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Abstract

Symmetric nonnegative matrix factorization (NMF)—a special but important class
of the general NMF—is demonstrated to be useful for data analysis and in particular
for various clustering tasks. Unfortunately, designing fast algorithms for Symmetric
NMF is not as easy as for the nonsymmetric counterpart, the later admitting the
splitting property that allows efficient alternating-type algorithms. To overcome this
issue, we transfer the symmetric NMF to a nonsymmetric one, then we can adopt
the idea from the state-of-the-art algorithms for nonsymmetric NMF to design
fast algorithms solving symmetric NMF. We rigorously establish that solving
nonsymmetric reformulation returns a solution for symmetric NMF and then apply
fast alternating based algorithms for the corresponding reformulated problem.
Furthermore, we show these fast algorithms admit strong convergence guarantee
in the sense that the generated sequence is convergent at least at a sublinear rate
and it converges globally to a critical point of the symmetric NMF. We conduct
experiments on both synthetic data and image clustering to support our result.

1 Introduction

General nonnegative matrix factorization (NMF) is referred to the following problem: Given a matrix
Y € R™ ™ and a factorization rank r, solve

. 1
min -

L T Y —UVT%, st.U>0,V>0, 1)

where U > 0 means each element in U is nonnegative. NMF has been successfully used in the
applications of face feature extraction [, 2], document clustering [3], source separation [4] and many
others [5]. Because of the ubiquitous applications of NMF, many efficient algorithms have been
proposed for solving (1). Well-known algorithms include MUA [6], projected gradientd descent [7],
alternating nonnegative least squares (ANLS) [8], and hierarchical ALS (HALS) [9]. In particular,
ANLS (which uses the block principal pivoting algorithm to very efficiently solve the nonnegative
least squares) and HALS achive the state-of-the-art performance.
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One special but important class of NMF, called symmetric NMF, requires the two factors U and V
identical, i.e., it factorizes a PSD matrix X € R™*" by solving

min 1||X ~UU"%, s.t.U>0. 2)
UeRnx" 2
As a contrast, (1) is referred to as nonsymmetric NMF. Symmetric NMF (2) has its own applications
in data analysis, machine learning and signal processing [10, 11, 12]. In particular the symmetric
NMEF is equivalent to the classical K -means kernel clustering in [ I Jand it is inherently suitable for
clustering nonlinearly separable data from a similarity matrix [10].

In the first glance, since (2) has only one variable, one may think it
is easier to solve (2) than (1), or at least (2) can be solved by directly
utilizing efficient algorithms developed for nonsymmetric NMF. 1005-__\
However, the state-of-the-art alternating based algorithms (such as

ANLS and HALS) for nonsymmetric NMF utilize the splitting prop- i
erty of (1) and thus can not be used for (2). On the other hand,
first-order method such as projected gradient descent (PGD) for solv-
ing (2) suffers from very slow convergence. As a proof of concept,
we show in Figure 1 the convergence of PGD for solving symmetric
NMF and as a comparison, the convergence of gradient descent
(GD) for solving a matrix factorization (MF) (i.e., (2) without the
nonnegative constraint) which is proved to admit linear convergence Figure 1: Convergence of MF by
[13, 14]. This phenomenon also appears in nonsymmetric NMF and G and symmetric NMF by PGD
is the main motivation to have many efficient algorithms such as with the same initialization.
ANLS and HALS.
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Main Contributions This paper addresses the above issue by considering a simple framework that
allows us to design alternating-type algorithms for solving the symmetric NMF, which are similar to
alternating minimization algorithms (such as ANLS and HALS) developed for nonsymmetric NMF.
The main contributions of this paper are summarized as follows.

e Motivated by the splitting property exploited in ANLS and HALS algorithms, we split the bilinear
form of U into two different factors and transfer the symmetric NMF into a nonsymmetric one:

1 A
min f(U, V) = S[|X - UV7TZ + U - V|2, s.t.U>0,V >0, 3)

where the regularizer ||[U — V'||% is introduced to force the two factors identical and A > 0 is a
balancing factor. The first main contribution is to guarantee that any critical point of (3) that has
bounded energy satisfies U = V with a sufficiently large A\. We further show that any local-search
algorithm with a decreasing property is guaranteed to solve (2) by targeting (3). To the best of our
knowledge, this is the first work to rigorously establish that symmetric NMF can be efficiently
solved by fast alternating-type algorithms.

e Our second contribution is to provide convergence analysis for our proposed alternating-based
algorithms solving (3). By exploiting the specific structure in (3), we show that our proposed
algorithms (without any proximal terms and any additional constraints on U and V except the
nonnegative constraint) is convergent. Moreover, we establish the point-wise global sequence
convergence and show that the proposed alternating-type algorithms achieve at least a global
sublinear convergence rate. Our sequence convergence result provides theoretical guarantees for
the practical utilization of alternating-based algorithms directly solving (3) without any proximal
terms or additional constraint on the factors which are usually needed to guarantee the convergence.

Related Work Due to slow convergence of PGD for solving symmetric NMF, different algorithms
have been proposed to efficiently solve (2), either in a direct way or similar to (3) by splitting the two
factors. Vandaele et al. [15] proposed an alternating algorithm that cyclically optimizes over each
element in U by solving a nonnegative constrained nonconvex univariate fourth order polynomial
minimization. A quasi newton second order method was used in [10] to directly solve the symmetric
NMF optimization problem (2). However, both the element-wise updating approach and the second
order method are observed to be computationally expensive in large scale applications. We will
illustrate this with experiments in Section 4.



The idea of solving symmetric NMF by targeting (3) also appears in [10]. However, despite an
algorithm used for solving (3), no other formal guarantee (such as solving (3) returns a solution of
(2)) was provided in [10]. Lu et al. [16] considered an alternative problem to (3) that also enjoys
the splitting property and utilized alternating direction method of multipliers (ADMM) algorithm
to tackle the corresponding problem with equality constraint (i.e., U = V'). Unlike the sequence
convergence guarantee of algorithms solving (3), the ADMM is only guaranteed to have a subsequence
convergence in [16] with an additional proximal term? and constraint on the boundedness of columns
of U, rendering the problem hard to solve.

A different line of research that may be also related to our work is the classical result on exact penalty
methods [17, 18].> On one hand, our work shares similar spirit to the exact penalty methods as both
approaches attempt to transfer constraints as penalties into the objective function. On the other hand,
our approach differs from the exact penalty methods in the following three folds: 1) as stated in [ 18],
most of the results on exact penalty methods require the feasible set compact, which is not satisfied
in our problem (2); 2) the exact penalty methods replace all the constraints with certain penalty
functions, while our reformulated problem (3) still has the nonnegative constriant; 3) in general
the exact penalty methods use either nonsmooth penalty functions or differentiable exact penalty
functions which are based on replacing the conventional multipliers with continuously differentiable
multiplier functions, while the penalty in (3) is smooth and the parameter A is fixed and is independent
of U and V. We comment that our result builds on the specific structure of the objective function in
(3) while the exact penalty methods focus on general nonlinear programming problems.

Finally, our work is also closely related to recent advances in convergence analysis for alternating
minimizations. The sequence convergence result for general alternating minimization with an
additional proximal term was provided in [ 9]. When specified to NMF, as pointed out in [20], with
the aid of this additional proximal term (and also an additional constraint to bound the factors), the
convergence of ANLS and HALS can be established from [19, 21]. With similar proximal term
and constraint, the subsequence convergence of ADMM for symmetric NMF was obtained in [16].
Although the convergence of these algorithms are observed without the proximal term and constraint
(which are also not used in practice), these are in general necessary to formally show the convergence
of the algorithms. For alternating minimization methods solving (3), without any additional constraint,
we show the factors are indeed bounded through the iterations, and without the proximal term, the
algorithms admit sufficient decreasing property. These observations then guarantee the sequence
convergence of the original algorithms that are used in practice. The convergence result for algorithms
solving (3) is not only limited to alternating-type algorithms, though we only consider these as they
achieve state-of-the-art performance.

2 Guarantee when Transfering Symmetric NMF to Nonsymmetric NMF

Compared with (2), in the first glance, (3) is slightly more complicated as it has one more variable.
However, because of this new variable, f(U, V') is now strongly convex with respect to either U or V/,
though it is still nonconvex in terms of the joint variable (U, V'). Moreover, the two decision variables
U and V in (3) are well splitted, like the case in nonsymmetric NMF. This observation suggests an
interesting and useful fact that (3) can be solved by designing tailored alternating minimization type
algorithms developed for tackling nonsymmetric NMF. On the other hand, a theoretical question
raised in the regularized form (3) is that we are not guaranteed U = V and hence solving (3) is not
equivalent to solving (2). In this section, we provide formal guarantee to assure that solving (3) (to a
critical point) indeed gives a critical point solution of (2). Note that (3) is nonconvex and many local
search algorithms are only guaranteed to converge to a critical point rather than the global solution.
Thus, our goal is to guarantee that any critical point that the algorithms may converge to admits the
property that the two factors U and V' are identical and further that U is a solution ( critical point) of
the original symmetric NMF (2).

Before stating out the formal result, as an intuitive example, we first consider a simple case where
flu,v) = (1—uv)?/24+A(u—v)? /2. Its derivative is 9, f (u, v) = (vv—1)v+A(u—v),d, f(u,v) =
(uv — 1)u — A(u — v). Thus, any critical point of f satisfies (uv — 1)v + A(u — v) = 0 and
(uv — 1)u — AM(u — v) = 0, which further indicates that (u — v)(2A + 1 — uv) = 0. Therefore,

’In k-th iteration, a proximal term ||U — U_1||% is added to the objective function when updating U.
3We greatly acknolwledge the anonymous area chair for pointing out this related work.



for any critical point (u,v) such that |uv| < 2X + 1, it must satisfy v = v. Although (3) is more
complicated than this example as it also has nonnegative constraint, the following result establishes
similar guarantee for (3).*

Theorem 1. Suppose (U*,V*) be any critical point of (3) satisfying |[U*V*T|| < 2\ + 0,,(X),
where o,,(+) denotes the n-th largest singular value. Then U* = V* and U™ is a critical point of

).

Towards interpreting Theorem 1, we note that for any A > 0, Theorem 1 ensures a certain region
(whose size depends on \) in which each critical point of (3) has identical factors and also returns a
solution for the original symmetric NMF (2). This further suggests the opportunity of choosing an
appropriate A such that the corresponding region (i.e., all (U, V') such that [UV™ || < 2\ + ¢,,(X))
contains all the possible points that the algorithms will converge to. Towards that end, next result
indicates that for any local search algorithms, if it decreases the objective function, then the iterates
are bounded.

Lemma 1. For any local search algorithm solving (3) with initialization Vo = U, U > 0, suppose
it sequentially decreases the objective value. Then, for any k > 0, the iterate (U, V') generated by
this algorithm satisfies

1
O + IVl < (5 +26F) 1X - UoUS I + 2vFIX |5 o= Bo

ULV ilr < I X —UoVillp + |1 X]|p

“4)

There are two interesting facts regarding the iterates can be interpreted from (4). The first equation
of (4) implies that both U, and V', are bounded and the upper bound decays when the A increases.
Specifically, as long as A is not too close to zero, then the RHS in (4) gives a meaningful bound
which will be used for the convergence analysis of local search algorithms in next section. In terms
of Uy VE, the second equation of (4) indicates that it is indeed upper bounded by a quantity that
is independent of A. This suggests a key result that if the iterative algorithm is convergent and the
iterates (U, V1) converge to a critical point (U*, V*), then U*V*T is also bounded, irrespectively
the value of A. This together with Theorem 1 ensures that many local search algorithms can be
utilized to find a critical point of (2) by choosing a sufficiently large A.

Theorem 2. Choose A > 1 (||X||2 + HX - UOUOTHF - O’n(X)> for (3), where || X ||2 means
largest singular value of X. For any local search algorithm solving (3) with initialization Vo = U,
if it sequentially decreases the objective value, is convergent, and converges to a critical point
(U*,V*) of (3), then we have U* = V™* and that U™ is also a critical point of (2).

Theorem 2 indicates that instead of directly solving the symmetric NMF (2), one can turn to solve (3)
with a sufficiently large regularization parameter \. The latter is very similar to the nonsymmetric
NMF (1) and obeys similar splitting property, which enables us to utilize efficient alternating-type
algorithms. In the next section, we propose alternating based algorithms for tackling (3) with strong
guarantees on the descend property and convergence issue.

3 Fast Algorithms for Symmetric NMF with Guaranteed Convergence

In the last section, we have shown that the symmetric NMF (2) can be transfered to problem (3), the
latter admitting splitting property which enables us to design alternating-type algorithms to solve
symmetric NMF. Specifically, we exploit the splitting property by adopting the main idea in ANLS
and HALS for nonsymmetric NMF to design fast algorithms for (3). Moreover, note that the objective
function f in (3) is strongly convex with respect to U (or V') with fixed V' (or U) because of the
regularized term %HU — V||. This together with Lemma 1 ensures that strong descend property
and point-wise sequence convergence guarantee of the proposed alternating-type algorithms. With
Theorem 2, we are finally guaranteed that the algorithms converge to a critical point of symmetric
NMF (2).

3.1 ANLS for symmetric NMF (SymANLS)

4 All the proofs can be found at supplementary material.



Algorithm 1 SymANLS
Initialization: k = 1 and Uy = V.
1: while stop criterion not meet do
2: Uk:argminVZO%HX—UV;CF_1||%+%HU—V;€_1H%;
3 Vi :argminUZO%HXkaVTH%Jr%HUk - V|4,
4 k=k+1.
5: end while
Output: factorization (U, V).

ANLS is an alternating-type algorithm customized for nonsymmetric NMF (1) and its main idea is
that at each time, keep one factor fixed, and update another one via solving a nonnegative constrained
least squares. We use similar idea for solving (3) and refer the corresponding algorithm as SymANLS.
Specifically, at the k-th iteration, SymANLS first updates U ;, by

Ur= arg min HX—UVg,1||%+%HU—Vk,1H%. (5)
UER™*",U>0

Vi is then updated in a similar way. We depict the whole procedure of SymANLS in Algorithm 1.
With respect to solving the subproblem (5), we first note that there exists a unique minimizer (i.e.,
U,) for (5) as it involves a strongly objective function as well as a convex feasible region. However,
we note that because of the nonnegative constraint, unlike least squares, in general there is no
closed-from solution for (5) unless » = 1. Fortunately, there exist many feasible methods to solve
the nonnegative constrained least squares, such as projected gradient descend, active set method and
projected Newton’s method. Among these methods, a block principal pivoting method is remarkably
efficient for tackling the subproblem (5) (and also the one for updating V') [8].

With the specific structure within (3) (i.e., its objective function is strongly convex and its feasible
region is convex), we first show that SymANLS monotonically decreases the function value at each
iteration, as required in Theorem 2.

Lemma 2. Let {(Uy, Vi)} be the iterates sequence generated by Algorithm 1. Then we have
A
FUEVE) = f(Uki1, Vin) 2 S(10ks1 = Ul + Vi = Vil )

We now give the following main convergence guarantee for Algorithm 1.

Theorem 3 (Sequence convergence of Algorithm 1). Let {(Ug, Vi )} be the sequence generated by
Algorithm 1. Then

lim (Uk7 Vk‘) = (U*a V*)v

k—o0
where (U™, V™) is a critical point of (3). Furthermore the convergence rate is at least sublinear.

Equipped with all the machinery developed above, the global sublinear sequence convergence of
SymANLS to a critical solution of symmetric NMF (2) is formally guaranteed in the following result,
which is a direct consequence of Theorem 2, Lemma 2 and Theorem 3.

Corollary 1 (Convergence of Algorithm 1 to a critical point of (2)). Suppose Algorithm 1 is initialized
with Vo = Uy. Choose

1 T
A>3 (Il + | X = UoUT | = ou(x)).

Let {(Uy, Vi) } be the sequence generated by Algorithm 1. Then {(U}, V'y)} is convergent and
converges to (U™, V*) with U* = V* and U* a critical point of (2). Furthermore, the convergence
rate is at least sublinear.

Remark. We emphasis that the specific structure within (3) enables Corollary 1 get rid of the
assumption on the boundedness of iterates (U}, V1) and also the requirement of a proximal term,
which is usually required for convergence analysis but not necessarily used in practice. As a contrast
and also as pointed out in [20], to provide the convergence guarantee for standard ANLS solving
nonsymmetric NMF (1), one needs to modify it by adding an additional proximal term as well as an
additional constraint to make the factors bounded.



3.2 HALS for symmetric NMF (SymHALS)

As we stated before, due to the nonnegative constraint, there is no closed-from solution for (5),
although one may utilize some efficient algorithms for solving (5). As a contrast, there does exist a
closed-form solution when = 1. HALS exploits this observation by splitting the pair of variables
(U, V) into columns (wq,- - , W, v, - ,v,) and then optimizing over column by column. We
utilize similar idea for solving (3). Specifically, rewrite UV ' = u vl +3 i i 'v;r and denote by

Xi =X — ZU]'UJT
J#i

the factorization residual X — UV'™" excludlng u;v]. Now if we minimize the objective function f
in (3) only with respect to w;, then it is equivalent to

h_

u! (XZ +>\I)’Ui’0>

A
= arg m1nf||X —ul %+ §||ul — v;|3 = max ( o+ A
ill2

u; ER™
Similar closed-form solution also holds when optimizing in terms of v;. With this observation, we uti-
lize alternating-type minimization that at each time minimizes the objective function in (3) only with
respect to one column in U or V' and denote the corresponding algorithm as SymHALS. We depict
SymHALS in Algorithm 2, where we use subscript k to denote the k-th iteration. Note that to make
the presentation easily understood, we directly use X — 32"~ — uk('vk)T D VI (T
to update X ¥ i » which is not adopted in practice. Instead, letting b ¢ 1=X- ur! (Vk 1) , We can
then update X f with only the computation of u¥ (v¥)T by recursively utilizing the previous one. The
detailed information about efficient implementation of SymHALS can be found in the supplementary
material (see the corresponding Algorithm 3 in Section 5).

Algorithm 2 SymHALS
Initialization: U, V, iteration k = 1.

1: while stop criterion not meet do
22 fori=1:rdo

k k—1/, k—I\T.

3: X =X - Z] 1u ( )T Z] z+1u] 1(”]’ 1)T’
_ Xk+)\I k—1
& uhwgm%mgmkumkwmwMm-ﬁl%zmmﬁﬁﬁ%;@
: k XF+ADu .

5: ”? = arg min, > §HX —u; 'UTHF /\||“z — ;|3 = max (Wﬁ)»
6: end for
7. k=k+1.
8: end while

Output: factorization (U, V).

The SymHALS enjoys similar descend property and convergence guarantee to algorithm SymANLS
as both of them are alternating-based algorithms. Thus, we just give out the following results ensuring
Algorithm 2 converge to a critical point of symmetric NMF (2).

Corollary 2 (Convergence of Algorithm 2 to a critical point of (2)). Suppose it is initialized with
Vo =Uyjg. Choose

>3 (1X0 [ x ~oUE]| -~ 0ux).

Let {(Uy, Vi) } be the sequence generated by Algorithm 2. Then {(U}, V'y)} is convergent and
converges to (U, V™) with U* = V* and U* being a critical point of (2). Furthermore, the
convergence rate is at least sublinear.

Remark. Similar to Corollary 1 for SymANLS, Corollary 2 has no assumption on the boundedness
of iterates (U, Vi) and it establishes convergence guarantee for SymHALS without the aid from a
proximal term. As a contrast, to establish the subsequence convergence for classical HALS solving
nonsymmetric NMF [9, 22] (i.e., setting A = 0 in SymHALS), one needs the assumption that every
column of (U, Vi) is not zero through all iterations. Though such assumption can be satisfied
by using additional constraints, it actually solves a slightly different problem than the original



nonsymmetric NMF (1). On the other hand, SymHALS overcomes this issue and admits sequence
convergence because of the additional regularizer in (3).

We end this section by noting that both Theorem 2 and the convergence guarantee in Corollary | and
Corollary 2 can be extended to the case with any additional convex constraint and/or regularizer on
U. For example, for promoting sparsity, one can use ¢; constraint or regularizer which can also be
efficiently incorporated into SymHALS or SymGCD. A formal guarantee for this extension is the
subject of ongoing work.

4 Experiments on Synthetic Data and Real Image Data

In this section, we conduct experiments on both synthetic data and real data to illustrate the perfor-
mance of our proposed algorithms and compare it to other state-of-the-art ones, in terms of both
convergence property and image clustering performance.

For comparison convenience, we define

| X - U"(U""|%

EF =
1 X%

as the normalized fitting error at k-th iteration.

Besides SymANLS and SymHALS, we also apply the greedy coordinate descent (GCD) algorithm in
[23] (which is designed for tackling nonsymmetric NMF) to solve the reformulated problem (3) and
denote the corrosponding algorithm as SymGCD. SymGCD is expected to have similar sequence
convergence guarantee as SymANLS and SymHALS. We list the algorithms to compare: 1) ADMM
in [16], where there is a regularization item in their augmented Lagrangian and we tune a good one for
comparison; 2) SymNewton [ 0] which is a Newton-like algorithm by with a the Hessian matrix in
Newton’s method for computation efficiency; and 3) PGD in [7]. The algorithm in [ 5] is inefficient
for large scale data, since they apply an alternating minimization over each coordinate which entails
many loops for large scale U.

4.1 Convergence verification

We randomly generate a matrix U € R%%%5(n = 50, r = 5) with each entry independently following
a standard Gaussian distribution. To enforce nonnegativity, we then take absolute value on each
entry of U to get U*. Data matrix X is constructed as U*(U*)" which is nonnegative and PSD.
We initialize all the algorithms with same U and V°, whose entries are i.i.d. uniformly distributed
between O to 1.

To study the effect of the parameter )\ in (3), we show the

value ||U\,— V' 1.||% versus iteration for different choices of

A by SymHALS in Figure 2. While for this experimental — oo
setting the lower bound of A provided in Theorem 2 is 100} IS
39.9, we observe that ||Uj, — Vi||% still converges to 0

with much smaller A. This suggests that the sufficient
condition on the choice of A in Theorem 2 is stronger
than necessary, leaving room for future improvements.
Particularly, we suspect that SymHALS converges to a
critical point (U*, V*) with U* = V™ (i.e. a critical
point of symmetric NMF) for any A > 0; we leave this
line of theoretical justification as our future work. On
the other hand, we note that although SymHALS finds a
critical point of symmetric NMF for most of the A, the
convergence speed varies for different A\. For example, Figure 2: SymHALS with different A. Here
we observe that either a very large or small A yields a n =50,r =5.

slow convergence speed. In the sequel, we tune the best

parameter A for each experiment.

—A=10

0% — Vi3

0 200 400 600 800 1000
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We also test on real world dataset CBCL >, where there are 2429 face image data with dimension
19 x 19. We construct the similarity matrix X following [10, section 7.1, step 1 to step 3]. The
convergence results on synthetic data and real world data are shown in Figure 3 (al)-(a2) and Figure 3
(b1)-(b2), respectively. We observe that the SymANLS, SymHALS, and SymGCD 1) converge faster;

2) empirically have a linear convergence rate in terms of E*.
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— — ADMM
S~ao SymNewton —-—-SymANLS
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Figure 3: Synthetic data where n = 50,7 = 5: (al)-(a2) fitting error versus iteration and running
time. Real image dataset CBCL where n = 2429, r = 49: (b1)-(b2) fitting error versus iteration and
running time.

4.2 TImage clustering

Symmetric NMF can be used for graph clustering [10, 11] where each element X ;; denotes the
similarity between data ¢ and j. In this subsection, we apply different symmetric NMF algorithms for
graph clustering on image datasets and compare the clustering accuracy [24].

We put all images to be clustered in a data matrix M, where each row is a vectorized image. We
construct similarity matrix following the procedures in [10, section 7.1, step 1 to step 3], and utilize

self-tuning method to construct the similarity matrix X. Upon deriving U from symmetric NMF
~ T
X =~ UU , the label of the i-th image can be obtained by:
I(M;) = arg max ﬁ(ij). (6)
J
We conduct the experiments on four image datasets:

ORL: 400 facial images from 40 different persons with each one has 10 images from different angles

and emotions °.

COIL-20: 1440 images from 20 objects .

TDT2: 10,212 news articles from 30 categories °. We extract the first 3147 data for experiments
(containing only 2 categories).

MNIST: classical handwritten digits dataset 9 where 60,000 are for training (denoted as
MNIST};q4n), and 10,000 for testing (denoted as MNIST.s;). we test on the first 3147 data from
MNIST;;qir (contains 10 digits) and 3147 from MNIST;.,; (contains only 3 digits) .

Shttp://cbel.mit.edu/software-datasets/FaceData2.html
Shttp://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
8https://www.ldc.upenn.edu/collaborations/past-projects
*http://yann.lecun.com/exdb/mnist/



In Figure 4 (al) and Figure 4(a2), we display the clustering accuracy on dataset ORL with respect to
iterations and time (only show first 10 seconds), respectively. Similar results for dataset COIL-20
are plotted in Figure 4 (b1)-(b2). We observe that in terms of iteration number, SymNewton has
comparable performance to the three alternating methods for (3) (i.e., SymANLS, SymHALS, and
SymGCD), but the latter outperform the former in terms of running time. Such superiority becomes
more apparent when the size of the dataset increases. We show the comparison on larger truncated
datasets MNIST;,q;, and MNIST;.s; in supplementary materials. We note that the performance of
ADMM will increase as iterations goes and after almost 3500 iterations on ORL dataset it reaches a
comparable result to other algorithms. Moreover, it requires more iterations for larger dataset. This
observation makes ADMM not practical for image clustering. We run ADMM 5000 iterations on
ORL dataset, and display it in the supplementary material. These results as well as the experimental
results shown in the last subsection demonstrate () the power of transfering the symmetric NMF (2)
to a nonsymmetric one (3); and (¢4) the efficieny of alternating-type algorithms for sovling (3) by
exploiting the splitting property within the optimization variables in (3).
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Figure 4: Real dataset: (al) and (a2) Image clustering quality on ORL dataset, n = 400, r = 40; (b1)
and (b2) Image clustering quality on COIL-20 dataset, n = 1440, r = 20.

Table 1 shows the clustering accuracies of different algorithms on different datasets, where we
run enough iterations for ADMM so that it obtains its best result. We observe from Table 1 that
SymANLS, SymHALS, and SymGCD perform better than or have comparable performance to others
for most of the cases.

Table 1: Summary of image clustering accuracy of different algorithms on five image datasets

ORL | COIL-20 | MNIST;yqin | TDT2 | MNIST os;
SymANLS | 0.8075 | 0.7979 0.6477 0.9800 0.8589
SymHALS | 0.7550 | 0.5854 0.6657 0.9806 0.8608
SymGCD | 0.7900 | 0.7076 0.6293 0.9803 0.9882
ADMM 0.7650 | 0.6903 0.5803 0.9800 0.8713
SymNewton | 0.7625 | 0.7472 0.5990 0.9793 0.8589
PGD 0.7700 | 0.7243 0.6475 0.9800 0.8710
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