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Abstract

We present novel graph kernels for graphs with node and edge labels that have
ordered neighborhoods, i.e. when neighbor nodes follow an order. Graphs with
ordered neighborhoods are a natural data representation for evolving graphs where
edges are created over time, which induces an order. Combining convolutional
subgraph kernels and string kernels, we design new scalable algorithms for gen-
eration of explicit graph feature maps using sketching techniques. We obtain
precise bounds for the approximation accuracy and computational complexity of
the proposed approaches and demonstrate their applicability on real datasets. In
particular, our experiments demonstrate that neighborhood ordering results in more
informative features. For the special case of general graphs, i.e., graphs without
ordered neighborhoods, the new graph kernels yield efficient and simple algorithms
for the comparison of label distributions between graphs.

1 Introduction

Graphs are ubiquitous representations for structured data and have found numerous applications in
machine learning and related fields, ranging from community detection in online social networks [For-
tunato, 2010] to protein structure prediction [Rual et al., 2005]. Unsurprisingly, learning from graphs
has attracted much attention from the research community. Graphs kernels have become a standard
tool for graph classification [Kriege et al., 2017]. Given a large collection of graphs, possibly with
node and edge attributes, we are interested in learning a kernel function that best captures the similar-
ity between any two graphs. The graph kernel function can be used to classify graphs using standard
kernel methods such as support vector machines.

Graph similarity is a broadly defined concept and therefore many different graph kernels with different
properties have been proposed. Previous works have considered graph kernels for different graph
classes distinguishing between simple unweighted graphs without node or edge attributes, graphs with
discrete node and edge labels, and graphs with more complex attributes such as real-valued vectors
and partial labels. For evolving graphs, the ordering of the node neighborhoods can be indicative for
the graph class. Concrete examples include graphs that describe user web browsing patterns, evolving
networks such as social graphs, product purchases and reviews, ratings in recommendation systems,
co-authorship networks, and software API calls used for malware detection.
The order in which edges are created can be informative about the structure of the original data. To
the best of our knowledge, existing graph kernels do not consider this aspect. Addressing the gap, we
present a novel framework for graph kernels where the edges adjacent to a node follow specific order.
The proposed algorithmic framework KONG, referring to Kernels for Ordered-Neighborhood Graphs,
accommodates highly efficient algorithms that scale to both massive graphs and large collections
of graphs. The key ideas are: (a) representation of each node neighborhood by a string using a tree
traversal method, and (b) efficient computation of explicit graph feature maps based on generating k-
gram frequency vectors of each node’s string without explicitly storing the strings. The latter enables
to approximate the explicit feature maps of various kernel functions using sketching techniques.
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Explicit feature maps correspond to k-gram frequency vectors of node strings, and sketching amounts
to incrementally computing sketches of these frequency vectors. The proposed algorithms allow for
flexibility in the choice of the string kernel and the tree traversal method. In Figure 1 we present a
directed labeled subgraph rooted at node v. A breadth first-search traversal would result in the string
ABCDGEFHG but other traversal approaches might yield more informative strings.
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Figure 1: An illustrative exam-
ple of an order-neighborhood
graph: the neighhbor order is
the letter alphabetical order.

Related work Many graph kernels with different properties have
been proposed in the literature. Most of them work with implicit
feature maps and compare pairs of graphs, we refer to [Kriege et al.,
2017] for a study on implicit and explicit graph feature maps.

Most related to our work is the Weisfeiler-Lehman kernel [Sher-
vashidze et al., 2011] that iteratively traverses the subtree rooted at
each node and collects the corresponding labels into a string. Each
string is sorted and the strings are compressed into unique integers
which become the new node labels. After h iterations we have a
label at each node. The convolutional kernel that compares all pairs
of node labels using the Dirac kernel (indicator of an exact match of
node labels) is equivalent to the inner product of the label distribu-
tions. However, this kernel might suffer from diagonal dominance
where most nodes have unique labels and a graph is similar to itself

but not to other graphs in the dataset. The shortcoming was addressed in [Yanardag and Vishwanathan,
2015]. The kernel between graphs G and G′ is computed as κ(G,G′) = Φ(G)TMΦ(G′) whereM
is a pre-computed matrix that measures the similarity between labels. The matrix can become huge
and the approach is not applicable to large-scale graphs. While the Weisfeiler-Lehman kernel applies
to ordered neighborhoods, for large graphs it is likely to result in many unique strings and comparing
them with the Dirac kernel might yield poor results, both in terms of accuracy and scalability.

In a recent work [Manzoor et al., 2016] presented an unsupervised learning algorithm that generates
feature vectors from labeled graphs by traversing the neighbor edges in a predefined order. Even if
not discussed in the paper, the generated vectors correspond to explicit feature maps for convolu-
tional graph kernels with Dirac base kernels. Our approach provides a highly-scalable algorithmic
framework that allows for different base kernels and different tree traversal methods.

The idea of ordered neighborhood was also used in the context of kernels for general graphs.
In Martino et al. [2012] it is proposed to decompose the original graph into directed acyclic graphs
(DAGs) and then define an order on the DAG nodes which is then used to generate relevant features.
The approach was extended to learning the features from graph streams in Martino et al. [2013]. The
approaches are not really applicable to our setting as they have a different objective, namely to exploit
the structure of general graphs. Also, the DAG generation leads to high computational time.

Another line of research related to our work presents algorithms for learning graph vector
representations [Perozzi et al., 2014, Grover and Leskovec, 2016, Niepert et al., 2016]. Given a
collection of labeled graphs, the goal is to map the graphs (or their nodes) to a feature space that best
represents the graph structure. These approaches are powerful and yield the state-of-the-art results
but they involve the optimization of complex objective functions and do not scale to massive graphs.

Contributions The contributions of this paper can be summarized as follows:

• To the best of our knowledge, this is the first work to focus and formally define graph kernels for
graphs with ordered node neighborhoods. Extending upon string kernels, we present and formally
analyse a family of graph kernels that can be applied to different problems. The KONG algorithms
are efficient with respect to two parameters, the total number of graphs N and the total number
of edges M . We propose approaches that compute an explicit feature map for each graph which
enables the use of linear SVMs for graph classification, thus avoiding the computation of a kernel
matrix of size O(N2). Leveraging advanced sketching techniques, an approximation of the explicit
feature map for a graph with m edges can be computed in time and space O(m) or a total O(M).
We also present an extension to learning from graph streams using sublinear space o(M).1

1Software implementation and data are available at https://github.com/kutzkov/KONG.
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• For general labeled graphs without neighbor ordering our approach results in new graph kernels
that compare the label distribution of subgraphs using widely used kernels such as the polynomial
and cosine kernels. We argue that the approach can be seen as an efficient smoothing algorithm for
node labelling kernels such as the Weisfeiler-Lehman kernel. An experimental evaluation on real
graphs shows that the proposed kernels are competitive with state-of-the-art kernels, achieving
better accuracy on some benchmark datasets and using compact feature maps.

• The presented approach can be viewed as an efficient algorithm for learning compact graph
representations. The primary focus of the approach is on learning explicit feature maps for a
class of base kernels for the convolutional graph kernel. However, the algorithms learn vector
embeddings that can be used by other machine learning algorithms such as logistic regression,
decision trees and neural networks as well as unsupervised methods.

Paper outline The paper is organised as follows. In Section 2 we discuss previous work, provide
motivating examples and introduce general concepts and notation. In Section 3 we first give a general
overview of the approach and discuss string generation and string kernels and then present theoretical
results. Experimental evaluation is presented in Section 4. We conclude in Section 5.

2 Preliminaries

Notation and problem formulation The input is a collection G of tuples (Gi, yi) where Gi is a
graph and yi is a class. Each graph is defined as G = (V,E, `, τ) where ` : V → L is a labelling
function for a discrete set L and τ defines ordering of node neighborhoods. We consider only node
labels but all presented algorithms naturally apply to edge labels as well. The neighborhood of a node
v ∈ V is Nv = {u ∈ V : (v, u) ∈ E}. The ordering function τv : Nv → Π(Nv) defines a fixed
order permutation on Nv, where Π(Nv) denotes the set of all permutations of the elements of Nv.
Note that the order is local, i.e., two nodes can have different orderings for same neighborhood sets.

Kernels, feature maps and linear support vector machines A function κ : X × X → R is
a valid kernel if κ(x, y) = κ(y, x) for x, y ∈ X and the kernel matrix K ∈ Rm×m defined by
K(i, j) = κ(xi, xj) for any x1, . . . , xm ∈ X is positive semidefinite. If the function κ(x, y) can be
represented as φ(x)Tφ(y) for an explicit feature map φ : X → Y where Y is an inner product feature
space, then κ is a valid kernel. Also, a linear combination of kernels is a kernel. Thus, if the base
kernel is valid, then the convolutional kernel is also valid.

We will consider base kernels where X = Rn and φ : Rn → RD. Note that D can be very large
or even infinite. The celebrated kernel trick circumvents this limitation by computing the kernel
function for all support vectors. But this means that for training one needs to explicitly compute
a kernel matrix of size N2 for N input examples. Also, in large-scale applications, the number of
support vectors often grows linearly and at prediction time one needs to evaluate the kernel function
for O(N) support vectors. In contrast, linear support vector machines [Joachims, 2006], where the
kernel is the vector inner product, run in linear time of the number of examples and prediction needs
O(D) time. An active area of research has been the design of scalable algorithms that compute
low-dimensional approximation of the explicit feature map z : RD → Rd such that d � D and
κ(x, y) ≈ z(φ(x))T z(φ(y)) [Rahimi and Recht, 2007, Le et al., 2013, Pham and Pagh, 2013].

Convolutional graph kernels Most known graph kernels are instances of the family of convo-
lutional kernels [Haussler, 1999]. In their simplified form, the convolutional kernels work by
decomposing a given graph G into a set of (possibly overlapping) substructures Γ(G). For example,
Γ(G) can be the set of 1-hop subtrees rooted at each node. The kernel between two graphsG andH is
defined as K(G,H) =

∑
g∈Γ(G),h∈Γ(H) κ(g, h) where κ(g, h) is a base kernel comparing the parts

g and h. For example, κ can be the inner product kernel comparing the label distribution of the two
subtrees. Known graph kernels differ mainly in the way the graph is decomposed. Notable examples
include the random walk kernel [Gärtner et al., 2003], the shortest path kernel [Borgwardt and Kriegel,
2005], the graphlet kernel [Shervashidze et al., 2009] and the Weisfeiler-Lehman kernel [Shervashidze
et al., 2011]. The base kernel is usually the Dirac kernel comparing the parts g and h for equality.

Building upon efficient sketching algorithms, we will compute explicit graph feature maps. More
precisely, let φκ be the explicit feature map of the base kernel κ. An explicit feature map Φκ is
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defined such that for any two graphs G and H:

K(G,H) =
∑

g∈Γ(G),h∈Γ(H)

κ(g, h) =
∑

g∈Γ(G),h∈Γ(H)

φκ(g)Tφκ(h) = Φκ(G)TΦκ(H).

When clear from the context, we will omit κ and write φ(g) and Φ(G) for the explicit maps of the
substructure g and the graph G.

String kernels The strings generated from subtree traversal will be compared using string kernels.
Let Σ∗ be the set of all strings that can be generated from the alphabet Σ, and let Σ∗k ⊂ Σ∗ be the
set of strings with exactly k characters. Let t v s denote that the string t is a substring of s, i.e.,
a nonempty sequence of consecutive characters from s. The spectrum string kernel compares the
distribution of k-grams between strings s1 and s2:

κk (s1, s2) =
∑
t∈Σ∗k

#t(s1)#t(s2)

where #t(s) = |{x : x v s and x = t}|, i.e., the number of occurrences of t in s [Leslie et al., 2002].
The explicit feature map for the spectrum kernel is thus the frequency vector φ(s) ∈ N|Σ∗k| such that
φi(s) = #t(s) where t is the i-th k-gram in the explicit enumeration of all k-grams.

We will consider extensions of the spectrum kernel with the polynomial kernel for p ∈ N: for a
constant c ≥ 0,

poly(s1, s2) = (φ(s1)Tφ(s2) + c)p.

This accommodates cosine kernel cos(s1, s2) when feature vectors are normalized as φ(s)/‖φ(s)‖.
Count-Sketch and Tensor-Sketch Sketching is an algorithmic tool for the summarization of
massive datasets such that key properties of the data are preserved. In order to achieve scalability,
we will summarize the k-gram frequency vector distributions. In particular, we will use Count-
Sketch [Charikar et al., 2004] that for vectors u, v ∈ Rd computes sketches z(u), z(v) ∈ Rb such that
z(u)T z(v) ≈ uT v and b < d controls the approximation quality. A key property is that Count-Sketch
is a linear projection of the data and this will allow us to incrementally generate strings and sketch their
k-gram distribution. For the polynomial kernel poly(x, y) = (xT y + c)p and x, y ∈ Rd, the explicit
feature map of x and y is their p-level tensor product, i.e., the dp-dimensional vector formed by taking
the product of all subsets of p coordinates of x or y. Hence, computing the explicit feature map and
then sketching it using Count-Sketch requires O(dp) time. Instead, using Tensor-Sketch [Pham and
Pagh, 2013], we compute a sketch of size b for a p-level tensor product in time O(p(d+ b log b)).

3 Main results

In this section we first describe the proposed algorithm, discuss in detail its components, and then
present theoretical approximation guarantees for using sketches to approximate graph kernels.
Algorithm The proposed algorithm is based on the following key ideas: (a) representation of each
node v’s neighborhood by a string Sv using a tree traversal method, and (b) approximating the k-gram
frequency vector of string Sv using sketching in a way that does not require storing the string Sv.
Given a graph G, for each node v we traverse the subtree rooted at v using the neighbor ordering τ
and generate a string. The subtrees represent the graph decomposition of the convolutional kernel.
The algorithm allows for flexibility in choosing different alternatives for the subtree traversal. The
generated strings are compared by a string kernel. This string kernel is evaluated by computing an
explicit feature map for the string at each node. Scalability is achieved by approximating explicit
feature maps using sketching techniques so that the kernel can be approximated within a prescribed
approximation error. The sum of the node explicit feature maps is the explicit feature map of the
graph G. The algorithm is outlined in Algorithm 1.
Tree traversal and string generation There are different options for string construction from each
node neighborhood. We present a general class of subgraph traversal algorithms that iteratively
collect the node strings from the respective neighborhood.

Definition 1 Let Shv denote the string collected at node v after h iterations. A subgraph traversal
algorithm is called a composite string generation traversal (CSGT) if Shv is a concatenation of a
subset of the strings s0

v, . . . , s
h
v . Each siv is computed in the i-th iteration and is the concatenation of

the strings si−1
u for u ∈ Nv , in the order given by τv .
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Algorithm 1: EXPLICITGRAPHFEATUREMAP.
Input: GraphG = (V,E, `, τ), depth h, labeling ` : V → L, base kernel κ
for v ∈ V do

Traverse the subgraph Tv rooted at v up to depth h
Collect the node labels `(u) : u ∈ Tv in the order specified by τv into a string Sv
Sketch the explicit feature map φκ(Sv) for the base string kernel κ (without storing Sv)

Φκ(G)←
∑
v∈V φκ(Sv)

return Φκ(G)

The above definition essentially says that we can iteratively compute the strings collected at a node
v from strings collected at v and v’s neighbors in previous iterations, similarly to the dynamic
programming paradigm. As we formally show later, this implies that we will be able to collect all
node strings Shv by traversing O(m) edges in each iteration and this is the basis for designing efficient
algorithm for computing the explicit feature maps.

Next we present two examples of CSGT algorithms. The first one is the standard iterative
breadth-first search algorithm that for each node v collects in h + 1 lists the labels of all
nodes within exactly i hops, for 0 ≤ i ≤ h. The strings siv collect the labels of nodes
within exactly i hops from v. After h iterations, we concatenate the resulting strings, see Al-
gorithm 2. In the toy example in Figure 1, the string at the node with label A is generated as
S2
v = s0

vs
1
vs

2
v resulting in A|BCDG|EF |H|G (s0

v = A, s1
v = BCDG and s2

v = EFGH).

Algorithm 2: BREADTH-FIRST SEARCH

Input: GraphG = (V,E, `, τ), depth h, labeling ` : V → S
for v ∈ V do

s0v = `(v)
for i = 1 to h do

for v ∈ V do
siv = $ //$ is the empty string
for u ∈ τv(Nv) do

siv ← siv .append(si−1
u )

for v ∈ V do
Shv = $
for i = 0 to h do

Shv ← Shv .append(siv)

Algorithm 3: WEISFEILER-LEHMAN

Input: GraphG = (V,E, `, τ), depth h, labeling ` : V → S
for v ∈ V do

for i = 1 to h do
siv ← `(v)

for i = 1 to h do
for v ∈ V do

for u ∈ τv(Nv) do
siv ← siv .append(si−1

u )
for v ∈ V do

Shv ← shv

Another approach, similar to the WL labeing algorithm [Shervashidze et al., 2011], is to concatenate
the neighbor labels in the order given by τv for each node v into a new string. In the i-th iteration
we set `(v) = siv, i.e., siv becomes v’s new label. We follow the CSGT pattern by setting Shv = shv ,
as evident from Algorithm 3. In our toy example, we have s0

v = A and s1
v = ABCD and s2

v =
ABEFCHDGG generated from the neighbor strings s1

u, u ∈ Nv: BEF , CH , DG and G.

String kernels and WL kernel smoothing: After collecting the strings at each node we have to compare
them. An obvious choice would be the Dirac kernel which compares two strings for equality. This
would yield poor results for graphs of larger degree where most collected strings will be unique, i.e.,
the diagonal dominance problem where most graphs are similar only to themselves. Instead, we
consider extensions of the spectrum kernel [Leslie et al., 2002] comparing the k-gram distributions
between strings, as discussed in Section 2.

Setting k = 1 is equivalent to collecting the node labels disregarding the neighbor order and com-
paring the label distribution between all node pairs. In particular, consider the following smoothing
algorithm for the WL kernel. In the first iteration we generate node strings from neighbor labels
and relabel all nodes such that each string becomes a new label. Then, in the next iteration we
again generate strings at each node but instead of comparing them for equality with the Dirac kernel,
we compare them with the polynomial or cosine kernels. cos(s1, s2)p decreases faster with p for
dissimilar strings, thus p can be seen as a smoothing parameter.
Sketching of k-gram frequency vectors The explicit feature maps for the polynomial kernel for
p > 1 can be of very high dimensions. A solution is to first collect the strings Shv at each node, then
incrementally generate k-grams and feed them into a sketching algorithm that computes compact
representation for the explicit feature maps of polynomial kernel. However, for massive graphs with
high average degree, or for a large node label alphabet size, we may end up with prohibitively long
unique strings at each node. Using the key property of the incremental string generation approach
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and a sketching algorithm, which is a linear projection of the original data onto a lower-dimensional
space, we will show how to sketch the k-gram distribution vectors without explicitly generating
the strings Shv . More concretely, we will replace the line siv ← siv.append(si−1

u ) in Algorithms 2
and 3 with a sketching algorithm that will maintain the k-gram distribution of each siv as well as siv’s
(k − 1)-prefix and (k − 1)-suffix. In this way we will only keep track of newly generated k-grams
and add up the sketches of the k-gram distribution of the siv strings computed in previous iterations.

Before we present the main result, we show two lemmas that state properties of the incremental string
generation approach. Observing that in each iteration we concatenate at most m strings, we obtain
the following bound on the number of generated k-grams.

Lemma 1 The total number of newly created k-grams during an iteration of CSGT is O(mk).

The next lemma shows that in order to compute the k-gram distribution vector we do not need to
explicitly store each intermediate string siv but only keep track of the substrings that will contribute
to new k-grams and siv’s k-gram distribution. This allows us to design efficient algorithms by
maintaining sketches for k-gram distribution of the siv strings.

Lemma 2 The k-gram distribution vector of the strings siv at each node v can be updated after an
iteration of CSGT from the distribution vectors of the strings si−1

v and explicitly storing substrings of
total length O(mk).

The above lemma is the basis for the sketching solution we present next. It will allow us to sketch
the k-gram distribution vectors at each node and only keep track of the prefixes and suffixes of the
strings siu.

The following theorem is our main result that accommodates both polynomial and cosine kernels. We
define coshk(u, v)p to be the cosine similarity to the power p between the k-gram distribution vectors
collected at nodes u and v after h iterations.

Theorem 1 LetG1, . . . , GM be a collection ofM graphs, each having at mostm edges and n nodes.
Let K be either polynomial or cosine kernel with parameter p and K̂ its approximation obtained by
using size-b sketches of explicit feature maps. Consider an arbitrary pair of graphs Gi and Gj . Let
T<α denote the number of node pairs vi ∈ Gi, vj ∈ Gj such that coshk(vi, vj)

p < α and R be an
upper bound on the norm of the k-gram distribution vector at each node.

Then, we can choose a sketch size b = O( logM+logn
α2ε2 log 1

δ ) such that K̂(Gi, Gj) has an additive
error of at most ε(K(Gi, Gj) +R2pαT<α) with probability at least 1− δ, for ε, δ ∈ (0, 1).

A graph sketch can be computed in time O(mkph+ npb log b) and space O(nb).

Note that for the cosine kernel it holds R = 1. Assuming that p, k and h are small constants, the
running time per graph is linear and the space complexity is sublinear in the number of edges. The
approximation error bounds are for the general worst case and can be better for skewed distributions,
this follows directly from the properties of the original Count-Sketch algorithm [Charikar et al.,
2004].

Graph streams We can extend the above algorithms to work in the semi-streaming graph model
[Feigenbaum et al., 2005] where we can afford O(n polylog(n)) space. Essentially, we can store
a compact sketch per each node but we cannot afford to store all edges. We sketch the k-gram
distribution vectors at each node v in h passes. In the i-pass, we sketch the distribution of siv from
the sketches si−1

u for u ∈ Nv and the newly computed k-grams. We obtain following result:

Theorem 2 Let E be a stream of labeled edges arriving in arbitrary order, each edge ei belonging
to one of M graphs over N different nodes. We can compute a sketch of each graph Gi in h passes
over the edges by storing a sketch of size b per node using O(Nb) space in time O(|E|hkp+ b log b).

The above result implies that we can sketch real-time graph streams in a single pass over the data,
i.e. h = 1. In particular, for constants k and p we can compute explicit feature maps of dimension b
for the convolutional kernel for real-time streams for the polynomial and cosine kernels for 1-hop
neighborhood and parameter p in time O(|E|+Nb log b) using O(Nb) space.
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4 Experiments

In this section we present our evaluation of the classification accuracy and computation speed of
our algorithm and comparison with other kernel-based algorithms using a set of real-world graph
datasets. We first present evaluation for general graphs without ordering of node neighborhoods,
which demonstrate that our algorithm achieves comparable and in some cases better classification
accuracy than the state of the art kernel-based approaches. We then present evaluation for graphs
with ordered neighborhoods that demonstrates that accounting for neighborhood ordering can lead to
more accurate classification as well as the scalability of our algorithm.

All algorithms were implemented in Python 3 and experiments performed on a Windows 10 laptop
with an Intel i7 2.9 GHz CPU and 16 GB main memory. For the TensorSketch implementation,
we used random numbers from the Marsaglia Random Number CDROM [mar]. We used Python’s
scikit-learn implementation [Pedregosa et al., 2011] of the LIBLINEAR algorithm for linear support
vector classification [Fan et al., 2008].

For comparison with other kernel-based methods, we implemented the explicit map versions of the
Weisfelier-Lehman kernel (WL) [Shervashidze et al., 2011], the shortest path kernel (SP) [Borgwardt
and Kriegel, 2005] and the k-walk kernel (KW) [Kriege et al., 2014].

General graphs We evaluated the algorithms on widely-used benchmark datasets from various
domains [Kersting et al., 2016]. MUTAG [Debnath et al., 1991], ENZYMES [Schomburg et al.,
2004], PTC [Helma et al., 2001], Proteins [Borgwardt et al., 2005] and NCI1 [Wale and Karypis,
2006] represent molecular structures, and MSRC [Neumann et al., 2016] represents semantic image
processing graphs. Similar to previous works [Niepert et al., 2016, Yanardag and Vishwanathan,
2015], we choose the optimal number of hops h = 2 for the WL kernel and k ∈ {5, 6} for the k-walk
kernel. We performed 10-fold cross-validation using 9 folds for training and 1 fold for testing. The
optimal regularization parameter C for each dataset was selected from {0.1, 1, 10, 100}. We ran the
algorithms on 30 random permutations of the neighbor node lists and report the average accuracy and
the average standard deviation. We set the parameter subtree depth parameter h to 2 and used the
original graph labels, and in the second setting we obtained new labels using one iteration of WL. If
the explicit feature maps for the cosine and polynomial kernel have dimensionality more than 5,000,
we sketched the maps using TensorSketch with sketch size of 5,000.

The results are presented in Table 1. In brackets we give the parameters for which we obtain
the optimal value: the kernel, cosine or polynomial with or without relabeling and the power
p ∈ {1, 2, 3, 4} of the polynomial (e.g. poly-rlb-1 denotes polynomial kernel with relabeling and
p = 1). We see that among the four algorithms, KONG achieves the best or second best results. We
would like to note that the methods are likely to admit further improvements by learning data-specific
string generation algorithms but such considerations are beyond the scope of the paper.

Dataset KW SP WL KONG

Mutag 83.7± 1.2 84.7± 1.3 84.9± 2.1 87.8± 0.7 (poly-rlb-1)

Enzymes 34.8± 0.7 39.6± 0.8 52.9± 1.1 50.1± 1.1 (cosine-rlb-2)

PTC 57.7± 1.1 59.1± 1.3 62.4± 1.2 63.7± 0.8 (cosine-2)

Proteins 70.9± 0.4 72.7± 0.5 71.4± 0.7 73.0± 0.6 (cosine-rlb-1)

NCI1 74.1± 0.3 73.3± 0.3 81.4± 0.3 76.4± 0.3 (cosine-rlb-1)

MSRC 92.9± 0.8 91.2± 0.9 91.0± 0.7 95.2± 1.3 (poly-1)

Table 1: Classification accuracies for general labeled graphs (the 1-gram case).

Graphs with ordered neigborhoods We performed experiments on three datasets of graphs with
ordered neighborhoods (defined by creation time of edges). The first dataset was presented in [Man-
zoor et al., 2016] and consists of 600 web browsing graphs from six different classes over 89.77M
edges and 5.04M nodes. We generated the second graph dataset from the popular MovieLens
dataset [mov] as follows. We created a bipartite graph with nodes corresponding to users and movies
and edges connecting a user to a movie if the user has rated the movie. The users are labeled into
four categories according to age and movies are labeled with a genre, for a total of 19 genres. We
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Figure 2: Comparison of classification accuracy for graphs with ordered neighborhoods.

considered only movies with a single genre. For each user we created a subgraph from its 2-hop
neighborhood and set its class to be the user’s gender. We generated 1,700 graphs for each gender.
The total number of edges is about 99.09M for 14.3M nodes. The third graph dataset was created
from the Dunnhumby’s retailer dataset [dun]. Similarly to the MovieLens dataset we created a
bipartite graph for customer and products where edges represent purchases. Users are labeled in four
categories according to their affluence, and products belong to one of nine categories. Transactions
are ordered by timestamps and products in the same transaction are ordered in alphabetical order. The
total number of graphs is 1,565, over 257K edges and 244K nodes. There are 7 classes corresponding
to the user’s life stage. The classes have unbalanced distribution, and we optimized the classifier to
distinguish between a class with frequency 0.0945% and all other classes. The optimal C-value for
SVM optimization was selected from 10i for i ∈ {−1, 0, 1, 2, 3, 4}.
Results The average classification accuracies over 1,000 runs of different methods for different
training-test size splits are shown in Figure 2. We exclude the SP kernel from the graph because
either the running time was infeasible or the results were much worse compared to the other methods.
For all datasets, for the k-walk kernel we obtained best results for k = 1, corresponding to collecting
the labels of the endpoints of edges. We set h = 1 for both WL and KONG. We obtained best
results for the cosine kernel with p = 1. The methods compared are those for 2 grams with ordered
neighborhoods and shuffled neighborhoods, thus removing the information about order of edges.
We also compare with using only 1 grams. Overall, we observe that accounting for the information
about the order of neighborhoods can improve classification accuracy for a significant margin. We
provide further results in Table 2 for training set sizes 80% showing also dimension of the explicit
feature map D, computation time (the first value is the time to compute the explicit feature maps and
the second value is the SVM training time), and accuracies and AUC metrics. We observe that the
WL kernel can generate very long strings, i.e., explicit feature maps of large dimension, which not
only lead to the diagonal dominance problem but also result in large computation time; our method
controls this by using k-grams.

Web browsing MovieLens Dunnhumby

Method D Time Accuracy
AUC D Time Accuracy

AUC D Time Accuracy
AUC

SP − > 24
hrs

−
− − > 24

hrs
−
− 228 144”

74”
90.61
50.1

KW 82 665”
116”

99.80
99.94 136 120”

420”
66.98
73.65 56 0.7”

134”
90.57
58.47

WL 20,359 48”
576”

99.92
99.99 > 2M 492”

−
−
− 2,491 22”

230”
90.52
57.80

K-1 34 206”
79”

99.88
99.97 21 509”

197”
65.83
71.00 13 42”

25”
90.53
59.33

K-2
shuffled 264 220”

255”
99.81
99.94 326 592”

497”
67.01
73.31 85 48”

131”
90.57
61.07

K-2 203 217”
249”

99.95
99.99 326 589”

613”
67.68
73.20 82 46”

133”
90.56
61.94

Table 2: Comparison of the accuracy and speed of different methods for graphs with ordered
neighborhoods; we use the notation K-k to denote KONG using k grams; time shows explicit map
computation time and SVM classification time.
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5 Conclusions

We presented an efficient algorithmic framework KONG for learning graph kernels for graphs with
ordered neighborhoods. We demonstrated the applicability of the approach and obtained performance
benefits for graph classification tasks over other kernel-based approaches.

There are several directions for future research. An interesting research question is to explore how
much graph classification can be improved by using domain specific neighbor orderings. Another
direction is to obtain efficient algorithms that can generate explicit graph feature maps but compare
the node strings with more complex string base kernels, such as mismatch or string alignment kernels.
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