution for a finite number of neurons approximates Eq. (9), Fig. 2.

While we do not have a closed-form solution for NSM-0 on a ring, we show that the optimal solution
also has localized receptive fields (see Supplementary Material, Sec. A.5).

4.2 Solution for Inputs on Higher-dimensional Compact Homogeneous Manifolds

Here, we consider two special cases of higher dimensional manifolds. The first example is the
2-sphere, S2 = SO(3)/SO(1). The second example is the rotation group, SO(3), which is a
three-dimensional manifold. It is possible to generalize this method to other compact homogeneous
spaces for particular kernels.

We can think of a 2-sphere via its 3-dimensional embedding: S2 ⌘ {x 2 R3|kxk = 1}. For two
points ⌦,⌦0 on the 2-sphere let D(⌦,⌦0) = x(⌦) ·x(⌦0) , where x(⌦),x(⌦0) are the corresponding
unit vectors in the 3-dimensional embedding.

Remarkably, we can show that solutions satisfying the optimality conditions are of the form

u⌦0(⌦) = A
⇥
x(⌦0) · x(⌦)� cos 

⇤
+
. (10)
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This means that the center of a receptive field on the sphere is at ⌦0. The neuron is active while the
angle between x(⌦) and x(⌦0) is less than  . For the derivation of Eq. (10) and the self-consistency
conditions, determining  , µ in terms of ↵, see Supplementary Material, Sec. A.6.

In the case of the rotation group, for g, g0 2 SO(3) we adopt the 3 ⇥ 3 matrix representations
R(g),R(g0) and consider 1

3 Tr
�
R(g)R(g0)>

�
to be the similarity kernel. Once more, we index a

receptive field solution by the rotation group element, g0, where the response is maximum:

ug0(⌦) =
A
2

⇥
Tr

�
R(g0)

>R(g)
�
� 2 cos � 1

⇤
+

(11)

with  , µ being determined by ↵ through self-consistency equations. This solution has support over
g 2 SO(3), such that the rotation gg�1

0 has a rotation angle less than  .

To summarize this section, we demonstrated, in the continuum limit, that the solutions to NSM
objectives for data on symmetric manifolds possess localized receptive fields that tile these manifolds.

What is the nature of solutions as the datasets depart from highly symmetric cases? To address this
question, consider data on a smooth compact Riemannian manifold with a smooth metric resulting
in a continuous curvature tensor. Then the curvature tensor sets a local length scale over which the
effect of curvature is felt. If a symmetry group acts transitively on the manifold, this length scale
is constant all over the manifold. Even if such symmetries are absent, on a compact manifold, the
curvature tensor components are bounded and there is a length scale, L, below which the manifold
locally appears as flat space. Suppose the manifold is sampled well enough with many data points
within each geodesic ball of length, L, and the parameters are chosen so that the localized receptive
fields are narrower than L. Then, we could construct an asymptotic solution satisfying the optimality
condition. Such asymptotic solution in the continuum limit and the effect of uneven sampling along
the manifold will be analyzed elsewhere.

5 Online Optimization and Neural Networks

Here, we derive a biologically plausible neural network that optimizes NSM-1. To this end, we
transform NSM-1 by, first, rewriting it in the Lagrangian form:

min
8t:yt�0

max
8t: zt�0

� 1

T

X

t,t0

(xt · xt0 � ↵)yt · yt0 +
X

t

zt · zt(yt · yt � �). (12)

Here, unconventionally, the nonnegative Lagrange multipliers that impose the inequality constraints
are factorized into inner products of two nonnegative vectors (zt · zt). Second, we introduce auxiliary
variables, W,b,Vt [10]:

min
8t:yt�0

max
8t: zt�0

min
W

max
b

max
8t:Vt�0

T Tr(W>W)� T kbk22 +

+
X

t

⇣
�2xtW

>yt + 2
p
↵yt · b� � kztk22 + 2ztVtyt � Tr(V>

t Vt)
⌘
. (13)

The equivalence of (13) to (12) can be seen by performing the W,b, and Vt optimizations explicitly
and plugging the optimal values back. (13) suggests a two-step online algorithm (see Appendix A.8
for full derivation). For each input xt, in the first step, one solves for yt, zt and Vt, by projected
gradient descent-ascent-descent,

"
yt

zt
Vt

#
 �

2

4
yt + �y

�
Wxt �V>

t zt �
p
↵b

�

zt + �z (��zt +Vtyt)
Vt + �V

�
zty>

t �Vt

�

3

5

+

, (14)

where �y,z,V are step sizes. This iteration can be interpreted as the dynamics of a neural circuit
(Fig. 1, Top right panel), where components of yt are activities of excitatory neurons, b is a bias term,
zt – activities of inhibitory neurons, W is the feedforward connectivity matrix, and Vt is the synaptic
weight matrix from excitatory to inhibitory neurons, which undergoes a fast time-scale anti-Hebbian
plasticity. In the second step, W and b are updated by gradient descent-ascent:

W �W + ⌘
�
ytx

>
t �W

�
, b � b+ ⌘

�p
↵yt � b

�
, (15)

where W is going through a slow time-scale Hebbian plasticity and b through homeostatic plasticity.
⌘ is a learning rate. Application of this algorithm to symmetric datasets is shown in Fig. 2 and Fig. 3.
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Figure 2: Solution of NSM-1 on a ring in 2D. From left to right, the input dataset X, the output
similarity, Q, the output neural activity matrix Y, a few localized receptive fields, and the aligned
receptive fields. The receptive fields are truncated cosines translated along the ring.

Offline optimization Online optimization

Figure 3: Solution of NSM-1 tiles the sphere with overlapping localized receptive fields (soft-clusters),
providing an accurate and useful data representation. We show a few receptive fields in different
colors over three different views of the sphere. An advantage of the online optimization is that it can
handle arbitrarily large number of points.

6 Experimental Results

In this section, we verify our theoretical results by solving both offline and online optimization
problems numerically. We confirm our theoretical predictions in Sec. 4 for symmetric manifolds
and demonstrate that they hold for deviations from symmetry. Moreover, our algorithms yield
manifold-tiling localized receptive fields on real-world data.

Synthetic data. Recall that for the input data lying on a ring, optimization without a rank constraint
yields truncated cosine solutions, see Eq. (9). Here, we show numerically that fixed-rank optimization
yields the same solutions, Fig. 2: the computed matrix Y>Y is indeed circulant, all receptive fields
are equivalent to each other, are well approximated by truncated cosine and tile the manifold with
overlap. Similarly, for the input lying on a 2-sphere, we find numerically that localized solutions tile
the manifold, Fig. 3.

For the offline optimization we used a Burer-Monteiro augmented Lagrangian method [23, 24].
Whereas, conventionally, the number of rows m of Y is chosen to be �T (observe that diag(Y>Y) 
�I implies that Tr(Y>Y)  �T , making �T an upper bound of the rank), we use the non-standard
setting m� �T , as a small m might create degeneracies (i.e., hard-clustering solutions).

Also, we empirically demonstrate that the nature of the solutions is robust to deviations from symmetry
in manifold curvature and data point density. See Fig. 4 and its caption for details.

Real-world data. For normalized input data with every diagonal element Dtt = kxtk22 above the
threshold ↵, the term ↵Tr(EQ) = ↵

P
tt0 yt · yt0 in NSM-1 behaves as described in Sec. 2. For

unnormalized inputs, it is preferable to control the sum of each row of Q, i.e.
P

t0 yt · yt0 , with an
individual ↵t, instead of the total sum.
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Smooth curve evolution: from a bunny to a circle Density change: from quasi-uniformity to clusters
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Figure 4: Robustness of the manifold-tiling solution to symmetry violations. Left sequence: Despite
non-uniform curvature, the localized manifold-tiling nature of solutions is preserved for the wide
range of datasets around the symmetric manifold. We start from a curve representing a bunny and
evolve it using the classical mean curvature motion. Right sequence: Despite non-uniform point
density, the localized manifold-tiling nature of solutions is preserved in the wide range of datasets
around the symmetric manifold. For high density variation there is a smooth transition to the hard-
clustering solution. The points are sampled from a mixture of von Mises distributions with means
0, ⇡

2 ,⇡,
3⇡
2 and equal variance decreasing from left to right.
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Receptive fields Output embedding

Figure 5: NSM-2 solution learns the manifold from a 100 images obtained by viewing a teapot from
different angles. The obtained 1d manifold uncovers the change in orientation (better seen with zoom)
by tiling it with overlapping localized receptive fields. The input size n is 23028 (76⇥ 101 pixels, 3
color channels). We build a 2d linear embedding (PCA) from the solution Y.

Additionally, enforcing
P

t kytk22  �T is in many cases empirically equivalent to enforcing
kytk22  � but makes the optimization easier. We thus obtain the objective function

min
8t:yt�0,P
t
kytk2

2�T

�
X

t,t0

(xt · xt0 � ↵t)yt · yt0 , (16)

which, for some choice of ↵t, is equivalent to (here, 1 2 RT is a column vector of ones)

min
Y�0
�Tr(X>XY>Y) s.t. Y>Y1 = 1, Tr(Y>Y)  �T, (NSM-2)

For highly symmetric datasets without constraints on rank, NSM-2 has the same solutions as NSM-1
(see Supplementary Material, Sec. A.7). Relaxations of this optimization problem have been the
subject of extensive research to solve clustering and manifold learning problems [25, 26, 27, 28]. A
biologically plausible neural network solving this problem was proposed in [12]. For the optimization
of NSM-2 we use an augmented Lagrangian method [23, 24, 28, 29].

We have extensively applied NSM-2 to datasets previously analyzed in the context of manifold
learning [28, 30] (see Supplementary Material, Sec. B). Here, we include just two representative
examples, figs. 5 and 6, showing the emergence of localized receptive fields in a high-dimensional
space. Despite the lack of symmetry and ensuing loss of regularity, we obtain neurons whose receptive

8



Figure 6: NSM-2 solution learns the manifold of MNIST digit 0 images by tiling the dataset with
overlapping localized receptive fields. Input size is n = 28 ⇥ 28 = 784. Left: Two-dimensional
linear embedding (PCA) of Y. The data gets organized according to different visual characteristics
of the hand-written digit (e.g., orientation and elongation). Right: A few receptive fields in different
colors over the low-dimensional embedding.

fields, taken together, tile the entire data cloud. Such tiling solutions indicate robustness of the method
to imperfections in the dataset and further corroborate the theoretical results derived in this paper.

7 Discussion

In this work, we show that objective functions approximately preserving similarity, along with
nonnegativity constraint on the outputs, learn data manifolds. Neural networks implementing NSM
algorithms use only biologically plausible local (Hebbian or anti-Hebbian) synaptic learning rules.

These results add to the versatility of NSM networks previously shown to cluster data, learn sparse
dictionaries and blindly separate sources [11, 18, 16], depending on the nature of input data. This
illustrates how a universal neural circuit in the brain can implement various learning tasks [11].

Our algorithms, starting from a linear kernel, D, generate an output kernel, Q, restricted to the sample
space. Whereas the associations between kernels and neural networks was known [31], previously
proposed networks used random synaptic weights with no learning. In our algorithms, the weights are
learned from the input data to optimize the objective. Therefore, our algorithms learn data-dependent
kernels adaptively.

In addition to modeling biological neural computation, our algorithms may also serve as general-
purpose mechanisms for generating representations of manifolds adaptively. Unlike most existing
manifold learning algorithms [32, 33, 34, 35, 36, 37], ours can operate naturally in the online setting.
Also, unlike most existing algorithms, ours do not output low-dimensional vectors of embedding
variables but rather high-dimensional vectors of assignment indices to centroids tiling the manifold,
similar to radial basis function networks [38]. This tiling approach is also essentially different from
setting up charts [39, 40], which essentially end up modeling local tangent spaces. The advantage
of our high-dimensional representation becomes obvious if the output representation is used not for
visualization but for further computation, e.g., linear classification [41].

Acknowledgments

We are grateful to Yanis Bahroun, Johannes Friedrich, Victor Minden, Eftychios Pnevmatikakis, and
the other members of the Flatiron Neuroscience group for discussion and comments on an earlier
version of this manuscript. We thank Sanjeev Arora, Afonso Bandeira, Moses Charikar, Jeff Cheeger,
Surya Ganguli, Dustin Mixon, Marc’Aurelio Ranzato, and Soledad Villar for helpful discussions.

References
[1] John O’Keefe and Lynn Nadel. The hippocampus as a cognitive map. Oxford: Clarendon Press, 1978.

[2] David H Hubel and Torsten N Wiesel. Receptive fields, binocular interaction and functional architecture in
the cat’s visual cortex. The Journal of Physiology, 160(1):106–154, 1962.

9



[3] Eric I Knudsen and Masakazu Konishi. Center-surround organization of auditory receptive fields in the
owl. Science, 202(4369):778–780, 1978.

[4] Michael P Kilgard and Michael M Merzenich. Cortical map reorganization enabled by nucleus basalis
activity. Science, 279(5357):1714–1718, 1998.

[5] Daniel E Feldman and Michael Brecht. Map plasticity in somatosensory cortex. Science, 310(5749):810–
815, 2005.

[6] Takao K Hensch. Critical period plasticity in local cortical circuits. Nature Reviews Neuroscience,
6(11):877, 2005.

[7] Valentin Dragoi, Jitendra Sharma, and Mriganka Sur. Adaptation-induced plasticity of orientation tuning
in adult visual cortex. Neuron, 28(1):287–298, 2000.

[8] Cengiz Pehlevan, Tao Hu, and Dmitri B Chklovskii. A Hebbian/anti-Hebbian neural network for linear
subspace learning: A derivation from multidimensional scaling of streaming data. Neural Computation,
27(7):1461–1495, 2015.

[9] Cengiz Pehlevan and Dmitri Chklovskii. A normative theory of adaptive dimensionality reduction in neural
networks. In NIPS, 2015.

[10] Cengiz Pehlevan, Anirvan M Sengupta, and Dmitri B Chklovskii. Why do similarity matching objectives
lead to Hebbian/anti-Hebbian networks? Neural Computation, 30(1):84–124, 2018.

[11] Cengiz Pehlevan and Dmitri B Chklovskii. A Hebbian/anti-Hebbian network derived from online non-
negative matrix factorization can cluster and discover sparse features. In ACSSC, 2014.

[12] Cengiz Pehlevan, Alex Genkin, and Dmitri B Chklovskii. A clustering neural network model of insect
olfaction. In ACSSC, 2017.

[13] Christopher KI Williams. On a connection between kernel PCA and metric multidimensional scaling. In
NIPS, 2001.

[14] Trevor F Cox and Michael AA Cox. Multidimensional scaling. CRC press, 2000.

[15] John M Bibby, John T Kent, and Kanti V Mardia. Multivariate analysis, 1979.

[16] H Sebastian Seung and Jonathan Zung. A correlation game for unsupervised learning yields computational
interpretations of Hebbian excitation, anti-Hebbian inhibition, and synapse elimination. arXiv preprint
arXiv:1704.00646, 2017.

[17] Yanis Bahroun and Andrea Soltoggio. Online representation learning with single and multi-layer Hebbian
networks for image classification. In ICANN, 2017.

[18] Cengiz Pehlevan, Sreyas Mohan, and Dmitri B Chklovskii. Blind nonnegative source separation using
biological neural networks. Neural Computation, 29(11):2925–2954, 2017.

[19] Chris Ding, Xiaofeng He, and Horst D Simon. On the equivalence of nonnegative matrix factorization and
spectral clustering. In ICDM, 2005.

[20] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an invariant mapping.
In CVPR, 2006.

[21] Rani Ben-Yishai, Ruth Lev Bar-Or, and Haim Sompolinsky. Theory of orientation tuning in visual cortex.
Proceedings of the National Academy of Sciences, 92(9):3844–3848, 1995.

[22] Abraham Berman and Naomi Shaked-Monderer. Completely positive matrices. World Scientific, 2003.

[23] Samuel Burer, Kurt M. Anstreicher, and Mirjam Dür. The difference between 5⇥ 5 doubly nonnegative
and completely positive matrices. Linear Algebra and its Applications, 431(9):1539–1552, 2009.

[24] Samuel Burer and Renato D.C. Monteiro. A nonlinear programming algorithm for solving semidefinite
programs via low-rank factorization. Mathematical Programming, 95(2):329–357, 2003.

[25] Arash A Amini and Elizaveta Levina. On semidefinite relaxations for the block model. arXiv preprint
arXiv:1406.5647, 2014.

[26] Pranjal Awasthi, Afonso S Bandeira, Moses Charikar, Ravishankar Krishnaswamy, Soledad Villar, and
Rachel Ward. Relax, no need to round: Integrality of clustering formulations. In ITCS, 2015.

10



[27] Jiming Peng and Yu Wei. Approximating k-means-type clustering via semidefinite programming. SIAM
Journal on Optimization, 18(1):186–205, 2007.

[28] Mariano Tepper, Anirvan M Sengupta, and Dmitri Chklovskii. Clustering is semidefinitely not that hard:
Nonnegative SDP for manifold disentangling. arXiv preprint arXiv:1706.06028, 2017.

[29] Nicolas Boumal, Vlad Voroninski, and Afonso Bandeira. The non-convex Burer-Monteiro approach works
on smooth semidefinite programs. In NIPS, 2016.

[30] Killan Q. Weinberger and Lawrence K. Saul. An introduction to nonlinear dimensionality reduction by
maximum variance unfolding. AAAI, 2006.

[31] Youngmin Cho and Lawrence K Saul. Kernel methods for deep learning. In NIPS, 2009.

[32] Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear embedding.
Science, 290(5500), 2000.

[33] Joshua B Tenenbaum, Vin de Silva, and John C Langford. A global geometric framework for nonlinear
dimensionality reduction. Science, 290(5500), 2000.

[34] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data representa-
tion. Neural Computation, 15(6):1373–1396, 2003.

[35] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of Machine Learning
Research, 9(Nov):2579–2605, 2008.

[36] Kilian Q Weinberger and Lawrence K Saul. Unsupervised learning of image manifolds by semidefinite
programming. International Journal of Computer Vision, 70(1):77–90, 2006.

[37] David L Donoho and Carrie Grimes. Hessian eigenmaps: Locally linear embedding techniques for
high-dimensional data. Proceedings of the National Academy of Sciences, 100(10):5591–5596, 2003.

[38] David S Broomhead and David Lowe. Radial basis functions, multi-variable functional interpolation and
adaptive networks. Technical report, Royal Signals and Radar Establishment Malvern (United Kingdom),
1988.

[39] Matthew Brand. Charting a manifold. In NIPS, 2003.

[40] Nikolaos Pitelis, Chris Russell, and Lourdes Agapito. Learning a manifold as an atlas. In CVPR, 2013.

[41] Sanjeev Arora and Andrej Risteski. Provable benefits of representation learning. arXiv preprint
arXiv:1706.04601, 2017.

[42] Christine Bachoc, Dion C Gijswijt, Alexander Schrijver, and Frank Vallentin. Invariant semidefinite
programs. In Handbook on semidefinite, conic and polynomial optimization, pages 219–269. Springer,
2012.

[43] Nathan Jacobson. Basic algebra I. Courier Corporation, 2012.

[44] Bruno A Olshausen and David J Field. Emergence of simple-cell receptive field properties by learning a
sparse code for natural images. Nature, 381(6583):607, 1996.

[45] Sanjeev Arora, Rong Ge, Tengyu Ma, and Ankur Moitra. Simple, efficient, and neural algorithms for
sparse coding. In COLT, 2015.

11


