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Abstract

In many platforms, user arrivals exhibit a self-reinforcing behavior: future user
arrivals are likely to have preferences similar to users who were satisfied in the past.
In other words, arrivals exhibit positive externalities. We study multiarmed bandit
(MAB) problems with positive externalities. We show that the self-reinforcing
preferences may lead standard benchmark algorithms such as UCB to exhibit linear
regret. We develop a new algorithm, Balanced Exploration (BE), which explores
arms carefully to avoid suboptimal convergence of arrivals before sufficient evi-
dence is gathered. We also introduce an adaptive variant of BE which successively
eliminates suboptimal arms. We analyze their asymptotic regret, and establish
optimality by showing that no algorithm can perform better.

1 Introduction

A number of different platforms use multiarmed bandit (MAB) algorithms today to optimize their
service: e.g., search engines and information retrieval platforms; e-commerce platforms; and news
sites. Many such platforms exhibit a natural self-reinforcement in the arrival process of users: future
arrivals may be biased towards users who expect to have positive experiences based on the past
outcomes of the platform. For example, if a news site generates articles that are liberal (resp.,
conservative), then it is most likely to attract additional users who are liberal (resp., conservative)
[2]. In this paper, we study the optimal design of MAB algorithms when user arrivals exhibit such
positive self-reinforcement.

We consider a setting in which a platform faces many types of users that can arrive. Each user type is
distinguished by preferring a subset of the item types above all others. The platform is not aware of
either the type of the user, or the item-user payoffs. Following the discussion above, arrivals exhibit
positive externalities (also called positive network effects) among the users [13]: in particular, if one
type of item generates positive rewards, users who prefer that type of item become more likely to
arrive in the future.

Our paper quantifies the consequences of positive externalities for bandit learning in a benchmark
model where the platform is unable to observe the user’s type on arrival. In the model we consider,
introduced in Section 3, there is a set of m arms. A given arriving user prefers a subset of these arms
over the others; in particular, all arms other than the preferred arms generate zero reward. A preferred
arm a generates a Bernoulli reward with mean µa. To capture positive externalities, the probability
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Table 1: Total regret under different settings. Here a⇤ = argmaxµa, and b = argmaxa 6=a⇤ µa.
For Random-explore-then-commit algorithm, we assume that the initial bias ✓a for each arm a is a
positive integer (cf. Section 3). The notation f(T ) = ˜O(g(T )) implies there exists k > 0 such that
f(T ) = O(g(T ) lnkg(T )).

that a user preferring arm a arrives at time t is proportional to (Sa(t� 1) + ✓a)
↵, where Sa(t� 1) is

the total reward observed from arm a in the past and ✓a captures the initial conditions. The positive
constant ↵ captures the strength of the externality: when ↵ is large the positive externality is strong.

The platform aims to maximize cumulative reward up to time horizon T . We evaluate our performance
by measuring regret against an “offline” oracle that always chooses the arm a⇤ = argmaxa µa.
Because of the positive externality, this choice causes the user population to shift entirely to users
preferring arm a⇤ over time; in particular, the oracle achieves asymptotically optimal performance to
leading order in T . We study the asymptotic scaling of cumulative regret against the oracle at T as
T ! 1.

At the heart of this learning problem is a central tradeoff. On one hand, because of the positive
externality, the platform operator is able to move the user population towards the profit maximizing
population. On the other hand, due to self-reinforcing preferences the impact of mistakes is amplified:
if rewards are generated on suboptimal arms, the positive externality causes more users that prefer
those arms to arrive in the future. We are able to explicitly quantify the impact of this tradeoff in our
model.

Our main results are as follows.

Lower bound. In Section 4, we provide an explicit lower bound on the best achievable regret for
each ↵. Strikingly, the optimal regret is structurally quite different than classical lower bounds for
MAB problems; see Table 1. Its development sheds light into the key differences between MABs
with positive externalities and those without.

Suboptimality of classical approaches. In Section 5, we show that the UCB algorithm is not only
suboptimal, but in fact has positive probability of never obtaining a reward on the best arm a⇤—and
thus obtains linear regret. This is because UCB does not explore sufficiently to find the best arm.
However, we show that just exploring more aggressively is also insufficient; a random-explore-then-
commit policy which explores in an unstructured fashion remains suboptimal. This demonstrates the
need of developing a new approach to exploration.

Optimal algorithm. In Section 6, we develop a new algorithmic approach towards optimizing the
exploration-exploitation tradeoff. Interestingly, this algorithm is cautious in the face of uncertainty
to avoid making long-lasting mistakes. Our algorithm, Balanced Exploration (BE), keeps the user
population “balanced” during the exploration phase; by doing so, it exploits an arm only when there
is sufficient certainty regarding its optimality. Its adaptive variant, Balanced Exploration with Arm
Elimination (BE-AE), intelligently eliminates suboptimal arms while balancing exploration among
the remainder. BE has the benefit of not depending on system parameters, while BE-AE uses such
information (e.g., ↵). We establish their optimality by developing an upper-bound on their regret
for each ↵; this nearly matches the lower bound (for BE), and exactly matches the lower bound (for
BE-AE).
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Further, in Section 7 we provide simulation results to obtain quantitative insights into the relative
performance of different algorithms. We conclude the paper by summarizing the main qualitative
insights obtained from our work.

2 Related work

As noted above, our work incorporates positive externalities in user arrivals. Positive externalities are
also referred to as positive network effects or positive network externalities. (Note that the phrase
“network” is often used here, even when the effects do not involve explicit network connections
between the users.) See [13], as well as [21, 20] for background. Positive externalities are extensively
discussed in most standard textbooks on microeconomic theory; see, e.g., Chapter 11 of [17].

It is well accepted that online search and recommendation engines produce feedback loops that can
lead to self-reinforcement of popular items [3, 6, 19, 9]. Our model captures this phenomenon by
employing a self-reinforcing arrival process, inspired by classical urn processes [4, 12].

We note that the kind of self-reinforcing behavior observed in our model may be reminiscent of
“herding” behavior in Bayesian social learning [7, 23, 1]. In these models, arriving Bayesian rational
users take actions based on their own private information, and the outcomes experienced by past
users. The central question in that literature is the following: do individuals base their actions on their
own private information, or do they follow the crowd? By contrast, in our model it is the platform
which takes actions, without directly observing preferences of the users.

If the user preferences are known then a platform might choose to personalize its services to satisfy
each user individually. This is the theme of much recent work on contextual bandits; see, e.g.,
[16, 22, 18] and [8] for a survey of early work. In such a model, it is important that either (1) enough
observable covariates are available to group different users together as decisions are made; or (2)
users are long-lived so that the platform has time to learn about them.

In contrast to contextual bandits, in our model the users’ types are not known, and they are short-lived
(one interaction per user). Of course, the reality of many platforms is somewhere in between: some
user information may be available, though imperfect. We view our setting as a natural benchmark
model for analysis of the impact of self-reinforcing arrivals. Through this lens, our work suggests
that there are significant consequences to learning when the user population itself can change over
time, an insight that we expect to be robust across a wide range of settings.

3 Preliminaries

In this section we describe the key features of the model we study. We first describe the model,
including a precise description of the arrival process that captures positive externalities. Next, we
describe our objective: minimization of regret relative to the expected reward of a natural oracle
policy.

3.1 Model

Arms and rewards. Let A = {1, ...,m} be the set of available arms. During each time t 2 {1, 2, ...}
a new user arrives and an arm is “pulled” by the platform; we denote the arm pulled at time t by
It. We view pulling an arm as presenting the corresponding option to the newly arrived user. Each
arriving user prefers a subset of the arms, denoted by Jt. We describe below how Jt is determined.

If arm a is pulled at time t and if the user at time t prefers arm a 2 A (i.e., a 2 Jt) then the reward
obtained at time t is an independent Bernoulli random variable with mean µa. We assume µa > 0 for
all arms. If the user at time t does not prefer the arm pulled then the reward obtained at time t is zero.
We let Xt denote the reward obtained at time t.

For t � 1, let Ta(t) represent the number of times arm a is pulled up to and including time t, and
let Sa(t) represent the total reward accrued by pulling arm a up to and including time t � 1. Thus
Ta(t) = |{1  s  t : Is = a}|, and Sa(t) = |{1  s  t : Is = a,Xs = 1}|. We define
Ta(0) = Sa(0) = 0.
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Unique best arm. We assume there exists a unique a⇤ 2 A such that:
a⇤ = argmaxµa.

This assumption is standard and made for technical convenience; all our results continue to hold
without it.

Arrivals with positive externalities. We now define the arrival process {Jt}t�1 that determines
users’ preferences over arms; this arrival process is the novel feature of our model. We assume there
are fixed constants ✓a > 0 for a 2 A (independent of T ), denoting the initial “popularity” of arm a.

For t � 0, define:
Na(t) = Sa(t) + ✓a, a 2 A.

Observe that by definition Na(0) = ✓a.

In our arrival process, arms with higher values of Na(t) are more likely to be preferred. Formally,
we assume that the tth user prefers arm a (i.e., a 2 Jt) with probability �a(t) independently of other
arms, where:

�a(t) =
f(Na(t� 1))Pm

a0=1 f(Na0
(t� 1))

,

where f(·) is a positive, increasing function f . We refer to f as the externality function. In our
analysis we primarily focus on the parametric family f(x) = x↵, where ↵ 2 (0,1).

Intuitively, the idea is that agents who prefer arm a are more likely to arrive if arm a has been
successful in the past. This is a positive externality: users who prefer arm a are more likely to
generate rewards when arm a is pulled, and this will in turn increase the likelihood an arrival
preferring arm a comes in the future. The parameter ↵ controls the strength of this externality: the
positive externality is stronger when ↵ is larger.

If f is linear (↵ = 1), then we can interpret our model in terms of an urn process. In this view, ✓a
resembles the initial number of balls of color a in the urn at time t = 1 and Na(t) resembles the
total number of balls of color a added into the urn after t draws. Thus, the probability the tth draw
is of color a is proportional to Na(t). In contrast to the standard urn model, in our model we have
additional control: namely, we can pull an arm, and thus govern the probability with which a new
ball of the same color is added into the urn.

3.2 The oracle and regret

Maximizing expected reward. Throughout our presentation, we use T to denote the time horizon
over which performance is being optimized. (The remainder of our paper characterizes upper and
lower bounds on performance as the time horizon T grows large.) We let �T denote the total reward
accrued up to time T :

�T =

TX

t=1

Xt.

The goal of the platform is to choose a sequence {It} to maximize E[�T ]. As usual, It must be a
function only of the past history (i.e., prior to time t).

The oracle policy. As is usual in multiarmed bandit problems, we measure our performance against
a benchmark policy that we refer to as the Oracle.
Definition 1 (Oracle). The Oracle algorithm knows the optimal arm a⇤, and pulls it at all times
t = 1, 2, . . ..

Let �⇤
T denote the reward of the Oracle. Note that Oracle may not be optimal for finite fixed T ; in

particular, unlike in the standard stochastic MAB problem, the expected cumulative reward E[�⇤
T ] is

not µa⇤T , as several arrivals may not prefer the optimal arm.

The next proposition provides tight bounds on E[�⇤
T ]. For the proof, see the Appendix.

Proposition 1. Suppose ↵ > 0. Let ✓↵ =

P
a 6=a⇤ ✓↵a . The expected cumulative reward E[�⇤

T ] for
the Oracle satisfies:

1. E[�⇤
T ]  µa⇤T � µa⇤✓↵

TX

k=1

1

(k + ✓a⇤ � 1)

↵
+ ✓↵

.
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2. E[�⇤
T ] � µa⇤T � ✓↵

TX

k=1

1

(k + ✓a⇤
)

↵
� 1.

In particular, we have:

E[�⇤
T ] =

8
<

:

µa⇤T �⇥(T 1�↵
), 0 < ↵ < 1

µa⇤T �⇥(lnT ), ↵ = 1

µa⇤T �⇥(1), ↵ > 1

The discontinuity at ↵ = 1 in the asymptotic bound above arrises since
PT

k=1
1
k↵ diverges for each

↵  1 but converges for ↵ > 1. Further, the divergence is logarithmic for ↵ = 1 but polynomial for
each ↵ < 1.

Note that in all cases, the reward asymptotically is of order µa⇤T . This is the best achievable
performance to leading order in T , showing that the oracle is asymptotically optimal.

Our goal: Regret minimization. Given any policy, define the regret against the Oracle as RT :

RT = �

⇤
T � �T . (1)

Our goal in the remainder of the paper is to minimize the expected regret E[RT ]. In particular, we
focus on characterizing regret performance asymptotically to leading order in T (both lower bounds
and achievable performance), for different values of the externality exponent ↵.

4 Lower bounds

In this section, we develop lower bounds on the achievable regret of any feasible policy. As we will
find, these lower bounds are quite distinct from the usual O(lnT ) lower bound (see [15, 8]) on regret
for the standard stochastic MAB problem. This fundamentally different structure arises because of
the positive externalities in the arrival process.

To understand our construction of the lower bound, consider the case where the externality function
is linear (↵ = 1); the other cases follow similar logic. Our basic idea is that in order to determine
the best arm, any optimal algorithm will need to explore all arms at least lnT times. However,
this means that after t0 = ⇥(lnT ) time, the total reward on any suboptimal arms will be of orderP

b 6=a⇤ Nb(t
0
) = ⇥(lnT ). Because of the effect of the positive externality, any algorithm will then

need to “recover” from having accumulated rewards on these suboptimal arms. We show that even
if the optimal arm a⇤ is pulled from time t0 onwards, a regret ⌦(ln2 T ) is incurred simply because
arrivals who do not prefer arm a⇤ continue to arrive in sufficient numbers.

The next theorem provides regret lower bounds for all values of ↵. The proof can be found in the
Appendix.
Theorem 1. 1. For ↵ < 1, there exists no policy with E[RT ] = o(T 1�↵

ln

↵ T ) on all sets of
Bernoulli reward distributions.

2. For ↵ = 1, there exists no policy with E[RT ] = o(ln2 T ) on all sets of Bernoulli reward
distributions.

3. For ↵ > 1, there exists no policy with E[RT ] = o(ln↵ T ) on all sets of Bernoulli reward
distributions.

The remainder of the paper is devoted to studying regret performance of classic algorithms (such as
UCB), and developing an algorithm that achieves the lower bounds above.

5 Suboptimality of classical approaches

We devote this section to developing structural insight into the model, by characterizing the perfor-
mance of two classical approaches for the standard stochastic MAB problem: the UCB algorithm
[5, 8] and a random-explore-then-commit algorithm.
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5.1 UCB

We first show that the standard upper confidence bound (UCB) algorithm, which does not account for
the positive externality, performs poorly. (Recall that in the standard MAB setting, UCB achieves the
asymptotically optimal O(lnT ) regret bound [15, 8].)

Formally, the UCB algorithm is defined as follows.
Definition 2 (UCB(�)). Fix � > 0. For each a 2 A, let µ̂a(0) = 0 and for each t > 0 let
µ̂a(t) :=

Sa(t�1)
Ta(t�1) , under convention that µ̂a(t) = 0 if Ta(t� 1) = 0. For each a 2 A let ua(0) = 0

and for each t > 0 let

ua(t) := µ̂a(t) +

s
� ln t

Ta(t� 1)

.

Choose:
It 2 argmax

a2A
ua(t),

with ties broken uniformly at random.

Under our model, consider an event where a⇤ 62 Jt but It = a⇤: i.e., a⇤ is pulled but the arriving user
did not prefer arm a⇤. Under UCB, such events are self-reinforcing, in that they not only lower the
upper confidence bound for arm a⇤, resulting in fewer future pulls of arm a⇤, but they also reduce the
preference of future users towards arm a⇤.

It is perhaps not surprising, then, that UCB performs poorly. However, the impact of this self-
reinforcement under UCB is so severe that we obtain a striking result: there is a strictly positive
probability that the optimal arm a⇤ will never see a positive reward, as shown by the following
theorem. An immediate consequence of this result is that the regret of UCB is linear in the horizon
length. The proof can be found in the Appendix.
Theorem 2. Suppose � > 0. Suppose that f(x) is ⌦

�
ln

1+✏
(x)

�
for some ✏ > 0. For UCB(�)

algorithm, there exists an ✏0 > 0 such that

P
⇣
lim

T!1
Sa⇤

(T ) = 0

⌘
� ✏0.

In particular, the regret of UCB(�) is O(T ).

5.2 Random-explore-then-commit

UCB fails because it does not explore sufficiently. In this section, we show that more aggressive
unstructured exploration is not sufficient to achieve optimal regret. In particular, we consider a policy
that chooses arms independently and uniformly at random for some period of time, and then commits
to the empirical best arm for the rest of the time.
Definition 3 (REC(⌧ )). Fix ⌧ 2 Z+. For each 1  t  ⌧ , choose It uniformly at random from set A.
Let â⇤ 2 argmaxa Sa(⌧), with tie broken at random. For ⌧ < t < T , It = a⇤.

The following theorem provides performance bounds for the REC(⌧ ) policy for our model. The proof
of this result takes advantage of multitype continuous-time Markov branching processes [4, 12]; it is
given in the Appendix.
Proposition 2. Suppose that ✓a for each a 2 A is a positive integer. Let b = argmaxa 6=a⇤ µa. The
following statements hold for the REC(⌧ ) policy for any ⌧ :

1. If 0 < ↵ < 1 then we have E[RT ] = ⌦(T 1�↵
ln

↵
1�↵ T ).

2. If ↵ = 1 then we have E[RT ] = ⌦

⇣
T

µb
µb+✓a⇤µa⇤

⌘
.

3. If ↵ > 1 then we have E[RT ] = ⌦(T ).

Thus, for ↵  1, the REC(⌧ ) policy may improve on the performance of UCB by delivering sublinear
regret. Nevertheless this regret scaling remains suboptimal for each ↵. In the next section, we
demonstrate that carefully structured exploration can deliver an optimal regret scaling (matching the
lower bounds in Theorem 1).

6



6 Optimal algorithms

In this section, we present an algorithm that achieves the lower bounds presented in Theorem 1. The
main idea of our algorithm is to structure exploration by balancing exploration across arms; this
ensures that the algorithm is not left to “correct” a potentially insurmountable imbalance in population
once the optimal arm has been identified.

We first present a baseline algorithm called Balanced Exploration (BE) that nearly achieves the lower
bound, but illustrates the key benefit of balancing; this algorithm has the advantage that it needs
no knowledge of system parameters. We then use a natural modification of this algorithm called
Balanced Exploration with Arm Elimination (BE-AE) that achieves the lower bound in Theorem 1,
though it uses some knowledge of system parameters in doing so.

6.1 Balanced exploration

The BE policy is cautious during the exploration phase in the following sense: it pulls the arm
with least accrued reward, to give it further opportunity to ramp up its score just in case its poor
performance was bad luck. At the end of the exploration phase, it exploits the empirical best arm for
the rest of the horizon.

To define BE, we require an auxiliary sequence wk, k = 1, 2, . . ., used to set the exploration time.
The only requirement on this sequence is that wk ! 1 as k ! 1; e.g., wk could be ln ln k for each
postive integer k. The BE algorithm is defined as follows.
Definition 4. Balanced-Exploration (BE) Algorithm: Given T , let n = wT lnT .

1. Exploration phase: Explore until the (random) time ⌧n = min(t : Sb(t) � n 8 b 2 A) ^ T ,
i.e., explore until each arm has incurred at least n rewards, while if any arm accrues
less than n rewards by time T , then ⌧n = T . Formally, for 1  t  ⌧n, pull arm
x(t) 2 arg infa2A Sa(t� 1), with ties broken at random.

2. Exploitation phase: Let â⇤ 2 arg infa2A Ta(⌧n), with tie broken at random. For ⌧n + 1 
t  T , pull the arm â⇤.

Note that this algorithm only uses prior knowledge of the time horizon T , but no other system
parameters; in particular, we do not need information on the strength of the positive externality,
captured by ↵. Our main result is the following. The proof can be found in the Appendix.
Theorem 3. Suppose wk, k = 0, 1, 2, . . ., is any sequence such that wk ! 1 as k ! 1. Then the
regret of the BE algorithm is as follows:

1. If 0 < ↵ < 1 then E[RT ] = O(w↵
TT

1�↵
ln

↵ T ).

2. If ↵ = 1 then E[RT ] = O(wT ln

2 T ).

3. If ↵ > 1 then E[RT ] = O(w↵
T ln

↵ T ).

In particular, observe that if wk = ln ln k, then we conclude E[RT ] =
˜O(T 1�↵

ln

↵ T ) (if 0 < ↵ <

1); E[RT ] =
˜O(ln

2 T ) (if ↵ = 1); and E[RT ] =
˜O(ln

↵ T ) (if ↵ > 1). Recall that the notation
f(T ) = ˜O(g(T )) implies there exists k > 0 such that f(T ) = O(g(T ) lnkg(T )).

6.2 Balanced exploration with arm elimination

The BE algorithm very nearly achieves the lower bounds in Theorem 1. The additional “inflation”
(captured by the additional factor wT ) arises in order to ensure the algorithm achieves low regret
despite not having information on system parameters.

We now present an algorithm which eliminates the inflation in regret by intelligently eliminating arms
that have poor performance during the exploration phase by using upper and lower confidence bounds.
The algorithm assumes the knowledge of T , m, ↵, and ✓a for each a to the platform (though we
discuss the assumption on the knowledge of ✓a further below). With these informational assumptions,
�a(t) for each t can be computed by the platform. Below, µ̂a(t) is an unbiased estimate of µa given
observations till time t, while ua(t) and la(t) are its upper and lower confidence bounds.
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Definition 5. Balanced Exploration with Arm Elimination (BE-AE) Algorithm: Given T , m,
and ↵, as well as ✓a for each a 2 A, for each time t and each arm a define:

µ̂a(t) = (Ta(t))
�1

tX

k=1

Xk

�a(k)
(Ik = a).

Further, let c = mina,b2A
✓a

m(1+✓b)
. Define ua(t) = µ̂a(t) + 5

q
lnT

cTa(t)
, and la(t) = µ̂a(t) �

5

q
lnT

cTa(t)
.

Let A(t) be the set of active arms at time t. At time t = 1 all arms are active, i.e., A(1) = A. At each
time t pull arm

It 2 arg inf

a2A(t)
Sa(t� 1),

with ties broken lexicographically. Eliminate arm a from the active set if there exists an active arm
b 2 A(t) such that ua(t) < lb(t).

The following theorem shows that the BE-AE algorithm achieves optimal regret, i.e., it meets the
lower bounds in Theorem 1. The proof can be found in the Appendix.
Theorem 4. For fixed m and ↵, the regret under the BE-AE algorithm satisfies the following:

1. If 0 < ↵ < 1 then E[RT ] = O(T 1�↵
ln

↵ T ).

2. If ↵ = 1 then E[RT ] = O(ln

2 T ).

3. If ↵ > 1 then E[RT ] = O(ln

↵ T ).

As noted above, our algorithm requires some knowledge of system parameters. We briefly describe
an approach that we conjecture delivers the same performance as BE-AE, but without knowledge of
✓a for a 2 A. Given a small ✏ > 0, first run the exploration phase of the BE algorithm for n = ✏ lnT
time without removing any arm. For t subsequent to the end of this exploration phase, i.e., once
✏ lnT samples are obtained for each arm, we have Na(t) = ✏ lnT + ✓a. Thus, the effect of ✓a on
�a(t) becomes negligible, and one can approximate �a(t) by letting Nb(t) = Sb(t) for each arm b.
We then continue with the BE-AE algorithm as defined above (after completion of the exploration
phase). We conjecture the regret performance of this algorithm will match BE-AE as defined above.
Proving this result, and more generally removing dependence on T , m, and ↵, remain interesting
open directions.

7 Simulations

Below, we summarize our simulation setup and then describe our main findings.

Simulation setup. We simulate our model with m = 2 arms, with externality strength ↵ = 1, arm
reward parameters µ1 = 0.5 and µ2 = 0.3, and initial biases ✓1 = ✓2 = 1. For Fig. 1a, we simulate
each algorithm one hundred times for each set of parameters. We plot pseudo-regret realization from
each simulation, i.e., E[�

⇤
T ] � �T , where E[�

⇤
T ] is the expected reward for the Oracle, computed

via Monte Carlo simulation, and �T is the total reward achieved by the algorithm. Thus, lower
pseudo-regret realization implies better performance. For Fig. 1b, each point is obtained by simulating
the corresponding algorithm one thousand times. The time horizon T is as mentioned in the figures.

Parameters for each algorithm. We simulate UCB(�) with � = 3. For Random-explore-then-commit,
we set the exploration time as

p
T (empirically, this performs significantly better than lnT ). For BE,

we set wT = � ln lnT with � = 2 (see Definition 4). For BE-AE, cf. Definition 5, we recall that the
upper and lower confidence bounds are set as ua(t) = µ̂a(t)+p

q
lnT
Ta(t)

, and la(t) = µ̂a(t)�p
q

lnT
Ta(t)

for p = 5c�1/2 where c = mina,b2A
✓a

m(1+✓b)
. This choice of p was set in the paper for technical

reasons, but unfortunately this choice is suboptimal for finite T . The choice of p = 1/2 achieves
significantly better performance for this experimental setup. The performance is sensitive to small
changes in p, as the plots illustrate when choosing p = 5/2. In contrast, in our experiments, we found
that the performance of BE is relatively robust to the choice of �.
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(a) Realized psuedo-regret for T = 3⇥ 104. (b) Expected regret as a function of time horizon T

Figure 1: Performance comparison of algorithms in different parameter regimes. All simulations
have m = 2 arms, externality strength ↵ = 1, arm reward parameters µ1 = 0.5 and µ2 = 0.3, and
initial arm bias ✓1 = ✓2 = 1.

Main findings. The following are our main findings from the above simulations.

First, even for ↵ = 1, REC appears to perform as poorly as UCB. Recall that in Section 5 we show
theoretically that the regret is linear for UCB for each ↵, and for REC for ↵ > 1. For ↵ = 1, we are
only able to show that REC exhibits polynomial regret.

Second, for finite T , the performance of the (asymptotically optimal) BE-AE algorithm is quite
sensitive to the choice of algorithm parameters, and thus may perform poorly in certain regimes. By
contrast, the (nearly asymptotically optimal) BE algorithm appears to exhibit more robust perfor-
mance.

8 Discussion and conclusions

It is common that platforms make online decisions under uncertainty, and that these decisions impact
future user arrivals. However, most MAB models in the past have decoupled the evolution of arrivals
from the learning process. Our model, though stylized by design, provides several non-standard yet
interesting insights which we believe are relevant to many platforms. In particular:

1. In the presence of self-reinforcing preferences, there is a cost to being optimistic in the face
of uncertainty, as mistakes are amplified.

2. It is possible to mitigate the impact of transients arising from positive externalities by
structuring the exploration procedure carefully.

3. Once enough evidence is obtained regarding optimality of a strategy, one may even use the
externalities to one’s advantage by purposefully shifting the arrivals to a profit-maximizing
population.

Of course real-world scenarios are complex and involve other types of externalities which may reverse
some of these gains. For example, the presence of negative externalities may preclude the ability to
have “all” arrivals prefer the chosen option. Alternatively, arrivals may have “limited memory”, so
that future arrivals might eventually forget the effect of the externality. Overall, we believe that this
is an interesting yet under-explored space of research, and that positive externalities of the kind we
study may play a pivotal role in the effectiveness of learning algorithms.
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