
Acceleration through Optimistic No-Regret Dynamics

Jun-Kun Wang
College of Computing

Georgia Institute of Technology
Atlanta, GA 30313

jimwang@gatech.edu

Jacob Abernethy
College of Computing

Georgia Institute of Technology
Atlanta, GA 30313
prof@gatech.edu

Abstract

We consider the problem of minimizing a smooth convex function by reducing the
optimization to computing the Nash equilibrium of a particular zero-sum convex-
concave game. Zero-sum games can be solved using online learning dynamics,
where a classical technique involves simulating two no-regret algorithms that
play against each other and, after T rounds, the average iterate is guaranteed
to solve the original optimization problem with error decaying as O(log T/T).
In this paper we show that the technique can be enhanced to a rate of O(1/T 2)
by extending recent work [22, 25] that leverages optimistic learning to speed
up equilibrium computation. The resulting optimization algorithm derived from
this analysis coincides exactly with the well-known NESTEROVACCELERATION
[16] method, and indeed the same story allows us to recover several variants
of the Nesterov’s algorithm via small tweaks. We are also able to establish the
accelerated linear rate for a function which is both strongly-convex and smooth.
This methodology unifies a number of different iterative optimization methods: we
show that the HEAVYBALL algorithm is precisely the non-optimistic variant of
NESTEROVACCELERATION, and recent prior work already established a similar
perspective on FRANKWOLFE [2, 1].

1 Introduction

One of the most successful and broadly useful tools recently developed within the machine learn-
ing literature is the no-regret framework, and in particular online convex optimization (OCO)
[28]. In the standard OCO setup, a learner is presented with a sequence of (convex) loss
functions `1(·), `2(·), . . ., and must make a sequence of decisions x1, x2, . . . from some set K
in an online fashion, and observes `t after only having committed to xt. Assuming the se-
quence {`t} is chosen by an adversary, the learner aims is to minimize the average regret

R̄T := 1
T

(∑T
t=1 `t(xt)−minx∈K

∑T
t=1 `t(x)

)
against any such loss functions. Many simple algo-

rithms have been developed for OCO problems—including MIRRORDESCENT, FOLLOWTHEREGU-
LARIZEDLEADER, FOLLOWTHEPERTURBEDLEADER, etc.—and these algorithms exhibit regret
guarantees that are strong even against adversarial opponents. Under very weak conditions one can
achieve a regret rate of R̄T = O(1/

√
T), or even R̄T = O(log T/T) with required curvature on `t.

One can apply online learning tools to several problems, but perhaps the simplest is to find the
approximate minimum of a convex function argminx∈K f(x). With a simple reduction we set `t = f ,
and it is easy to show that, via Jensen’s inequality, the average iterate x̄T := x1+...+xT

T satisfies

f(x̄T) ≤ 1
T

∑T
t=1 f(xt) = 1

T

∑T
t=1 `t(xt) ≤ minx∈K

1
T

∑T
t=1 `t(x) + R̄T = minx∈K f(x) + R̄T

hence R̄T upper bounds the approximation error. But this reduction, while simple and natural, is
quite limited. For example, we know that when f(·) is smooth, more sophisticated algorithms such

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

as FRANKWOLFE and HEAVYBALL achieve convergence rates of O(1/T), whereas the now-famous
NESTEROVACCELERATION algorithm achieves a rate of O(1/T 2). The fast rate shown by Nesterov
was quite surprising at the time, and many researchers to this day find the result quite puzzling. There
has been a great deal of work aimed at providing a more natural explanation of acceleration, with a
more intuitive convergence proof [27, 4, 10]. This is indeed one of the main topics of the present
work, and we will soon return to this discussion.

Another application of the no-regret framework is the solution of so-called saddle-point prob-
lems, which are equivalently referred to as Nash equilibria for zero-sum games. Given a func-
tion g(x, y) which is convex in x and concave in y (often called a payoff function), define
V ∗ = infx∈K supy g(x, y). An ε-equilibrium of g(·, ·) is a pair x̂, ŷ such that such that

V ∗ − ε ≤ infx∈K g(x, ŷ) ≤ V ∗ ≤ supy g(x̂, y) ≤ V ∗ + ε. (1)

One can find an approximate saddle point of the game with the following setup: implement a no-
regret learning algorithm for both the x and y players simultaneously, after observing the actions
{xt, yt}t=1...T return the time-averaged iterates (x̂, ŷ) =

(
x1+...+xT

T , y1+...+yT
T

)
. A simple proof

shows that (x̂, ŷ) is an approximate equilibrium, with approximation bounded by the average regret of
both players (see Theorem 1). In the case where the function g(·, ·) is biaffine, the no-regret reduction
guarantees a rate of O(1/

√
T), and it was assumed by many researchers this was the fastest possible

using this framework. But one of the most surprising online learning results to emerge in recent
years established that no-regret dynamics can obtain an even faster rate of O(1/T). Relying on tools
developed by [8], this fact was first proved by [21] and extended by [25]. The new ingredient in
this recipe is the use of optimistic learning algorithms, where the learner seeks to benefit from the
predictability of slowly-changing inputs {`t}.
We will consider solving the classical convex optimization problem minx f(x), for smooth func-
tions f , by instead solving an associated saddle-point problem which we call the Fenchel Game.
Specifically, we consider that the payoff function g of the game to be

g(x, y) = 〈x, y〉 − f∗(y). (2)

where f∗(·) is the fenchel conjugate of f(·). This is an appropriate choice of payoff function since,
V ∗ = minx f(x) and supy g(x̂, y) = supy〈x̂, y〉 − f∗(y) = f(x̂). Therefore, by the definition of an
ε-equilibrium, we have that

Lemma 1. If (x̂, ŷ) is an ε-equilibrium of the Fenchel Game (2), then f(x̂)−minx f(x) ≤ ε.

One can imagine computing the equilibrium of the Fenchel game using no-regret dynamics, and
indeed this was the result of recent work [2] establishing the FRANKWOLFE algorithm as precisely
an instance of two competing learning algorithms.

In the present work we will take this approach even further.

1. We show that, by considering a notion of weighted regret, we can compute equilibria in
the Fenchel game at a rate of O(1/T 2) using no-regret dynamics where the only required
condition is that f is smooth. This improves upon recent work [1] on a faster FRANKWOLFE
method, which required strong convexity of f (see Appendix J).

2. We show that the secret sauce for obtaining the fast rate is precisely the use of an optimistic
no-regret algorithm, OPTIMISTICFTL [1], combined with appropriate weighting scheme.

3. We show that, when viewed simply as an optimization algorithm, this method is identically
the original NESTEROVACCELERATION method. In addition, we recover several variants of
NESTEROVACCELERATION (see [15, 17, 19]) using small tweaks of the framework.

4. We show that if one simply plays FOLLOWTHELEADER without optimism, the resulting
algorithm is precisely the HEAVYBALL. The latter is known to achieve a suboptimal rate in
general, and our analysis sheds light on this difference.

5. Under the additional assumption that function f(·) is strongly convex, we show that an
accelerated linear rate can also be obtained from the game framework.

6. Finally, we show that the same equilibrium framework can also be extended to composite
optimization and lead to a variant of Accelerated Proximal Method.

Related works: In recent years, there are growing interest in giving new interpretations of Nesterov’s
accelerated algorithms. For example, [26] gives a unified analysis for some Nesterov’s accelerated

2

algorithms [17, 18, 19], using the standard techniques and analysis in optimization literature. [13]
connects the design of accelerated algorithms with dynamical systems and control theory. [7] gives a
geometric interpretation of the Nesterov’s method for unconstrained optimization, inspired by the
ellipsoid method. [10] studies the Nesterov’s methods and the HEAVYBALL method for quadratic
non-strongly convex problems by analyzing the eigen-values of some linear dynamical systems. [4]
proposes a variant of accelerated algorithms by mixing the updates of gradient descent and mirror
descent and showing the updates are complementary. [24, 27] connect the acceleration algorithms
with differential equations. In recent years there has emerged a lot of work where learning problems
are treated as repeated games [14, 3], and many researchers have been studying the relationship
between game dynamics and provable convergence rates [5, 11, 9].

We would like to acknowledge George Lan for his excellent notes titled “Lectures on Optimization
for Machine Learning” (unpublished). In parallel to the development of the results in this paper, we
discovered that Lan had observed a similar connection between NESTEROVACCELERATION and
repeated game playing (Chapter 3.4). A game interpretation was given by George Lan and Yi Zhou
in Section 2.2 of [12].

2 Preliminaries

Convex functions and conjugates. A function f on Rd is L-smooth w.r.t. a norm ‖ · ‖ if f is
everywhere differentiable and it has lipschitz continuous gradient ‖∇f(u)−∇f(v)‖∗ ≤ L‖u− v‖,
where ‖ · ‖∗ denotes the dual norm. Throughout the paper, our goal will be to solve the problem
of minimizing an L-smooth function f(·) over a convex set K. We also assume that the optimal
solution of x∗ := argminx∈K f(x) has finite norm. For any convex function f , its Fenchel conjugate
is f∗(y) := supx∈dom(f)〈x, y〉 − f(x). If a function f is convex, then its conjugate f∗ is also convex.
Furthermore, when the function f(·) is strictly convex, we have that∇f(x) = argmax

y
〈x, y〉− f∗(y).

Suppose we are given a differentiable function φ(·), then the Bregman divergence Vc(x) with respect
to φ(·) at a point c is defined as Vc(x) := φ(x)− 〈∇φ(c), x− c〉 − φ(c). Let ‖ · ‖ be any norm on
Rd. When we have that Vc(x) ≥ σ

2 ‖c− x‖
2 for any x, c ∈ dom(φ), we say that φ(·) is a σ-strongly

convex function with respect to ‖ · ‖. Throughout the paper we assume that φ(·) is 1-strongly convex.

No-regret zero-sum game dynamics. Let us now consider the process of solving a zero-sum game
via repeatedly play by a pair of online learning strategies. The sequential procedure is described in
Algorithm 1.

Algorithm 1 Computing equilibrium using no-regret algorithms
1: Input: sequence α1, . . . , αT > 0
2: for t = 1, 2, . . . , T do
3: y-player selects yt ∈ Y = Rd by OAlgy .
4: x-player selects xt ∈ X by OAlgx, possibly with knowledge of yt.
5: y-player suffers loss `t(yt) with weight αt, where `t(·) = −g(xt, ·).
6: x-player suffers loss ht(xt) with weight αt, where ht(·) = g(·, yt).
7: end for
8: Output (x̄T , ȳT) :=

(∑T
s=1 αsxs
AT

,
∑T
s=1 αsys
AT

)
.

In this paper, we consider Fenchel game with weighted losses depicted in Algorithm 1, following the
same setup as [1]. In this game, the y-player plays before the x-player plays and the x-player sees
what the y-player plays before choosing its action. The y-player receives loss functions αt`t(·) in
round t, in which `t(y) := f∗(y)− 〈xt, y〉, while the x-player see its loss functions αtht(·) in round
t, in which ht(x) := 〈x, yt〉 − f∗(yt). Consequently, we can define the weighted regret of the x and
y players as

α-REGy :=
∑T
t=1 αt`t(yt)−miny

∑T
t=1 αt`t(y) (3)

α-REGx :=
∑T
t=1 αtht(xt)−

∑T
t=1 αtht(x

∗) (4)

3

Notice that the x-player’s regret is computed relative to x∗ the minimizer of f(·), rather than the min-
imizer of

∑T
t=1 αtht(·). Although slightly non-standard, this allows us to handle the unconstrained

setting while Theorem 1 still holds as desired.

At times when we want to refer to the regret on another sequence y′1, . . . , y
′
T we may refer to this

as α-REG(y′1, . . . , y
′
T). We also denote At as the cumulative sum of the weights At :=

∑t
s=1 αs

and the weighted average regret α-REG := α-REG
AT

. Finally, for offline constrained optimization
(i.e. minx∈K f(x)), we let the decision space of the benchmark/comparator in the weighted regret
definition to be X = K; for offline unconstrained optimization, we let the decision space of the
benchmark/comparator to be a norm ball that contains the optimum solution of the offline problem
(i.e. contains arg minx∈Rn f(x)), which means that X of the comparator is a norm ball. We let
Y = Rd be unconstrained.
Theorem 1. [1] Assume a T -length sequence α are given. Suppose in Algorithm 1 the online
learning algorithms OAlgx and OAlgy have the α-weighted average regret α-REG

x
and α-REG

y

respectively. Then the output (x̄T , ȳT) is an ε-equilibrium for g(·, ·), with ε = α-REG
x

+ α-REG
y
.

3 An Accelerated Solution to the Fenchel Game via Optimism

We are going to analyze more closely the use of Algorithm 1, with the help of Theorem 1, to establish
a fast method to compute an approximate equilibrium of the Fenchel Game. In particular, we will
establish an approximation factor of O(1/T 2) after T iterations, and we recall that this leads to a
O(1/T 2) algorithm for our primary goal of solving minx∈K f(x).

3.1 Analysis of the weighted regret of the y-player (i.e. the gradient player)

A very natural online learning algorithm is FOLLOWTHELEADER, which always plays the point with
the lowest (weighted) historical loss

FOLLOWTHELEADER ŷt := argminy
{∑t−1

s=1 αs`s(y)
}
.

FOLLOWTHELEADER is known to not perform well against arbitrary loss functions, but for strongly
convex `t(·) one can prove an O(log T/T) regret bound in the unweighted case. For the time being,
we shall focus on a slightly different algorithm that utilizes “optimism” in selecting the next action:

OPTIMISTICFTL ỹt := argminy
{
αt`t−1(y) +

∑t−1
s=1 αs`s(y)

}
.

This procedure can be viewed as an optimistic variant of FOLLOWTHELEADER since the algorithm
is effectively making a bet that, while `t(·) has not yet been observed, it is likely to be quite similar
to `t−1. Within the online learning community, the origins of this trick go back to [8], although their
algorithm was described in terms of a 2-step descent method. This was later expanded by [21] who
coined the term optimistic mirror descent (OMD), and who showed that the proposed procedure can
accelerate zero-sum game dynamics when both players utilize OMD. OPTIMISTICFTL, defined as a
“batch” procedure, was first presented in [1] and many of the tools of the present paper follow directly
from that work.

For convenience, we’ll define δt(y) := αt(`t(y)− `t−1(y)). Intuitively, the regret will be small if
the functions δt are not too big. This is formalized in the following lemma.
Lemma 2. For an arbitrary sequence {αt, `t}t=1...T , the regret of OPTIMISTICFTL satisfies
α-REGy(ỹ1, . . . , ỹT) ≤

∑T
t=1 δt(ỹt)− δt(ŷt+1).

Proof. Let Lt(y) :=
∑t
s=1 αs`s(y) and also L̃t(y) := αt`t−1(y) +

∑t−1
s=1 αs`s(y).

α-REG(ỹ1:T) :=
∑T
t=1 αt`t(ỹt)− LT (ŷT+1) =

∑T
t=1 αt`t(ỹt)− L̃T (ŷT+1)− δT (ŷT+1)

≤
∑T
t=1 αt`t(ỹt)− L̃T (ỹT)− δT (ŷT+1)

=
∑T−1
t=1 αt`t(ỹt)− LT−1(ỹT) + δT (ỹT)− δT (ŷT+1)

≤
∑T−1
t=1 αt`t(ỹt)− LT−1(ŷT) + δT (ỹT)− δT (ŷT+1)

= α-REG(ỹ1:T−1) + δT (ỹT)− δT (ŷT+1).

4

The bound follows by induction on T .

The result from Lemma 2 is generic, and would hold for any online learning problem. But for
the Fenchel game, we have a very specific sequence of loss functions, `t(y) := −g(xt, y) =
f∗(y)− 〈xt, y〉. With this in mind, let us further analyze the regret of the y player.

For the time being, let us assume that the sequence of xt’s is arbitrary. We define

x̄t := 1
At

∑t
s=1 αsxs and x̃t := 1

At
(αtxt−1 +

∑t−1
s=1 αsxs).

It is critical that we have two parallel sequences of iterate averages for the x-player. Our final
algorithm will output x̄T , whereas the Fenchel game dynamics will involve computing ∇f at the
reweighted averages x̃t for each t = 1, . . . , T .

To prove the key regret bound for the y-player, we first need to state some simple technical facts.

ŷt+1 = argmin
y

t∑
s=1

αs (f∗(y)− 〈xs, y〉) = argmax
y
〈x̄t, y〉 − f∗(y) = ∇f(x̄t) (5)

ỹt = ∇f(x̃t) (following same reasoning as above), (6)

x̃t − x̄t =
αt
At

(xt−1 − xt). (7)

Equations 5 and 6 follow from elementary properties of Fenchel conjugation and the Legendre
transform [23]. Equation 7 follows from a simple algebraic calculation.
Lemma 3. Suppose f(·) is a convex function that is L-smooth with respect to the the norm ‖ · ‖ with
dual norm ‖ · ‖∗. Let x1, . . . , xT be an arbitrary sequence of points. Then, we have

α-REGy(ỹ1, . . . , ỹT) ≤ L
∑T
t=1

α2
t

At
‖xt−1 − xt‖2. (8)

Proof. Following Lemma 2, and noting that here we have δt(y) = αt〈xt−1 − xt, y〉, we have

∑T
t=1 αt`t(ỹt)− αt`t(y∗) ≤

∑T
t=1 δt(ỹt)− δt(ŷt+1) =

∑T
t=1 αt〈xt−1 − xt, ỹt − ŷt+1〉

(Eqns. 5, 6) =
∑T
t=1 αt〈xt−1 − xt,∇f(x̃t)−∇f(x̄t)〉

(Hölder’s Ineq.) ≤
∑T
t=1 αt‖xt−1 − xt‖‖∇f(x̃t)−∇f(x̄t)‖∗

(L-smoothness of f) ≤ L
∑T
t=1 αt‖xt−1 − xt‖‖x̃t − x̄t‖

(Eqn. 7) = L
∑T
t=1

α2
t

At
‖xt−1 − xt‖‖xt−1 − xt‖

as desired.

We notice that a similar bound is given in [1] for the gradient player using OPTIMISTICFTL, yet the
above result is a stict improvement as the previous work relied on the additional assumption that f(·)
is strongly convex. The above lemma depends only on the fact that f has lipschitz gradients.

3.2 Analysis of the weighted regret of the x-player

In the present section we are going to consider that the x-player uses MIRRORDESCENT for updating
its action, which is defined as follows.

xt := argminx∈K αtht(x) + 1
γt
Vxt−1

(x) = argminx∈K γt〈x, αtyt〉+ Vxt−1
(x), (9)

where we recall that the Bregman divergence Vx(·) is with respect to a 1-strongly convex regularization
φ. Also, we note that the x-player has an advantage in these game dynamics, since xt is chosen with
knowledge of yt and hence has knowledge of the incoming loss ht(·).
Lemma 4. Let the sequence of xt’s be chosen according to MIRRORDESCENT. Assume that the
Bregman Divergence is uniformly bounded onK, so that D = supt=1,...,T Vxt(x

∗), where x∗ denotes
the minimizer of f(·). Assume that the sequence {γt}t=1,2,... is non-increasing. Then we have
α-REGx ≤ D

γT
−
∑T
t=1

1
2γt
‖xt−1 − xt‖2.

5

The proof of this lemma is quite standard, and we postpone it to Appendix A. We also note that the
benchmark x∗ is always within a finite norm ball by assumption. We given an alternative to this
lemma in the appendix, when γt = γ is fixed, in which case we can instead use the more natural
constant D = Vx1

(x∗).

3.3 Convergence Rate of the Fenchel Game

Theorem 2. Let us consider the output (x̄T , ȳT) of Algorithm 1 under the following conditions:
(a) the sequence {αt} is positive but otherwise arbitrary (b) OAlgy is chosen OPTIMISTICFTL, (c)
OAlgx is MIRRORDESCENT with any non-increasing positive sequence {γt}, and (d) we have a
bound Vxt(x

∗) ≤ D for all t. Then the point x̄T satisfies

f(x̄T)−min
x∈X

f(x) ≤ 1

AT

(
D

γT
+

T∑
t=1

(
α2
t

At
L− 1

2γt

)
‖xt−1 − xt‖2

)
. (10)

Proof. We have already done the hard work to prove this theorem. Lemma 1 tells us we can bound
the error of x̄T by the ε error of the approximate equilibrium (x̄T , ȳT). Theorem 1 tells us that the
pair (x̄T , ȳT) derived from Algorithm 1 is controlled by the sum of averaged regrets of both players,

1
AT

(α-REGx + α-REGy). But we now have control over both of these two regret quantities, from
Lemmas 3 and 4. The right hand side of (10) is the sum of these bounds.

Theorem 2 is somewhat opaque without a specifying the sequence {αt}. But what we now show is
that the summation term vanishes when we can guarantee that α

2
t

At
remains constant! This is where

we obtain the following fast rate.

Corollary 1. Following Theorem 2 with αt = t and for any non-increasing sequence γt satisfying
1
CL ≤ γt ≤

1
4L for some constant C > 4, we have f(x̄T)−min

x∈X
f(x) ≤ 2CLD

T 2
.

Proof. Observing At := t(t+1)
2 , the choice of {αt, γt} implies D

γt
≤ cDL and Lα2

t

At
= 2Lt2

t(t+1) ≤
2L ≤ 1

2γt
, which ensures that the summation term in (10) is negative. The rest is simple algebra.

A straightforward choice for the learning rate γt is simple the constant sequence γt = 1
4L . The

corollary is stated with a changing γt in order to bring out a connection to the classical NESTEROVAC-
CELERATION in the following section.

Remark: It is worth dwelling on exactly how we obtained the above result. A less refined analysis
of the MIRRORDESCENT algorithm would have simply ignored the negative summation term in
Lemma 4, and simply upper bounded this by 0. But the negative terms ‖xt − xt−1‖2 in this sum
happen to correspond exactly to the positive terms one obtains in the regret bound for the y-player,
but this is true only as a result of using the OPTIMISTICFTL algorithm. To obtain a cancellation of
these terms, we need a γt which is roughly constant, and hence we need to ensure that α

2
t

At
= O(1).

The final bound, of course, is determined by the inverse quantity 1
AT

, and a quick inspection reveals
that the best choice of αt = θ(t). This is not the only choice that could work, and we conjecture
that there are scenarios in which better bounds are achievable for different αt tuning. We show in
Section 4.3 that a linear rate is achievable when f(·) is also strongly convex, and there we tune αt to
grow exponentially in t rather than linearly.

4 Nesterov’s methods are instances of our accelerated solution to the game

Starting from 1983, Nesterov has proposed three accelerated methods for smooth convex problems
(i.e. [16, 15, 17, 19]. In this section, we show that our accelerated algorithm to the Fenchel game can
generate all his methods with some simple tweaks.

6

4.1 Recovering Nesterov’s (1983) method for unconstrained smooth convex problems
[16, 15]

In this subsection, we assume that the x-player’s action space is unconstrained. That is, K = Rn.
Consider the following algorithm.

Algorithm 2 A variant of our accelerated algorithm.
1: In the weighted loss setting of Algorithm 1:
2: y-player uses OPTIMISITCFTL as OAlgy: yt = ∇f(x̃t).
3: x-player uses ONLINEGRADIENTDESCENT as OAlgx:
4: xt = xt−1 − γtαt∇ht(x) = xt−1 − γtαtyt = xt−1 − γtαt∇f(x̃t).

Theorem 3. Let αt = t. Assume K = Rn. Algorithm 2 is actually the case the x-player uses
MIRRORDESCENT. Therefore, x̄T is an O(1

T 2)-approximate optimal solution of minx f(x) by
Theorem 2 and Corollary 1.

Proof. For the unconstrained case, we can let the distance generating function of the Bregman
divergence to be the squared of L2 norm, i.e. φ(x) := 1

2‖x‖
2
2. Then, the update becomes xt =

argminx γt〈x, αtyt〉 + Vxt−1(x) = argminx γt〈x, αtyt〉 + 1
2‖x‖

2
2 − 〈xt−1, x − xt−1〉 − 1

2‖xt−1‖22.
Differentiating the objective w.r.t x and setting it to zero, one will get xt = xt−1 − γtαtyt.

Having shown that Algorithm 2 is actually our accelerated algorithm to the Fenchel game. We are
going to show that Algorithm 2 has a direct correspondence with Nesterov’s first acceleration method
(Algorithm 3) [16, 15] (see also [24]).

Algorithm 3 Nesterov Algorithm [[16, 15]]
1: Init: w0 = z0. Require: θ ≤ 1

L .
2: for t = 1, 2, . . . , T do
3: wt = zt−1 − θ∇f(zt−1).
4: zt = wt + t−1

t+2 (wt − wt−1).
5: end for
6: Output wT .

To see the equivalence, let us re-write x̄t := 1
At

∑t
s=1 αsxs of Algorithm 2.

x̄t = At−1x̄t−1+αtxt
At

= At−1x̄t−1+αt(xt−1−γtαt∇f(x̃t))
At

=
At−1x̄t−1+αt(

At−1x̄t−1−At−2x̄t−2
αt−1

−γtαt∇f(x̃t))

At

= x̄t−1(At−1

At
+ αt(αt−1+At−2)

Atαt−1
)− x̄t−2(αtAt−2

Atαt−1
)− γtα

2
t

At
∇f(x̃t)

= x̄t−1 − γtα
2
t

At
∇f(x̃t) + (αtAt−2

Atαt−1
)(x̄t−1 − x̄t−2)

= x̄t−1 − 1
4L∇f(x̃t) + (t−2

t+1)(x̄t−1 − x̄t−2),

(11)

where αt = t and γt = (t+1)
t

1
8L .

Theorem 4. Algorithm 3 with θ = 1
4L is equivalent to Algorithm 2 with γt = (t+1)

t
1

8L in the sense
that they generate equivalent sequences of iterates:

for all t = 1, 2, . . . , T, wt = x̄t and zt−1 = x̃t.

Let us switch to comparing the update of Algorithm 2, which is (11), with the update of the HEAVY-
BALL algorithm. We see that (11) has the so called momentum term (i.e. has a (x̄t−1 − x̄t−2)
term). But, the difference is that the gradient is evaluated at x̃t = 1

At
(αtxt−1 +

∑t−1
s=1 αsxs), not

x̄t−1 = 1
At−1

∑t−1
s=1 αsxs, which is the consequence that the y-player plays OPTIMISTICFTL. To

7

Algorithm 4 HEAVYBALL algorithm
1: In the weighted loss setting of Algorithm 1:
2: y-player uses FOLLOWTHELEADER as OAlgy: yt = ∇f(x̄t−1).
3: x-player uses ONLINEGRADIENTDESCENT as OAlgx:
4: xt := xt−1 − γtαt∇ht(x) = xt−1 − γtαtyt = xt−1 − γtαt∇f(x̄t−1).

elaborate, let us consider a scenario (shown in Algorithm 4) such that the y-player plays FOL-
LOWTHELEADER instead of OPTIMISTICFTL.

Following what we did in (11), we can rewrite x̄t of Algorithm 4 as

x̄t = x̄t−1 − γtα
2
t

At
∇f(x̄t−1) + (x̄t−1 − x̄t−2)(αtAt−2

Atαt−1
), (12)

by observing that (11) still holds except that ∇f(x̃t) is changed to ∇f(x̄t−1) as the y-player uses
FOLLOWTHELEADER now, which give us the update of the Heavy Ball algorithm as (12). Moreover,
by the regret analysis, we have the following theorem. The proof is in Appendix C.

Theorem 5. Let αt = t. Assume K = Rn. Also, let γt = O(1
L). The output x̄T of Algorithm 4 is an

O(1
T)-approximate optimal solution of minx f(x).

To conclude, by comparing Algorithm 2 and Algorithm 4, we see that Nesterov‘s (1983) method
enjoys O(1/T 2) rate since its adopts OPTIMISTICFTL, while the HEAVYBALL algorithm which
adopts FTL may not enjoy the fast rate, as the distance terms may not cancel out. The result also
conforms to empirical studies that the HEAVYBALL does not exhibit acceleration on general smooth
convex problems.

4.2 Recovering Nesterov’s (1988) 1-memory method [17] and Nesterov’s (2005)∞-memory
method [19]

In this subsection, we consider recovering Nesterov’s (1988) 1-memory method [17] and Nesterov’s
(2005)∞-memory method [19]. To be specific, we adopt the presentation of Nesterov’s algorithm
given in Algorithm 1 and Algorithm 3 of [26] respectively.

Algorithm 5 (A) Nesterov’s 1-memory method [17] and (B) Nesterov’s∞-memory method [19]
1: Input: parameter βt = 2

t+1 , γ′t = t
4L , θt = t, and η = 1

4L .
2: Init: w0 = x0

3: for t = 1, 2, . . . , T do
4: zt = (1− βt)wt−1 + βtxt−1.
5: (A) xt = argminx∈K γ

′
t〈∇f(zt), x〉+ Vxt−1

(x).
6: Or, (B) xt = argminx∈K

∑t
s=1 θs〈x,∇f(zs)〉+ 1

ηR(x), where R(·) is 1-strongly convex.
7: wt = (1− βt)wt−1 + βtxt.
8: end for
9: Output wT .

Theorem 6. Let αt = t. Algorithm 5 with update by option (A) is the case when the y-player
uses OPTIMISTICFTL and the x-player adopts MIRRORDESCENT with γt = 1

4L in Fenchel game.
Therefore, wT is an O(1

T 2)-approximate optimal solution of minx∈K f(x).

The proof is in Appendix D, which shows the direct correspondence of Algorithm 5 using option (A)
to our accelerated solution in Section 3.

Theorem 7. Let αt = t. Algorithm 5 with update by option (B) is the case when the y-player uses
OPTIMISTICFTL and the x-player adopts BETHEREGULARIZEDLEADER with η = 1

4L in Fenchel
game. Therefore, wT is an O(1

T 2)-approximate optimal solution of minx∈K f(x).

The proof is in Appendix E, which requires the regret bound of BETHEREGULARIZEDLEADER.

8

4.3 Accelerated linear rate

Nesterov observed that, when f(·) is both µ-strongly convex and L-smooth, one can achieve a rate
that is exponentially decaying in T (e.g. page 71-81 of [18]). It is natural to ask if the zero-sum
game and regret analysis in the present work also recovers this faster rate in the same fashion. We
answer this in the affirmative. Denote κ := L

µ . A property of f(x) being µ-strongly convex is

that the function f̃(x) := f(x) − µ‖x‖22
2 is still a convex function. Now we define a new game

whose payoff function is g̃(x, y) := 〈x, y〉 − f̃∗(y) +
µ‖x‖22

2 . Then, the minimax vale of the game

is V ∗ := minx maxy g̃(x, y) = minx f̃(x) +
µ‖x‖22

2 = minx f(x). Observe that, in this game, the
loss of the y-player in round t is αt`t(y) := αt(f̃

∗(y) − 〈xt, y〉), while the loss of the x-player in
round t is a strongly convex function αtht(y) := αt(〈x, yt〉+

µ‖x‖22
2). The cumulative loss function

of the x-player becomes more and more strongly convex over time, which is the key to allowing
the exponential growth of the total weight At that leads to the linear rate. In this setup, we have a
“warmup round” t = 0, and thus we denote Ãt :=

∑t
s=0 αs which incorporate the additional step

into the average. The proof of the following result is in Appendix H.

Theorem 8. For the game g̃(x, y) := 〈x, y〉− f̃∗(y)+
µ‖x‖22

2 , if the y-player plays OPTIMISTICFTL
and the x-player plays BETHEREGULARIZEDLEADER: xt ← arg minx∈X

∑t
s=0 αs`s(x), where

α0`0(x) := α0
µ‖x‖22

2 , then the weighted average points (x̄T , ȳT) would be an O(exp(− T√
κ

))-
approximate equilibrium of the game, where the weights α0, α1, . . . are chosen to satisfy αt

Ãt
= 1√

6κ
.

This implies that f(x̄T)−minx∈X f(x) = O(exp(− T√
κ

)).

5 Accelerated Proximal Method

In this section, we consider solving composite optimization problems minx∈Rn f(x) + ψ(x), where
f(·) is smooth convex but ψ(·) is possibly non-differentiable convex (e.g. ‖ · ‖1). We want to
show that the game analysis still applies to this problem. We just need to change the payoff
function g to account for ψ(x). Specifically, we consider the following two-players zero-sum game,
minx maxy{〈x, y〉−f∗(y)+ψ(x)}. Notice that the minimax value of the game is minx f(x)+ψ(x),
which is exactly the optimum value of the composite optimization problem. Let us denote the proximal
operator as proxλψ(v) = argminx

(
ψ(x) + 1

2λ‖x− v‖
2
2

)
. 1

Algorithm 6 Accelerated Proximal Method
1: In the weighted loss setting of Algorithm 1 (let αt = t and γt = 1

4L):
2: y-player uses OPTIMISITCFTL as OAlgy: yt = ∇f(x̃t).
3: x-player uses MIRRORDESCENT with ψ(x) := 1

2‖x‖
2
2 in Bregman divergence as OAlgx:

4: xt = argminx γt(αtht(x)) + Vxt−1
(x) = argminx γt(αt{〈x, yt〉+ ψ(x)}) + Vxt−1

(x)

5: = argminx φ(x) + 1
2αtγt

(‖x‖22 + 2〈αtγtyt−xt−1, x〉) = proxαtγtψ(xt−1−αtγt∇f(x̃t))

We notice that the loss function of the x-player here, αtht(x) = αt(〈x, yt〉 + ψ(x)), is possibly
nonlinear. Yet, we can slightly adapt the analysis in Section 3 to show that the weighed average x̄T
is still an O(1/T 2) approximate optimal solution of the offline problem. Please see Appendix I for
details. One can view Algorithm 6 as a variant of the so called “Accelerated Proximal Gradient”in
[6]. Yet, the design and analysis of our algorithm is simpler than that of [6].

Acknowlegement: We would like to thank Kevin Lai and Kfir Levy for helpful discussions leading
up to the results in this paper. This work was supported by funding from the Division of Computer
Science and Engineering at the University of Michigan, from the College of Computing at the Georgia
Institute of Technology, NSF TRIPODS award 1740776, and NSF CAREER award 1453304.

1It is known that for some ψ(·), their corresponding proximal operations have closed-form solutions (see e.g.
[20] for details).

9

References
[1] Jacob Abernethy, Kfir Levy, Kevin Lai, and Jun-Kun Wang. Faster rates for convex-concave

games. COLT, 2018.

[2] Jacob Abernethy and Jun-Kun Wang. Frank-wolfe and equilibrium computation. NIPS, 2017.

[3] Jacob Abernethy, Manfred K Warmuth, and Joel Yellin. Optimal strategies from random walks.
In Proceedings of The 21st Annual Conference on Learning Theory, pages 437–446. Citeseer,
2008.

[4] Zeyuan Allen-Zhu and Lorenzo Orecchia. Linear coupling: An ultimate unification of gradient
and mirror descent. ITCS, 2017.

[5] David Balduzzi, Sebastien Racaniere, James Martens, Jakob Foerster, Karl Tuyls, and Thore
Graepel. The mechanics of n-player differentiable games. arXiv preprint arXiv:1802.05642,
2018.

[6] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM J. on Imaging Sciences, 2009.

[7] Sabastien Bubeck, Yin Tat Lee, and Mohit Singh. A geometric alternative to nesterov’s
accelerated gradient descent. 2015.

[8] Chao-Kai Chiang, Tianbao Yang, Chia-Jung Lee, Mehrdad Mahdavi, Chi-Jen Lu, Rong Jin, ,
and Shenghuo Zhu. Online optimization with gradual variations. 2012.

[9] Constantinos Daskalakis, Andrew Ilyas, Vasilis Syrgkanis, and Haoyang Zeng. Training gans
with optimism. arXiv preprint arXiv:1711.00141, 2017.

[10] Nicolas Flammarion and Francis Bach. From averaging to acceleration, there is only a step-size.
COLT, 2015.

[11] Gauthier Gidel, Reyhane Askari Hemmat, Mohammad Pezeshki, Gabriel Huang, Remi Lepriol,
Simon Lacoste-Julien, and Ioannis Mitliagkas. Negative momentum for improved game
dynamics. arXiv preprint arXiv:1807.04740, 2018.

[12] Guanghui Lan and Yi Zhou. An optimal randomized incremental gradient method. Mathematical
Programming, 2017.

[13] Laurent Lessard, Benjamin Recht, and Andrew Packard. Analysis and design of optimization
algorithms via integral quadratic constraints. SIAM Journal on Optimization, 2016.

[14] Brendan McMahan and Jacob Abernethy. Minimax optimal algorithms for unconstrained linear
optimization. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems 26, pages 2724–2732. Curran
Associates, Inc., 2013.

[15] Yuri Nesterov. A method for unconstrained convex minimization problem with the rate of
convergence o(1/k2). Doklady AN USSR, 1983.

[16] Yuri Nesterov. A method of solving a convex programming problem with convergence rate
o(1/k2). Soviet Mathematics Doklady, 27:372–376, 1983.

[17] Yuri Nesterov. On an approach to the construction of optimal methods of minimization of
smooth convex functions. Ekonom. i. Mat. Metody, 24:509–517, 1988.

[18] Yuri Nesterov. Introductory lectures on convex optimization: A basic course. Springer, 2004.

[19] Yuri Nesterov. Smooth minimization of nonsmooth functions. Mathematical programming,
2005.

[20] Neal Parikh and Stephen Boyd. Proximal algorithms. Foundations and Trends in Optimization,
2014.

10

[21] Alexander Rakhlin and Karthik Sridharan. Online learning with predictable sequences. COLT,
2013.

[22] Alexander Rakhlin and Karthik Sridharan. Optimization, learning, and games with predictable
sequences. NIPS, 2013.

[23] Tyrrell Rockafellar. Convex analysis. Princeton University Press, 1996.

[24] Weijie Su, Stephen Boyd, and Emmanuel Candes. A differential equation for modeling nes-
terov’s accelerated gradient method: Theory and insights. NIPS, 2014.

[25] Vasilis Syrgkanis, Alekh Agarwal, Haipeng Luo, and Robert E. Schapire. Fast convergence of
regularized learning in games. NIPS, 2015.

[26] Paul Tseng. On accelerated proximal gradient methods for convex-concave optimization. 2008.

[27] Andre Wibisono, Ashia C Wilson, and Michael I Jordan. A variational perspective on accelerated
methods in optimization. Proceedings of the National Academy of Sciences, 113(47):E7351–
E7358, 2016.

[28] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent.
ICML, 2003.

11

