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Abstract

We consider the task of recovering two real or complex m-vectors from phaseless
Fourier measurements of their circular convolution. Our method is a novel convex
relaxation that is based on a lifted matrix recovery formulation that allows a
nontrivial convex relaxation of the bilinear measurements from convolution. We
prove that if the two signals belong to known random subspaces of dimensions
k and n, then they can be recovered up to the inherent scaling ambiguity with
m >> (k + n) log2m phaseless measurements. Our method provides the first
theoretical recovery guarantee for this problem by a computationally efficient
algorithm and does not require a solution estimate to be computed for initialization.
Our proof is based Rademacher complexity estimates. Additionally, we provide
an ADMM implementation of the method and provide numerical experiments that
verify the theory.

1 Introduction

This paper considers recovery of two unknown signals (real- or complex-valued) from the magnitude
only measurements of their convolution. Let w, and x be vectors residing inHm, whereH denotes
either R, or C. Moreover, denote by F the DFT matrix with entries F [ω, t] = 1√

m
e−j2πωt/m, 1 ≤

ω, t ≤ m. We observe the phaseless Fourier coefficients of the circular convolution w ~ x of w, and
x

y = |F (w ~ x)|, (1)

where |z| returns the element wise absolute value of the vector z. We are interested in recovering
w, and x from the phaseless measurements y of their circular convolution. In other words, the
problem concerns blind deconvolution of two signals from phaseless measurements. The problem
can also be viewed as identifying the structural properties on w such that its convolution with the
signal/image of interest x makes the phase retrieval of a signal x well-posed. Since w, and x
are both unknown, and in addition, the measurements are phaseless, the inverse problem becomes
severly ill-posed as many pairs of w, and x correspond to the same y. We show that this non-linear
problem can be efficiently solved, under Gaussian measurements, using a semidefinite program and
also theoretically prove this assertion. We also propose a heuristic approach to solve the proposed
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semidefinite program computationally efficiently. Numerical experiments show that, using this
algorithm, one can successfully recover a blurred image from the magnitude only measurements of
its Fourier spectrum.

Phase retrieval has been of continued interest in the fields of signal processing, imaging, physics,
computational science, etc. Perhaps, the single most important context in which phase retrieval arises
is the X-ray crystallography Harrison [1993], Millane [1990], where the far-field pattern of X-rays
scattered from a crystal form a Fourier transform of its image, and it is only possible to measure the
intensities of the electromagnetic radiation. However, with the advancement of imaging technologies,
the phase retrieval problem continues to arise in several other imaging modalities such as diffraction
imaging Bunk et al. [2007], microscopy Miao et al. [2008], and astronomical imagingFienup and
Dainty [1987]. In the imaging context, the result in this paper would mean that if rays are convolved
with a generic pattern (either man made or naturally arising due to propagation of light through some
unknown media) w prior to being scattered/reflected from the object, the image of the object can be
recovered from the Fourier intensity measurements later on. As is well known from Fourier optics
Goodman [2008], the convolution of a visible light with a generic pattern can be implemented using
a lens-grating-lens setup.

Despite recent advances in theoretical understanding of phase retrieval Candes et al. [2013, 2015a],
the application to actual problems such as crystallography remains challenging owing partly to the
simplistic mathematical models that may not fully capture the actual physical problem at hand. Our
comparatively more complex model in (1) more elaborately encompasses structure in actual physical
problems, for example, crystallography, where due to the natural periodic arrangement of a crystal
structural unit, the observed electron density function of the crystal exactly takes the form (1); for
details, see, Section 2 of Elser et al. [2017].

Blind deconvolution is a fundamental problem in signal processing, communications, and in general
system theory. Visible light communication has been proposed as a standard in 5G communications
for local area networks Azhar et al. [2013], Retamal et al. [2015], Azhar et al. [2010]. Propagation of
information carrying light through an unknown communication medium is modeled as a convolution.
The channel is unknown and at the receiver it is generally difficult to measure the phase information
in the propagated light. The result in this paper says that the transmitted signal can be blindly
deconvolved from the unknown channel from the Fourier intensity measurements of the light only.
The reader is referred to the first section of the supplementary note for a detailed description of the
visible light communication and its connection to our formulation.

1.1 Observations in Matrix Form

The phase retrieval, and blind deconvolution problem has been extensively studied in signal processing
community in recent years Candes et al. [2015b], Ahmed et al. [2014] by lifting the unknown vectors
to a higher dimensional matrix space formed by their outer products. The resulting rank-1 matrix is
recovered using nuclear norm as a convex relaxation of the non-convex rank constraint. Recently,
other forms of convex relaxations have been proposed Bahmani and Romberg [2017a], Goldstein
and Studer [2018], Aghasi et al. [2017a,b] that solve both the problems in the native (unlifted) space
leading to computationally efficiently solvable convex programs. This paper handles the non-linear
convolutional phase retrieval problem by lifting it into a bilinear problem. The resulting problem,
though still non-convex, gives way to an effective convex relaxation that provably recovers w, and x
exactly.

It is clear from (1) that uniquely recovering w, and x is not possible without extra knowledge or
information about the problem. We will address the problem under a broad and generally applicable
structural assumptions that both the vectors w, and x are members of known subspaces ofHm. This
means that w, and x can be parameterized in terms of unknown lower dimensional vectors h ∈ Hk,
and m ∈ Hn, respectively as follows

w = Bh, x = Cm, (2)

where B ∈ Hm×k, and C ∈ Hm×n are known matrices whose columns span the subspaces in which
w, and x reside, respectively. Recovering h, and m would imply the recovery of w, and x, therefore,
we take h, and m as the unknowns in the inverse problem henceforth. Since the circular convolution
operator diagonalizes in the Fourier domain, the measurements in (1) take the following form after
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incorporating the subspace constraints in (2)

y = 1√
m
|B̂h� Ĉm|,

where B̂ =
√
mFB, Ĉ =

√
mFC, and � represent the Hadamard product. Denoting by b∗` and c∗`

the rows of B̂, and Ĉ, respectively, the entries of the measurements y can be expressed as

y2` = 1
m |〈b`,h〉〈c`,m〉|

2, ` = 1, 2, 3, . . . ,m.

Evidently the problem is non-linear in both unknowns. However, it reduces to a bilinear problem in
the lifted variables hh∗, and mm∗ taking the form

y2` = 1
m 〈b`b

∗
` ,hh

∗〉〈c`c∗` ,mm∗〉 = 1
m 〈b`b

∗
` ,H〉〈c`c∗` ,M〉, (3)

where H , and M are the rank-1 matrices hh∗, and mm∗, respectively. Treating the lifted variables
H , and M as unknowns makes the measurements bilinear in the unknowns; a structure that will help
us formulate an effective convex relaxation.

1.2 Novel Convex Relaxation

The task of recovering H , and M from y in (3) can be naturally posed as an optimization program

find H,M (4)

subject to 1
m 〈b`b

∗
` ,H〉〈c`c∗` ,M〉 = y2` , ` = 1, 2, 3, . . . ,m.

rank(H) = 1, rank(M) = 1.

However, both the measurement and the rank constraints are non-convex. Further, the immediate
convex relaxation of each measurement constraint is trivial, as the convex hull of the set of (H,M)
satisfying y2` = 1

m 〈b`b
∗
` ,H〉〈c`c∗` ,M〉 is the set of all possible (H,M).

To derive our convex relaxation, recall that the true H = hh∗, and M = mm∗ are also positive
semidefinite (PSD). This means that incorporating the PSD constraint in the optimization program
translates into the fact that the variables u` = 〈b`b∗` ,H〉 and v` = 〈c`c∗` ,M〉 are necessarily
non-negative. That is,

H < 0, and M < 0 =⇒ u` ≥ 0, and v` ≥ 0,

where the implication simply follows by the definition of PSD matrices. This observation restricts the
hyperbolic constraint set in Figure 1 to the first quadrant only. For a fixed `, we propose replacing
the non-convex hyperbolic set {(u`, v`) ∈ R2 | 1

mu`v` = y2` , u` ≥ 0, v` ≥ 0} with its convex hull
{(u`, v`) ∈ R2 | 1

mu`v` ≥ y
2
` , u` ≥ 0, v` ≥ 0}. In short, our convex relaxation is possible because

the PSD constraint from lifting happens to select a specific branch of the hyperbola given by any
particular bilinear measurement, and this single branch has a nontrivial convex hull.

The rest of the convex relaxation is standard, as the rank constraint in (4) is then relaxed with a
nuclear-norm minimization, which reduces to trace minimization in the PSD case. Hence, we study
the convex program

minimize Tr(H) + Tr(M) (5)

subject to 1
m 〈b`b

∗
` ,H〉〈c`c∗` ,M〉 ≥ y2` , ` = 1, 2, . . . ,m

H < 0, M < 0.

The following lemma formally proves the convexity of the optimization program above.

Lemma 1. If y ∈ Rm such that y` > 0 then the optimization program in (5) is a convex program.

Proof. The objective of (5) is simply linear, we focus on the constraints. For a fixed `, let
S` := {(H,M) ∈ Hk×k × Hm×m | 1

m 〈b`b
∗
` ,H〉〈c`c∗` ,M〉 ≥ y2` ,H < 0,M < 0},

S`,1 := {(u`, v`) ∈ R2 | 1
mu`v` ≥ y2` , u` ≥ 0, v` ≥ 0}, and S`,2 := {(H,M) ∈ Hk×k ×

Hm×m | (〈b`b∗` ,H〉, 〈c`c∗` ,M〉) ∈ S`,1}. To show that S` is convex, it suffices to show that S`,1,
and S`,2 are convex.
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)
: 1
mu`v` = y2` , u` > 0

}

.

Figure 1: Left: Restriction of the hyperbolic constraint to the first quadrant; Right: Abstract
Illustration of the Geometry of the Convex Relaxation. PSD cone (blue) and the surface of the
hyperbolic set (red) formed by two intersecting hyperbolas (m = 2). Evidently, there are multiple
points on the surface and also in the convex hull of the hyperbolic set that lie on the PSD cone. The
minimizer of the optimization program (5) picks the one with minimum trace that happens to lie at
the intersection of hyperbolic ridge and the PSD cone (pointed out by an arrow). The gray envelope
of two (m = 2) hyperplanes surrounding the hyperbolic set correspond to the linearization of the
hyperbolic set at the minimizer; this forms the basis of a connected linearly constrained program later
in (9).

Fix (u1, v1), (u2, v2) ∈ S`,1, and let α ∈ [0, 1]. Note that u1 > 0, and u2 > 0 as y` > 0. Consider

1

m
(αu1 + (1− α)u2)(αv1 + (1− α)v2)

=
1

m

(
(α2u1v1 + (1− α)2u2v2) + α(1− α)(u1v2 + u2v1)

)
≥ (α2y2` + (1− α)2y2` ) + α(1− α)(y

2
`u1
u2

+
y2`u2
u1

)

= y2`

(
1 +

2α2u1u2 − 2αu1u2 + α(1− α)(u21 + u22)

u1u2

)
= y2`

(
1 +

(α− α2)(u1 − u2)2

u1u2

)
≥ y2` ,

where the last inequality follows form the fact that α ∈ [0, 1], and u1u2 > 0. This shows that S`,1 is
convex.

The set S`,2 is convex as the inverse image of a convex set of a linear map is convex. This implies
that S` is convex. Finally, the intersection of any number of convex sets is convex means that the
constraint of (5) is convex. This proves that (5) is a convex program.

1.3 Main Result

As we are presenting the first analytical results on this problem, we choose the subspace matrices B,
and C to be standard Gaussian:

B[`, i] ∼ Normal(0, 1
m ), (`, i) ∈ [m]× [k], and C[`, i] ∼ Normal(0, 1

m ), (`, i) ∈ [m]× [n]. (6)

Note that this choice results in b`, c` ∼ Normal(0, I). We show that with this choice the optimization
program in (5) recovers a global scaling of (αH\, α−1M \) of the true solution (H\,M \). We will
interchangeably use the notation (H,M) ∈ (Hk×k,Hn×n) to denote the pair of matrices H and
M , or the block diagonal matrix

(H,M) =

[
H 0
0 M

]
. (7)
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The exact value of the unknown scalar multiple α can be characterized for the solution of (5). Observe
that the solution (Ĥ,M̂) of the convex optimization program in (5) obeys Tr(Ĥ) = Tr(M̂). We
aim to show that the solution of the optimization program recovers the scaling (H̃,M̃) of the true
solution (H\,M \):

H̃ =

√
Tr(M \)

Tr(H\)
H\, M̃ =

√
Tr(H\)

Tr(M \)
M \. (8)

Note that Tr(H̃) = Tr(M̃). The main result can now be stated as follows.
Theorem 1 (Exact Recovery). Given the magnitude only spectrum measurements (1) of the convo-
lution of two unknown vectors w\, and x\ in Hm. Suppose that w\, and x\ are generated as in
(2), where B, and C are known standard Gaussian matrices as in (6). Then the convex optimiza-

tion program in (5) uniquely recovers (αH\, α−1M \) for α =
√

TrM\

TrH\ with probability at least

1− exp(− 1
2mt

2) whenever m ≥ c
(√

(k + n) logm+ t
)2

, where c is an absolute constant.

1.4 Main Contributions

In this paper, we study the combination of two important and notoriously challenging signal recovery
problems: phase retrieval and blind deconvolution. We introduce a novel convex formulation that is
possible because the algebraic structure from lifting resolves the bilinear ambiguity just enough to
permit a nontrivial convex relaxation of the measurements. The strengths of our approach are that it
allows a novel convex program that is the first to provably permit recovery guarantees with optimal
sample complexity for the joint task of phase retrieval and blind deconvolution when the signals belong
to known random subspaces. Additionally, unlike many recent convex relaxations and nonconvex
approaches, our approach does not require an initialization or estimate of the true solution in order
to be stated or solved. Admittedly, our method, directly interpreted, is computationally prohibitive
for large problem sizes because lifting squares the dimensionality of the problem. Nonetheless,
techniques, such as Burer-Monteiro approaches that only maintain low-rank representations Burer
and Monteiro [2003], have been developed for similar problems. This current work provides the
theoretical justification for the exploration of such problems in this difficult combination of phase
retrieval and blind deconvolution, and we leave such work for future research.

We do not want to give the reader the impression that the present paper solves the problem of
blind deconvolutional phase retrieval in practice. The numerical experiments we perform do indeed
show excellent agreement with the theorem in the case of random subspaces. Such subspaces are
unlikely to appear in practice, and typically appropriate subspaces would be deterministic, including
partial Discrete Cosine Transforms or partial Discrete Wavelet Transforms. Numerical experiments,
not shown, indicate that our convex relaxation is less effective for the cases of these deterministic
subspaces. We suspect this is due to the fact that the subspaces for both measurements should be
mutually incoherent, in addition to both being incoherent with respect to the Fourier basis given by
the measurements. As with the initial recovery theory for the problems of compressed sensing and
phase retrieval, we have studied the random case in order to show information theoretically optimal
sample complexity is possible by efficient algorithms. Based on this work, it is clear that blind
deconvolutional phase retrieval is still a very challenging problem in the presence of deterministic
matrices, and one for which development of convex or nonconvex methods may provide substantial
progress in applications.

2 Proof of Theorem 1

To prove Theorem 1, we will show that (H̃,M̃) is the unique minimizer of an optimization program
with a larger feasible set defined by linear constraints.

Lemma 2. If (H̃,M̃) is the unique solution to

minimize ‖H‖∗ + ‖M‖∗ (9)

subject to 1
m (〈b`b∗` ,H〉〈c`c∗` ,M̃〉+ 〈b`b

∗
` , H̃〉〈c`c∗` ,M〉) ≥ 2y2` ,

` = 1, 2, 3, . . . ,m.
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then (H̃,M̃) is the unique solution to (5).

Proof. Start by observing that the trace in (5) can be replaced with nuclear norm as on the set of PSD
matrices both are equivalent. This gives

minimize ‖H‖∗ + ‖M‖∗ (10)

subject to 1
m 〈b`b

∗
` ,H〉〈c`c∗` ,M〉 ≥ y2` , ` = 1, 2, . . . ,m

H < 0, M < 0.

It suffices now to show that the feasible set of (9) contains the feasible set of (10). Recall the notations

u` = 〈b`b∗` ,H〉, v` = 〈c`c∗` ,M〉, ũ` = 〈b`b
∗
` , H̃〉, and ṽ` = 〈c`c∗` ,M̃〉.

Using the fact that a convex set with smooth boundary is contained in a half space defined by the
tangent hyperplane at any point on the boundary of the set. Consider the point (ũ`, ṽ`) ∈ R2, and
observe that{
(u`, v`) ∈ R2 | 1

mu`v` ≥ y
2
` , u` ≥ 0, and v` ≥ 0

}
⊆
{
(u`, v`) ∈ R2 | 1

m

[
ṽ`
ũ`

]
·
[
u` − ũ`
v` − ṽ`

]
≥ 0

}
.

Rewriting u` and v` in the form of original constraints, we have that any feasible point (H̃,M̃) of
(10) satisfies 1

m (〈b`b∗` ,H〉〈c`c∗` ,M̃〉+ 〈b`b
∗
` , H̃〉〈c`c∗` ,M〉) ≥ 2y2` , ` = 1, 2, 3, . . . ,m.

The geometry of the linearly constrained program (9) is also shown in Figure 1 (Right), where the
hyperbolic set is replaced by an envelop of hyperplanes defined by the linear constraints of (9).
Visually it is clear from Figure 1 that the feasible set of (9) is larger than that of (5).

Define a set S := {(H,M) | (H,M) = α(−H̃,M̃), and α ∈ [−1, 1]}, and A` =
(ṽ`b`b

∗
` , ũ`c`c

∗
` ) ∈ H(k+n)×(k+n), and define a linear map A : H(k+n)×(k+n) → Hm as

A((H,M)) = [〈A1, (H,M)〉, . . . , 〈Am, (H,M)〉]T; one can imagine A as a matrix with vec-
torized A` as its rows. The linear constraints in the (9) are A((H,M)) ≥ 2y2; the inequality
here applies elementwise. Furthermore, define N := span((−H̃,M̃)), and it is easy to see that
S ⊂ N ⊆ Null(A).

We want to show that any feasible perturbation (δH, δM) around the truth (H̃,M̃) strictly increases
the objective. From the discussion above, it is clear that the perturbations (δH, δM) ∈ S do not
change the objective and also lead to feasible points of (9). Our general strategy will be to resolve
any perturbation (δH, δM) into two components, one in N and the other in N⊥, where N⊥ is
the orthogonal complement of the subspace N . The component in N does not affect the objective.
We show that the components in N⊥ of all the feasible perturbations lead to a strict increase in
the objective of (9). This should imply that that the minimizer of (9) can be anywhere in the set1

(H̃,M̃)⊕N . However, as we are minimizing the (trace) norms, an arbitrary large scaling of the
solution is prevented and it is restricted to the subset (H̃,M̃)⊕ S . Moreover, among these solutions
only (H̃,M̃) lies in the feasible set of (10). Given this and the fact that (H̃,M̃) is a minimizer of
(9) implies that (H̃,M̃) is the unique minimizer of (10).

We begin by characterizing the set of descent directions for the objective function of the optimization
program (9). Let Th̃, and Tm̃ be the set of symmetric matrices of the form

Th̃ := {X = h̃z∗ + zh̃
∗
}, Tm̃ := {X = m̃z∗ + zm̃∗},

and denote the orthogonal complements by T⊥
h̃

, and T⊥m̃ , respectively. Note that X ∈ T⊥
h̃

iff both
the row and column spaces of X are perpendicular to h̃. PTh̃

denotes the orthogonal projection onto
the set Th̃, and a matrix X of appropriate dimensions can be projected into Th̃ as

PTh̃
(X) := h̃h̃

∗

‖h̃‖22
X +X h̃h̃

∗

‖h̃‖22
− h̃h̃

∗

‖h̃‖22
X h̃h̃

∗

‖h̃‖22

Similarly, define the projection operator PTm̃
. The projection onto orthogonal complements are then

simply PT⊥
h̃

:= I − PTh̃
, and PT⊥m̃ := I − PTm̃

, where I is the identity operator. We use XTh̃
as a

1For a point x, and a set S, the notation x⊕ S denotes a set of points x+ si for every si ∈ S.
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shorthand for PTh̃
(X). Using the notation in (7), the objective of (9) is ‖(H,M)‖∗, and subgradient

of the objective at the proposed solution (H̃,M̃) is

∂‖(H̃,M̃)‖∗ :=
{
G = (h̃h̃

∗
, m̃m̃∗) + (W T⊥

h̃
,W T⊥m̃

), ‖(W T⊥
h̃
,W T⊥m̃

)‖ ≤ 1
}
.

The set Q of descent directions of the objective of (9) is defined as{
(δH, δM) ∈ N⊥ :

〈
(G, (δH, δM)

〉
≤ 0,∀G ∈ ∂‖(H̃,M̃)‖∗

}
⊆{

(δH, δM) ∈ N⊥ :
〈
(h̃h̃

∗
, m̃m̃∗), (δH, δM)

〉
+

‖(δHT⊥
h̃
, δMT⊥m̃

)‖∗ ≤ 0,∀G ∈ ∂‖(H̃,M̃)‖∗
}
⊂{

(δH, δM) ∈ N⊥ : ‖(δHT⊥
h̃
, δMT⊥m̃

)‖∗ ≤ ‖(δHTh̃
, δMTm̃

)‖F , ∀G ∈ ∂‖(H̃,M̃)‖∗
}

=: Q. (11)

We quantify the "width" of the set of descent directions Q through a Rademacher complexity, and a
probability that the gradients of the constraint functions of (9) lie in a certain half space. This enables
us to build an argument using the small ball method Koltchinskii and Mendelson [2015], Mendelson
[2014] that it is unlikely to have points that meet the constraints in (9) and still be in Q. Before
moving forward, we introduce the above mentioned Rademacher complexity and probability term.

Denote the constraint functions as2 f`(H,M) = ũ`〈c`c∗` ,M〉 + ṽ`〈b`b∗` ,H〉. For a set Q ⊂
(Hk×k,Hn×n), the Rademacher complexity of the gradients ∇f` = ( ∂f`∂H , ∂f`∂M ) = (ṽ`b`b

∗
` , ũ`c`c

∗
` )

is defined as

C(Q) := E sup
(H,M)∈Q

1√
m

m∑
`=1

ε`

〈
∇f`, (H,M)

‖(H,M)‖F

〉
, (12)

where ε`, ` = 1, 2, 3, . . . ,m are iid Rademacher random variables independent of everything else in
the expression. For a convex set Q, C(Q) is a measure of the width of Q around origin interms of the
gradients ∇f`, ` = 1, 2, 3, . . . ,m. For example, random choice of gradient might yield little overlap
with a structured set Q leading to a smaller complexity Q.

Our result also depends on a probability pτ (Q) and a positive parameter τ defined as

pτ (Q) := inf
(H,M)∈Q

P
(
〈∇f, (H,M)〉 ≥ τ‖(H,M)‖F

)
. (13)

The probability pτ (Q) quantifies visibility of the set Q through the gradient vectors ∇f . A small
value of τ and pτ (Q) means that the set Q mainly remains invisible through the lenses of ∇f`, ` =
1, 2, 3, . . . ,m. This can be appreciated just by noting that pτ (Q) depends on the correlation of the
elements of Q with the gradient vectors∇f`.
Following lemma shows that the minimizer of the linear program (9) almost always resides in the
desired set (H̃,M̃)⊕ S for a sufficiently large m quantified interms of C(Q), pτ (Q), and τ .
Lemma 3. Consider the optimization program in (9) and Q, characterized in (11), be the set of
descent directions for which C(Q), and pτ (Q) can be determined using (12) and (13). Choose

m ≥
(
2C(Q) + tτ

τpτ(Q)

)2

for any t > 0. Then the minimizer (Ĥ,M̂) of (9) lies in the set (H̃,M̃) ⊕ S with probability at
least 1− e−2mt

2

.

Proof of this lemma is based on small ball method developed in Koltchinskii and Mendelson [2015],
Mendelson [2014] and further studied in Lecué et al. [2018], Lecué and Mendelson [2017]. The
proof is mainly repeated using the argument in Bahmani and Romberg [2017b], and is provided in
the supplementary material for completeness.

With Lemma 3 in place, an application of Lemma 2 and the discussion after it proves that for choice
of m outlined in Lemma 3, (H̃,M̃) is the unique minimizer of (5). The last missing piece in the
proof of Theorem 1 is the computation of the Rademacher complexity C(Q), and pτ (Q) for the Q.

2For brevity, we will often drop the dependence on H , and M in the notation f`(H,M)
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2.1 Rademacher Complexity

We begin with evaluation of the complexity C(Q)

C(Q) := E sup
(δH,δM)∈Q

1√
m

m∑
`=1

ε`

〈
∇f`, (δH,δM)

‖(δH,δM)‖F

〉
Splitting (δH, δM) between (Th̃, Tm̃), and (T⊥

h̃
, T⊥m̃), and using Holder’s inequalities, we obtain

C(Q) ≤ E
∥∥∥ 1√

m

m∑
`=1

ε`(ṽ`PTh̃
(b`b

∗
` ), ũ`PTm̃

(c`c
∗
` ))
∥∥∥
F
· sup
(δH,δM)∈Q

∥∥∥ (δHT
h̃
,δMTm̃

)

‖(δH,δM)‖F

∥∥∥
F

+ E
∥∥∥ 1√

m

m∑
`=1

ε`(ṽ`b`b
∗
` , ũ`c`c

∗
` )
∥∥∥ · sup

(δH,δM)∈Q

∥∥∥∥ (δH
T⊥
h̃

,δM
T⊥
m̃

)

‖(δH,δM)‖F

∥∥∥∥
∗

On the set Q, defined in (11), we have∥∥∥ (δH
T⊥
h̃

,δM
T⊥
m̃

)

‖(δH,δM)‖F

∥∥∥
∗
≤
∥∥∥ (δHT

h̃
,δMTm̃

)

‖(δH,δM)‖F

∥∥∥
F
≤ 1.

Using Jensen’s inequality, the first expectation simply becomes

E
∥∥∥ 1√

m

m∑
`=1

ε`
(
ṽ`PTh̃

(b`b
∗
` ), ũ`PTm̃

(c`c
∗
` )
)∥∥∥
F
≤

√√√√ 1

m
E
∥∥∥ m∑
`=1

ε`
(
ṽ`PTh̃

(b`b
∗
` ), ũ`PTm̃

(c`c∗` )
)∥∥∥2
F

=

√√√√ 1

m

m∑
`=1

E
(
‖ṽ`PTh̃

(b`b
∗
` )‖2F + ‖ũ`PTm̃(c`c∗` )‖2F

)
,

where the last equality follows by going through with the expectation over ε`’s. Recall from the
definition of the projection operator that PTh̃

(b`b
∗
` ) :=

h̃h̃
∗

‖h̃‖22
b`b
∗
` + b`b

∗
`

h̃h̃
∗

‖h̃‖22
− h̃h̃

∗

‖h̃‖22
b`b
∗
`

h̃h̃
∗

‖h̃‖22
, and

ṽ` = |c∗`m̃|2. It can be easily verifies that ‖PTh̃
(b`b

∗
` )‖2F = 2

|b∗` h̃|
2

‖h̃‖22
‖b`‖22 −

|b∗` h̃|
4

‖h̃‖42
, and, therefore,

E‖ṽ`PTh̃
(b`b

∗
` )‖2F ≤ E|c∗`m̃|42 · E

(
2
|b∗` h̃|

2

‖h̃‖22
‖b`‖22 −

|b∗` h̃|
4

‖h̃‖42

)
≤ 3‖m̃‖42 (6k − 3) ,

where we used a simple calculation involving fourth moments of Gaussians E|b∗` h̃|2‖b`‖22 = 3k‖h̃‖22.
In an exactly similar manner, we can also show that ‖ũ`PTm̃(c`c

∗
` )‖2F ≤ 3‖h̃‖42(6n − 3). Putting

these together gives us

E
∥∥∥ 1√

m

m∑
`=1

ε`
(
ṽ`PTh̃

(b`b
∗
` ), ũ`PTm̃(c`c

∗
` )
)∥∥∥
F
≤ 5max(‖h̃‖22, ‖m̃‖22)

√
k + n.

Moreover,

E
∥∥∥ 1√

m

m∑
`=1

ε`(ṽ`b`b
∗
` , ũ`c`c

∗
` )
∥∥∥ ≤ Emax

`
(ũ`, ṽ`) · E

∥∥∥ 1√
m

m∑
`=1

ε`(b`b
∗
` , c`c

∗
` )
∥∥∥

Standard net arguments; see, for example, Sec. 5.4.1 of Eldar and Kutyniok [2012] show that

P

(∥∥∥ 1√
m

m∑
`=1

ε`(b`b
∗
` , c`c

∗
` )
∥∥∥ ≥ c√k + n

)
≤ e−cm, provided that m ≥ c(k + n).

This directly implies that E
∥∥∥ 1√

m

∑m
`=1 ε`(b`b

∗
` , c`c

∗
` )
∥∥∥ ≤ c√k + n. The random variables u` and

v` being sub-exponential have Orlicz-1 norms bounded by cmax(‖h̃‖22, ‖m̃‖22). Using standard
results, such as Lemma 3 in van de Geer and Lederer [2013], we then have Emax`(u`, v`) ≤ c logm.
Putting these together yields

E
∥∥∥ 1√

m

m∑
`=1

ε`(ṽ`b`b
∗
` , ũ`c`c

∗
` )
∥∥∥ ≤ cmax(‖h̃‖22, ‖m̃‖22)

√
(k + n) log2m. (14)

We have all the ingredients for the final bound on C(Q) stated below

C(Q) ≤ cmax(‖h̃‖22, ‖m̃‖22)
√

(k + n) log2m. (15)
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n+ k

m

Figure 2: Phase portraits highlighting the frequency of successful recoveries of the proposed convex
program for random and deterministic channel subspaces (see the text for the experiment details)

2.2 Probability pτ (Q)

The calculation for the probability pτ (Q), and the positive parameter τ are given in Supplementary
material due to limitation of space. We find that

pτ (Q) ≥ c > 0, and τ = cmax(‖h̃‖22, ‖m̃‖22). (16)

The complexity estimate in (15), value of τ computed above, and pτ (Q) stated in (16) together with
an application of Lemma 3 prove Theorem 1.

3 Convex Implementation and Phase Transition

To implement the semi-definite convex program (5), we propose a numerical scheme based on the
alternating direction method of multipliers (ADMM). Due to the space limit, the technical details of
the algorithm are moved to Section 4 of the supplementary note.

To illustrate the perfect recovery region, in Figure 2 we present the phase portrait associated with
the proposed convex framework. To obtain the diagram on the left panel, for each fixed value of m,
we run the algorithm for 100 different combinations of n and k, each time using a different set of
Gaussian matrices B and C. If the algorithm converges to a sufficiently close neighborhood of the
ground-truth solution (a distance less than 1% of the solution’s `2 norm), we label the experiment
as successful. Figure 2 shows the collected success frequencies, where solid black corresponds to
100% success and solid white corresponds to 0% success. For an empirically selected constant c, the
success region almost perfectly stands on the left side of the line n+ k = cm log−2m.

While the analysis in this paper is specifically focused on the Gaussian subspace embeddings for
w and x, on the right panel of Figure 2 we have plotted the phase diagram for the case that B is
deterministic and a subset of the columns of identity matrix (equispaced sampling of the columns),
and C is Gaussian as before. This importantly hints that the convex framework is applicable to more
realistic deterministic subspace models.
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