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Abstract

Model-free reinforcement learning (RL) algorithms, such as Q-learning, directly
parameterize and update value functions or policies without explicitly modeling
the environment. They are typically simpler, more flexible to use, and thus more
prevalent in modern deep RL than model-based approaches. However, empiri-
cal work has suggested that model-free algorithms may require more samples to
learn [7, 22]. The theoretical question of “whether model-free algorithms can
be made sample efficient” is one of the most fundamental questions in RL, and
remains unsolved even in the basic scenario with finitely many states and actions.
We prove that, in an episodic MDP setting, Q-learning with UCB exploration
achieves regret Õ(

√
H3SAT ), where S and A are the numbers of states and ac-

tions, H is the number of steps per episode, and T is the total number of steps.
This sample efficiency matches the optimal regret that can be achieved by any
model-based approach, up to a single

√
H factor. To the best of our knowledge,

this is the first analysis in the model-free setting that establishes
√
T regret without

requiring access to a “simulator.”

1 Introduction

Reinforcement Learning (RL) is a control-theoretic problem in which an agent tries to maximize its
cumulative rewards via interacting with an unknown environment through time [26]. There are two
main approaches to RL: model-based and model-free. Model-based algorithms make use of a model
for the environment, forming a control policy based on this learned model. Model-free approaches
dispense with the model and directly update the value function—the expected reward starting from
each state, or the policy—the mapping from states to their subsequent actions. There has been a long
debate on the relative pros and cons of the two approaches [7].

From the classical Q-learning algorithm [27] to modern DQN [17], A3C [18], TRPO [22], and oth-
ers, most state-of-the-art RL has been in the model-free paradigm. Its pros—model-free algorithms
are online, require less space, and, most importantly, are more expressive since specifying the value
functions or policies is often more flexible than specifying the model for the environment—arguably
outweigh its cons relative to model-based approaches. These relative advantages underly the signif-
icant successes of model-free algorithms in deep RL applications [17, 24].

On the other hand it is believed that model-free algorithms suffer from a higher sample complexity
compared to model-based approaches. This has been evidenced empirically in [7, 22], and recent
work has tried to improve the sample efficiency of model-free algorithms by combining them with
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model-based approaches [19, 21]. There is, however, little theory to support such blending, which
requires a more quantitative understanding of relative sample complexities. Indeed, the following
basic theoretical questions remain open:

Can we design model-free algorithms that are sample efficient?
In particular, is Q-learning provably efficient?

The answers remain elusive even in the basic tabular setting where the number of states and actions
are finite. In this paper, we attack this problem head-on in the setting of the episodic Markov
Decision Process (MDP) formalism (see Section 2 for a formal definition). In this setting, an episode
consists of a run of MDP dynamics for H steps, where the agent aims to maximize total reward
over multiple episodes. We do not assume access to a “simulator” (which would allow us to query
arbitrary state-action pairs of the MDP) and the agent is not allowed to “reset” within each episode.
This makes our setting sufficiently challenging and realistic. In this setting, the standard Q-learning
heuristic of incorporating ε-greedy exploration appears to take exponentially many episodes to learn
[14].

As seen in the literature on bandits, the key to achieving good sample efficiency generally lies in
managing the tradeoff between exploration and exploitation. One needs an efficient strategy to ex-
plore the uncertain environment while maximizing reward. In the model-based setting, a recent line
of research has imported ideas from the bandit literature—including the use of upper confidence
bounds (UCB) and improved design of exploration bonuses—and has obtained asymptotically op-
timal sample efficiency [1, 5, 10, 12]. In contrast, the understanding of model-free algorithms is
still very limited. To the best of our knowledge, the only existing theoretical result on model-free
RL that applies to the episodic setting is for delayed Q-learning; however, this algorithm is quite
sample-inefficient compared to model-based approaches [25].

In this paper, we answer the two aforementioned questions affirmatively. We show that Q-learning,
when equipped with a UCB exploration policy that incorporates estimates of the confidence of Q
values and assign exploration bonuses, achieves total regret Õ(

√
H3SAT ). Here, S and A are the

numbers of states and actions, H is the number of steps per episode, and T is the total number
of steps. Up to a

√
H factor, our regret matches the information-theoretic optimum, which can be

achieved by model-based algorithms [5, 12]. Since our algorithm is just Q-learning, it is online
and does not store additional data besides the table of Q values (and a few integers per entry of
this table). Thus, it also enjoys a significant advantage over model-based algorithms in terms of
time and space complexities. To our best knowledge, this is the first sharp analysis for model-free
algorithms—featuring

√
T regret or equivalently O(1/ε2) samples for ε-optimal policy—without

requiring access to a “simulator.”

For practitioners, there are two key takeaways from our theoretical analysis:

1. The use of UCB exploration instead of ε-greedy exploration in the model-free setting allows for
better treatment of uncertainties for different states and actions.

2. It is essential to use a learning rate which is αt = O(H/t), instead of 1/t, when a state-action
pair is being updated for the t-th time. The former learning rate assigns more weight to updates
that are more recent, as opposed to assigning uniform weights to all previous updates. This deli-
cate choice of reweighting leads to the crucial difference between our sample-efficient guarantee
versus earlier highly inefficient results that require exponentially many samples in H .

1.1 Related Work

In this section, we focus our attention on theoretical results for the tabular MDP setting, where the
numbers of states and actions are finite. We acknowledge that there has been much recent work in
RL for continuous state spaces [see, e.g., 9, 11], but this setting is beyond our scope.

With simulator. Some results assume access to a simulator [15] (a.k.a., a generative model [3]),
which is a strong oracle that allows the algorithm to query arbitrary state-action pairs and return
the reward and the next state. The majority of these results focus on an infinite-horizon MDP with
discounted reward [e.g., 2, 3, 8, 16, 23]. When a simulator is available, model-free algorithms
[2] (variants of Q-learning) are known to be almost as sample efficient as the best model-based
algorithms [3]. However, the simulator setting is considered to much easier than standard RL, as it
“does not require exploration” [2]. Indeed, a naive exploration strategy which queries all state-action
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Algorithm Regret Time Space

Model-based

RLSVI [? ] Õ(
√
H3SAT ) Õ(TS2A2) O(S2A2H)

UCRL2 [10] 1 at least Õ(
√
H4S2AT )

Ω(TS2A)

O(S2AH)
Agrawal and Jia [1] 1 at least Õ(

√
H3S2AT )

UCBVI [5] 2 Õ(
√
H2SAT )

Õ(TS2A)
vUCQ [12] 2 Õ(

√
H2SAT )

Model-free

Q-learning (ε-greedy) [14]
(if 0 initialized) Ω(min{T,AH/2})

O(T ) O(SAH)
Delayed Q-learning [25] 3 ÕS,A,H(T 4/5)

Q-learning (UCB-H) Õ(
√
H4SAT )

Q-learning (UCB-B) Õ(
√
H3SAT )

lower bound Ω(
√
H2SAT ) - -

Table 1: Regret comparisons for RL algorithms on episodic MDP. T = KH is totally number of steps, H is
the number of steps per episode, S is the number of states, and A is the number of actions. For clarity,
this table is presented for T ≥ poly(S,A,H), omitting low order terms.

pairs uniformly at random already leads to the most efficient algorithm for finding optimal policy
[3].

Without simulator. Reinforcement learning becomes much more challenging without the presence
of a simulator, and the choice of exploration policy can now determine the behavior of the learning
algorithm. For instance, Q-learning with ε-greedy may take exponentially many episodes to learn
the optimal policy [14] (for the sake of completeness, we present this result in our episodic language
in Appendix A).

Mathemtically, this paper defines “model-free” algorithms as in existing literature [25, 26]:

Definition 1. A reinforcement learning algorithm is model-free if its space complexity is always
sublinear (for any T ) relative to the space required to store an MDP. In episodic setting of this
paper, a model-free algorithm has space complexity o(S2AH) (independent of T ).

In the model-based setting, UCRL2 [10] and Agrawal and Jia [1] form estimates of the transition
probabilities of the MDP using past samples, and add upper-confidence bounds (UCB) to the es-
timated transition matrix. When applying their results to the episodic MDP scenario, their total
regret is at least Õ(

√
H4S2AT ) and Õ(

√
H3S2AT ) respectively.1 In contrast, the information-

theoretic lower bound is Õ(
√
H2SAT ). The additional

√
S and

√
H factors were later removed by

the UCBVI algorithm [5] which adds a UCB bonus directly to the Q values instead of the estimated
transition matrix.2 The vUCQ algorithm [12] is similar to UCBVI but improves lower-order regret
terms using variance reduction. Finally, RLSVI [? ], an algorithm designed for setting of linear ap-
proxmation, provides Õ(

√
H3SAT ) regret bound when adapted to tabular MDP setting. However,

it is batch algorithm in nature, and requires O(d2H) space where in tabular setting d = SA.

We note that despite the sharp regret guarantees, most of the results in this line of research crucially
rely on estimating and storing the entire transition matrix and thus suffer from unfavorable time and
space complexities compared to model-free algorithms.

1Jaksch et al. [10] and Agrawal and Jia [1] apply to the more general setting of weakly communicating
MDPs with S′ states and diameter D; our episodic MDP is a special case obtained by augmenting the state
space so that S′ = SH and D ≥ H .

2Azar et al. [5] and Kakade et al. [12] assume equal transition matrices P1 = · · · = PH ; in the setting of
this paper P1, · · · ,PH can be entirely different. This adds a factor of

√
H to their total regret.

3Strehl et al. [25] applies to MDPs with S′ states and discount factor γ; our episodic MDP can be converted
to that case by setting S′ = SH and 1 − γ = 1/H . Their result only applies to the stochastic setting where
initial states xk1 come from a fixed distribution, and only gives a PAC guarantee. See our full version for a
comparison between PAC and regret guarantees.
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In the model-free setting, Strehl et al. [25] introduced delayed Q-learning, where, to find an ε-
optimal policy, the Q value for each state-action pair is updated only once every m = Õ(1/ε2)
times this pair is visited. In contrast to the incremental update of Q-learning, delayed Q-learning
always replaces old Q values with the average of the most recent m experiences. When translated
to the setting of this paper, this gives Õ(T 4/5) total regret, ignoring factors in S,A and H .3 This is
quite suboptimal compared to the Õ(

√
T ) regret achieved by model-based algorithm.

2 Preliminary

We consider the setting of a tabular episodic Markov decision process, MDP(S,A,H,P, r), where
S is the set of states with |S| = S, A is the set of actions with |A| = A, H is the number of steps in
each episode, P is the transition matrix so that Ph(·|x, a) gives the distribution over states if action
a is taken for state x at step h ∈ [H], and rh : S ×A → [0, 1] is the deterministic reward function at
step h.4

In each episode of this MDP, an initial state x1 is picked arbitrarily by an adversary. Then, at each
step h ∈ [H], the agent observes state xh ∈ S, picks an action ah ∈ A, receives reward rh(xh, ah),
and then transitions to a next state, xh+1, that is drawn from the distribution Ph(·|xh, ah). The
episode ends when xH+1 is reached.

A policy π of an agent is a collection of H functions
{
πh : S → A

}
h∈[H]

. We use V πh : S → R
to denote the value function at step h under policy π, so that V πh (x) gives the expected sum of
remaining rewards received under policy π, starting from xh = x, until the end of the episode. In
symbols:

V πh (x) := E
[∑H

h′=h rh′(xh′ , πh′(xh′))|xh = x
]
.

Accordingly, we also define Qπh : S ×A → R to denote Q-value function at step h so that Qπh(x, a)
gives the expected sum of remaining rewards received under policy π, starting from xh = x, ah = a,
till the end of the episode. In symbols:

Qπh(x, a) := rh(x, a) + E[
∑H
h′=h+1 rh′(xh′ , πh′(xh′))|xh = x, ah = a] .

Since the state and action spaces, and the horizon, are all finite, there always exists (see, e.g., [5]) an
optimal policy π? which gives the optimal value V ?h (x) = supπ V

π
h (x) for all x ∈ S and h ∈ [H].

For simplicity, we denote [PhVh+1](x, a) := Ex′∼P(·|x,a)Vh+1(x′). Recall the Bellman equation
and the Bellman optimality equation:

V πh (x) = Qπh(x, πh(x))

Qπh(x, a) := (rh + PhV πh+1)(x, a)

V πH+1(x) = 0 ∀x ∈ S

and


V ?h (x) = maxa∈AQ

?
h(x, a)

Q?h(x, a) := (rh + PhV ?h+1)(x, a)

V ?H+1(x) = 0 ∀x ∈ S .

(2.1)

The agent plays the game for K episodes k = 1, 2, . . . ,K, and we let the adversary pick a starting
state xk1 for each episode k, and let the agent choose a policy πk before starting the k-th episode.
The total (expected) regret is then

Regret(K) =
∑K
k=1

[
V ?1 (xk1)− V πk

1 (xk1)
]
.

3 Main Results

In this section, we present our main theoretical result—a sample complexity result for a variant
of Q-learning that incorporates UCB exploration. We also present a theorem that establishes an
information-theoretic lower bound for episodic MDP.

As seen in the bandit setting, the choice of exploration policy plays an essential role in the effi-
ciency of a learning algorithm. In episodic MDP, Q-learning with the commonly used ε-greedy
exploration strategy can be very inefficient: it can take exponentially many episodes to learn [14]

4While we study deterministic reward functions for notational simplicity, our results generalize to random-
ized reward functions. Also, we assume the reward is in [0, 1] without loss of generality.
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Algorithm 1 Q-learning with UCB-Hoeffding

1: initialize Qh(x, a)← H and Nh(x, a)← 0 for all (x, a, h) ∈ S ×A× [H].
2: for episode k = 1, . . . ,K do
3: receive x1.
4: for step h = 1, . . . ,H do
5: Take action ah ← argmaxa′ Qh(xh, a

′), and observe xh+1.
6: t = Nh(xh, ah)← Nh(xh, ah) + 1; bt ← c

√
H3ι/t.

7: Qh(xh, ah)← (1− αt)Qh(xh, ah) + αt[rh(xh, ah) + Vh+1(xh+1) + bt].
8: Vh(xh)← min{H,maxa′∈AQh(xh, a

′)}.

(see also Appendix A). In contrast, our algorithm (Algorithm 1), which is Q-learning with an
upper-confidence bound (UCB) exploration strategy, will be seen to be efficient. This algorithm
maintains Q values, Qh(x, a), for all (x, a, h) ∈ S × A × [H] and the corresponding V values
Vh(x) ← min{H,maxa′∈AQh(x, a′)}. If, at time step h ∈ [H], the state is x ∈ S, the algorithm
takes the action a ∈ A that maximizes the current estimate Qh(x, a), and is apprised of the next
state x′ ∈ S. The algorithm then updates the Q values:

Qh(x, a)← (1− αt)Qh(x, a) + αt[rh(x, a) + Vh+1(x′) + bt] ,

where t is the counter for how many times the algorithm has visited the state-action pair (x, a) at
step h, bt is the confidence bonus indicating how certain the algorithm is about current state-action
pair, and αt is a learning rate defined as follows:

αt :=
H + 1

H + t
. (3.1)

As mentioned in the introduction, our choice of learning rate αt scales as O(H/t) instead of
O(1/t)—this is crucial to obtain regret that is not exponential in H .

We present analyses for two different specifications of the upper confidence bonus bt in this paper:

Q-learning with Hoeffding-style bonus. The first (and simpler) choice is bt = O(
√
H3ι/t).

(Here, and throughout this paper, we use ι := log(SAT/p) to denote a log factor.) This choice
of bonus makes sense intuitively because: (1) Q-values are upper-bounded by H , and, accordingly,
(2) Hoeffding-type martingale concentration inequalities imply that if we have visited (x, a) for t
times, then a confidence bound for the Q value scales as 1/

√
t. For this reason, we call this choice

UCB-Hoeffding (UCB-H). See Algorithm 1.

Theorem 2 (Hoeffding). There exists an absolute constant c > 0 such that, for any p ∈ (0, 1), if
we choose bt = c

√
H3ι/t, then with probability 1 − p, the total regret of Q-learning with UCB-

Hoeffding (see Algorithm 1) is at most O(
√
H4SATι), where ι := log(SAT/p).

Theorem 2 shows, under a rather simple choice of exploration bonus, Q-learning can be made very
efficient, enjoying a Õ(

√
T ) regret which is optimal in terms of dependence on T . To the best of

our knowledge, this is the first analysis of a model-free procedure that features a
√
T regret without

requiring access to a “simulator.”

Compared to the previous model-based results, Theorem 2 shows that the regret (or equivalently
the sample complexity; see discussion in full version) of this version of Q-learning is as good as
the best model-based one in terms of the dependency on the number of states S, actions A and the
total number of steps T . Although our regret slightly increases the dependency on H , the algorithm
is online and does not store additional data besides the table of Q values (and a few integers per
entry of this table). Thus, it enjoys an advantage over model-based algorithms in time and space
complexities, especially when the number of states S is large.

Q-learning with Bernstein-style bonus. Our second specification of bt makes use of a Bernstein-
style upper confidence bound. The key observation is that, although in the worst case the value
function is at mostH for any state-action pair, if we sum up the “total variance of the value function”
for an entire episode, we obtain a factor of only O(H2) as opposed to the naive O(H3) bound (see
Lemma C.5). This implies that the use of a Bernstein-type martingale concentration result could be
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sharper than the Hoeffding-type bound by an additional factor of H .5 (The idea of using Bernstein
instead of Hoeffding for reinforcement learning applications has appeared in previous work; see,
e.g., [3, 4, 16].)

Using Bernstein concentration requires us to design the bonus term bt more carefully, as it now
depends on the empirical variance of Vh+1(x′) where x′ is the next state over the previous t visits
of current state-action (x, a). This empirical variance can be computed in an online fashion without
increasing the space complexity of Q-learning. We defer the full specification of bt to Algorithm 2
in Appendix C. We now state the regret theorem for this approach.

Theorem 3 (Bernstein). For any p ∈ (0, 1), one can specify bt so that with probability 1−p, the total
regret of Q-learning with UCB-Bernstein (see Algorithm 2) is at most O(

√
H3SATι+

√
H9S3A3 ·

ι2).

Theorem 3 shows that for Q-learning with UCB-B exploration, the leading term in regret (which
scales as

√
T ) improves by a factor of

√
H over UCB-H exploration, at the price of using a more

complicated exploration bonus design. The asymptotic regret of UCB-B is now only one
√
H factor

worse than the best regret achieved by model-based algorithms.

We also note that Theorem 3 has an additive term O(
√
H9S3A3 · ι2) in its regret, which dominates

the total regret when T is not very large compared with S,A and H . It is not clear whether this
lower-order term is essential, or is due to technical aspects of the current analysis.

Information-theoretical limit. To demonstrate the sharpness of our results, we also note an
information-theoretic lower bound for the episodic MDP setting studied in this paper:

Theorem 4. For the episodic MDP problem studied in this paper, the expected regret for any algo-
rithm must be at least Ω(

√
H2SAT ).

Theorem 4 (see Appendix D for details) shows that both variants of our algorithm are nearly optimal,
in the sense they differ from the optimal regret by a factor of H and

√
H , respectively.

4 Proof for Q-learning with UCB-Hoeffding

In this section, we provide the full proof of Theorem 2. Intuitively, the episodic MDP with H steps
per epsiode can be viewed as a contextual bandit of H “layers.” The key challenge here is to control
the way error and confidence propagate through different “layers” in an online fashion, where our
specific choice of exploration bonus and learning rate make the regret as sharp as possible.

Notation. We denote by I[A] the indicator function for event A. We denote by (xkh, a
k
h) the

actual state-action pair observed and chosen at step h of episode k. We also denote by Qkh, V
k
h , N

k
h

respectively the Qh, Vh, Nh functions at the beginning of episode k. Using this notation, the update
equation at episode k can be rewritten as follows, for every h ∈ [H]:

Qk+1
h (x, a) =

{
(1− αt)Qkh(x, a) + αt[rh(x, a) + V kh+1(xkh+1) + bt] if (x, a) = (xkh, a

k
h)

Qkh(x, a) otherwise .
(4.1)

Accordingly,
V kh (x)← min

{
H, max

a′∈A
Qkh(x, a′)

}
, ∀x ∈ S .

Recall that we have [PhVh+1](x, a) := Ex′∼Ph(·|x,a)Vh+1(x′). We also denote its empirical coun-
terpart of episode k as [P̂khVh+1](x, a) := Vh+1(xkh+1), which is defined only for (x, a) = (xkh, a

k
h).

Recall that we have chosen the learning rate as αt := H+1
H+t . For notational convenience, we also

introduce the following related quantities:

α0
t =

∏t
j=1(1− αj), αit = αi

∏t
j=i+1(1− αj) . (4.2)

5Recall that for independent zero-mean random variables X1, . . . , XT satisfying |Xi| ≤ M , their sum-
mation does not exceed Õ(M

√
T ) with high probability using Hoeffding concentration. If we have in hand a

better variance bound, this can be improved to Õ
(
M +

√∑
i E[Xi]2

)
using Bernstein concentration.
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It is easy to verify that (1)
∑t
i=1 α

i
t = 1 and α0

t = 0 for t ≥ 1; (2)
∑t
i=1 α

i
t = 0 and α0

t = 1 for
t = 0.

Favoring Later Updates. At any (x, a, h, k) ∈ S ×A× [H]× [K], let t = Nk
h (x, a) and suppose

(x, a) was previously taken at step h of episodes k1, . . . , kt < k. By the update equation (4.1) and
the definition of αit in (4.2), we have:

Qkh(x, a) = α0
tH +

t∑
i=1

αit

[
rh(x, a) + V kih+1(xkih+1) + bi

]
. (4.3)

According to (4.3), the Q value at episode k equals a weighted average of the V values of the “next
states” with weights α1

t , . . . , α
t
t. Our choice of the learning rate αt = H+1

H+t ensures that, approxi-
mately speaking, the last 1/H fraction of the indices i is given non-negligible weights, whereas the
first 1 − 1/H fraction is forgotten. This ensures that the information accumulates smoothly across
the H layers of the MDP. If one were to use αt = 1

t instead, the weights α1
t , . . . , α

t
t would all equal

1/t, and using those V values from earlier episodes would hurt the accuracy of the Q function. In
contrast, if one were to use αt = 1/

√
t instead, the weights α1

t , . . . , α
t
t would concentrate too much

on the most recent episodes, which would incur high variance.

4.1 Proof Details

We first present an auxiliary lemma which exhibits some important properties that result from our
choice of learning rate. The proof is based on simple manipulations on the definition of αt, and is
provided in Appendix B.

Lemma 4.1. The following properties hold for αit:

(a) 1√
t
≤
∑t
i=1

αi
t√
i
≤ 2√

t
for every t ≥ 1.

(b) maxi∈[t] α
i
t ≤ 2H

t and
∑t
i=1(αit)

2 ≤ 2H
t for every t ≥ 1.

(c)
∑∞
t=i α

i
t = 1 + 1

H for every i ≥ 1.

We note that property (c) is especially important—as we will show later, each step in one episode
can blow up the regret by a multiplicative factor of

∑∞
t=i α

i
t. With our choice of learning rate, we

ensure that this blow-up is at most (1 + 1/H)H , which is a constant factor.

We now proceed to the formal proof. We start with a lemma that gives a recursive formula for
Q−Q?, as a weighted average of previous updates.

Lemma 4.2 (recursion on Q). For any (x, a, h) ∈ S × A × [H] and episode k ∈ [K], let t =
Nk
h (x, a) and suppose (x, a) was previously taken at step h of episodes k1, . . . , kt < k. Then:

(Qkh−Q?h)(x, a) = α0
t (H−Q?h(x, a))+

t∑
i=1

αit

[
(V kih+1 − V

?
h+1)(xkih+1) + [(P̂kih − Ph)V ?h+1](x, a) + bi

]
.

Proof of Lemma 4.2. From the Bellman optimality equation, Q?h(x, a) = (rh + PhV ?h+1)(x, a), our
notation [P̂kih Vh+1](x, a) := Vh+1(xkih+1), and the fact that

∑t
i=0 α

i
t = 1, we have

Q?h(x, a) = α0
tQ

?
h(x, a) +

t∑
i=1

αit

[
rh(x, a) +

(
Ph − P̂kih

)
V ?h+1(x, a) + V ?h+1(xkih+1)

]
.

Subtracting the formula (4.3) from this equation, we obtain Lemma 4.2. �

Next, using Lemma 4.2 and the Azuma-Hoeffding concentration bound, our next lemma shows that
Qk is always an upper bound on Q? at any episode k, and the difference between Qk and Q? can be
bounded by quantities from the next step.

Lemma 4.3 (bound on Qk − Q?). There exists an absolute constant c > 0 such that, for any
p ∈ (0, 1), letting bt = c

√
H3ι/t, we have βt = 2

∑t
i=1 α

i
tbi ≤ 4c

√
H3ι/t and, with probability
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at least 1− p, the following holds simultaneously for all (x, a, h, k) ∈ S ×A× [H]× [K]:

0 ≤ (Qkh −Q?h)(x, a) ≤ α0
tH +

t∑
i=1

αit(V
ki
h+1 − V

?
h+1)(xkih+1) + βt ,

where t = Nk
h (x, a) and k1, . . . , kt < k are the episodes where (x, a) was taken at step h.

Proof of Lemma 4.3. For each fixed (x, a, h) ∈ S ×A× [H], let us denote k0 = 0, and denote

ki = min
({
k ∈ [K] | k > ki−1 ∧ (xkh, a

k
h) = (x, a)

}
∪ {K + 1}

)
.

That is, ki is the episode of which (x, a) was taken at step h for the ith time (or ki = K + 1
if it is taken for fewer than i times). The random variable ki is clearly a stopping time. Let Fi
be the σ-field generated by all the random variables until episode ki, step h. Then,

(
I[ki ≤ K] ·

[(P̂kih − Ph)V ?h+1](x, a)
)τ
i=1

is a martingale difference sequence w.r.t the filtration {Fi}i≥0. By
Azuma-Hoeffding and a union bound, we have that with probability at least 1− p/(SAH):

∀τ ∈ [K] :

∣∣∣∣∣
τ∑
i=1

αiτ · I[ki ≤ K] · [(P̂kih − Ph)V ?h+1](x, a)

∣∣∣∣∣ ≤ cH

2

√√√√ τ∑
i=1

(αiτ )2 · ι ≤ c
√
H3ι

τ
,

(4.4)
for some absolute constant c. Because inequality (4.4) holds for all fixed τ ∈ [K] uniformly, it also
holds for τ = t = Nk

h (x, a) ≤ K, which is a random variable, where k ∈ [K]. Also note I[ki ≤
K] = 1 for all i ≤ Nk

h (x, a). Putting everything together, and using a union bound, we see that with
least 1− p probability, the following holds simultaneously for all (x, a, h, k) ∈ S ×A× [H]× [K]:∣∣∣∣∣

t∑
i=1

αit[(P̂
ki
h − Ph)V ?h+1](x, a)

∣∣∣∣∣ ≤ c
√
H3ι

t
where t = Nk

h (x, a) . (4.5)

On the other hand, if we choose bt = c
√
H3ι/t for the same constant c in Eq. (4.4), we have

βt/2 =
∑t
i=1 α

i
tbi ∈ [c

√
H3ι/t, 2c

√
H3ι/t

]
according to Lemma 4.1.a. Then the right-hand side

of Lemma 4.3 follows immediately from Lemma 4.2 and inequality (4.5). The left-hand side also
follows from Lemma 4.2 and Eq. (4.5) and induction on h = H,H − 1, . . . , 1. �

We are now ready to prove Theorem 2. The proof decomposes the regret in a recursive form, and
carefully controls the error propagation with repeated usage of Lemma 4.3.

Proof of Theorem 2. Denote by

δkh := (V kh − V
πk

h )(xkh) and φkh := (V kh − V ?h )(xkh) .

By Lemma 4.3, we have that with 1 − p probability, Qkh ≥ Q?h and thus V kh ≥ V ?h . Thus, the total
regret can be upper bounded:

Regret(K) =
∑K
k=1(V ?1 − V

πk
1 )(xk1) ≤

∑K
k=1(V k1 − V

πk
1 )(xk1) =

∑K
k=1 δ

k
1 .

The main idea of the rest of the proof is to upper bound
∑K
k=1 δ

k
h by the next step

∑K
k=1 δ

k
h+1,

thus giving a recursive formula to calculate total regret. We can obtain such a recursive formula by
relating

∑K
k=1 δ

k
h to

∑K
k=1 φ

k
h.

For any fixed (k, h) ∈ [K] × [H], let t = Nk
h (xkh, a

k
h), and suppose (xkh, a

k
h) was previously taken

at step h of episodes k1, . . . , kt < k. Then we have:

δkh = (V kh − V
πk

h )(xkh)
¬
≤ (Qkh −Q

πk

h )(xkh, a
k
h)

= (Qkh −Q?h)(xkh, a
k
h) + (Q?h −Q

πk

h )(xkh, a
k
h)

­
≤ α0

tH +
∑t
i=1 α

i
tφ
ki
h+1 + βt + [Ph(V ?h+1 − V

πk

h+1)](xkh, a
k
h)

®
= α0

tH +
∑t
i=1 α

i
tφ
ki
h+1 + βt − φkh+1 + δkh+1 + ξkh+1 , (4.6)

where βt = 2
∑
αitbi ≤ O(1)

√
H3ι/t and ξkh+1 := [(Ph − P̂kh)(V ?h+1 − V kh+1)](xkh, a

k
h) is a

martingale difference sequence. Inequality ¬ holds because V kh (xkh) ≤ maxa′∈AQ
k
h(xkh, a

′) =

8



Qkh(xkh, a
k
h), and inequality ­ holds by Lemma 4.3 and the Bellman equation (2.1). Finally, equality

® holds by definition δkh+1 − φkh+1 = (V ?h+1 − V
πk

h+1)(xkh+1).

We turn to computing the summation
∑K
k=1 δ

k
h. Denoting by nkh = Nk

h (xkh, a
k
h), we have:

K∑
k=1

α0
nk
h
H =

K∑
k=1

H · I[nkh = 0] ≤ SAH .

The key step is to upper bound the second term in (4.6), which is:

K∑
k=1

nk
h∑

i=1

αink
h
φ
ki(x

k
h,a

k
h)

h+1 ,

where ki(xkh, a
k
h) is the episode in which (xkh, a

k
h) was taken at step h for the ith time. We regroup

the summands in a different way. For every k′ ∈ [K], the term φk
′

h+1 appears in the summand with
k > k′ if and only if (xkh, s

k
h) = (xk

′

h , s
k′

h ). The first time it appears we have nkh = nk
′

h + 1, the
second time it appears we have nkh = nk

′

h + 2, and so on. Therefore

K∑
k=1

nk
h∑

i=1

αink
h
φ
ki(x

k
h,a

k
h)

h+1 ≤
K∑
k′=1

φk
′

h+1

∞∑
t=nk′

h +1

α
nk′
h
t ≤

(
1 +

1

H

) K∑
k=1

φkh+1,

where the final inequality uses
∑∞
t=i α

i
t = 1+ 1

H from Lemma 4.1.c. Plugging these back into (4.6),
we have:

K∑
k=1

δkh ≤ SAH +

(
1 +

1

H

) K∑
k=1

φkh+1 −
K∑
k=1

φkh+1 +

K∑
k=1

δkh+1 +

K∑
k=1

(βnk
h

+ ξkh+1)

≤ SAH +

(
1 +

1

H

) K∑
k=1

δkh+1 +

K∑
k=1

(βnk
h

+ ξkh+1) , (4.7)

where the final inequality uses φkh+1 ≤ δkh+1 (owing to the fact that V ? ≥ V πk ). Recursing the
result for h = 1, 2, . . . ,H , and using the fact δKH+1 ≡ 0, we have:

K∑
k=1

δk1 ≤ O
(
H2SA+

H∑
h=1

K∑
k=1

(βnk
h

+ ξkh+1)
)
.

Finally, by the pigeonhole principle, for any h ∈ [H]:

K∑
k=1

βnk
h
≤ O(1) ·

K∑
k=1

√
H3ι

nkh
= O(1) ·

∑
x,a

NK
h (x,a)∑
n=1

√
H3ι

n

¬
≤ O

(√
H3SAKι

)
= O

(√
H2SATι

)
(4.8)

where inequality ¬ is true because
∑
x,aN

K
h (x, a) = K and the left-hand side of ¬ is maximized

when NK
h (x, a) = K/SA for all x, a. Also, by the AzumaHoeffding inequality, with probability

1− p, we have:∣∣∣ H∑
h=1

K∑
k=1

ξkh+1

∣∣∣ =
∣∣∣ H∑
h=1

K∑
k=1

[(Ph − P̂kh)(V ?h+1 − V kh+1)](xkh, a
k
h)
∣∣∣ ≤ cH√Tι.

This establishes
∑K
k=1 δ

k
1 ≤ O

(
H2SA +

√
H4SATι

)
. We note that when T ≥

√
H4SATι,

we have
√
H4SATι ≥ H2SA, and when T ≤

√
H4SATι, we have

∑K
k=1 δ

k
1 ≤ HK = T ≤√

H4SATι. Therefore, we can remove the H2SA term in the regret upper bound.

In sum, we have
∑K
k=1 δ

k
1 ≤ O

(
H2SA+

√
H4SATι

)
, with probability at least 1− 2p. Rescaling

p to p/2 finishes the proof. �
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