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Abstract

We address the problem of regret minimization in logistic contextual bandits, where
a learner decides among sequential actions or arms given their respective contexts
to maximize binary rewards. Using a fast inference procedure with Pólya-Gamma
distributed augmentation variables, we propose an improved version of Thompson
Sampling, a Bayesian formulation of contextual bandits with near-optimal perfor-
mance. Our approach, Pólya-Gamma augmented Thompson Sampling (PG-TS),
achieves state-of-the-art performance on simulated and real data. PG-TS explores
the action space efficiently and exploits high-reward arms, quickly converging to
solutions of low regret. Its explicit estimation of the posterior distribution of the
context feature covariance leads to substantial empirical gains over approximate
approaches. PG-TS is the first approach to demonstrate the benefits of Pólya-
Gamma augmentation in bandits and to propose an efficient Gibbs sampler for
approximating the analytically unsolvable integral of logistic contextual bandits.

1 Introduction

A contextual bandit is an online learning framework for modeling sequential decision-making
problems. Contextual bandits have been applied to problems ranging from advertising [1] and
recommendations [22, 21] to clinical trials [37] and mobile health [33]. In a contextual bandit
algorithm, a learner is given a choice among K actions or arms, for which contexts are available
as d-dimensional feature vectors, across T sequential rounds. During each round, the learner uses
information from previous rounds to estimate associations between contexts and rewards. The
learner’s goal in each round is to select the arm that minimizes the cumulative regret, which is the
difference between the optimal oracle rewards and the observed rewards from the chosen arms. To
do this, the learner must balance exploring arms that improve the expected reward estimates and
exploiting the current expected reward estimates to select arms with the largest expected reward. In
this work, we focus on scenarios with binary rewards.

To address the exploration-exploitation trade-off in sequential decision making, two directions are
generally considered: Upper Confidence Bound algorithms (UCB) and Thompson Sampling (TS).
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UCB algorithms are based on the principle of optimism in the face of adversity [3, 6, 15] and rely
on choosing actions according to expected rewards perturbed by their respective upper confidence
bounds. Based on Bayesian ideas, TS [34] assumes a prior distribution over the parameters governing
the relationship between contexts and rewards. At each step, an action corresponding to a random
parameter sampled from the posterior distribution is chosen. Upon observing the reward for each
round, the posterior distribution is updated via Bayes’ rule. TS has been successfully applied in a
wide range of settings [2, 32, 9, 28].

While UCB algorithms have simple implementations and good theoretical regret bounds [22], TS
achieves better empirical performance in many simulated and real-world settings without sacrificing
simplicity [9, 15]. Furthermore, TS is amenable to scaling through hashing, thus making it attractive
for large scale applications [20]. In addition, recent studies have bridged the theoretical gap between
TS and UCB based methods by analyzing regret and Bayesian regret in TS approaches for both
generalized linear bandits and reinforcement learning settings [2, 28, 26, 29, 4, 5].

In this work, we focus on improving the TS approach for contextual bandits with logistic rewards
[9, 15]. The logistic rewards setting is of pragmatic interest because of its natural application to
problems such as modeling click-through rates in advertisement applications [22]. Computationally,
the functional form of its logistic regression likelihood leads to an intractable posterior – the necessary
integrals are not available in closed form and difficult to approximate. This intractability makes
the sampling step of TS with binary or categorical rewards challenging. From an optimization
perspective, the logistic loss is exp-concave, thus allowing second-order methods in a purely online
setting [19, 25]. However, the convergence rate is exponential in the number of features d, making
these solutions impractical in most real-world settings [19].

Existing Bayesian solutions to logistic contextual bandits rely on regularized logistic regression
with batch updates in which the posterior distribution is estimated via Laplace approximations. The
Laplace approximation is a second-order moment matching method that estimates the posterior with
a multivariate Gaussian distribution. Despite offering asymptotic convergence guarantees under
restricted assumptions [7], the Laplace approximation struggles when the dimension of the context
(arm features) is larger than the number of arms, and when the features themselves are non-Gaussian.
Both of these situations arise in the online learning setting, creating a need for novel TS approaches
to inference. Recent work suggests that a double sampling approach via MCMC can improve TS [35].
This approach provides MCMC schemes for bandits with binary and Gaussian rewards, but these
algorithms do not generalize to the logistic contextual bandit.

We propose Pólya-Gamma augmented Thompson sampling (PG-TS), a fully Bayesian alternative
to Laplace-TS. PG-TS uses a Gibbs sampler built on parameter augmentation with a Pólya-Gamma
distribution [27, 36, 31]. We compare results from PG-TS to state-of-the-art approaches on simula-
tions that include toy models with specified and unspecified priors, and on two data sets previously
considered in the contextual bandit literature.

The remainder of this paper is organized as follows. Section 2 reviews relevant background and
introduces the problem. The details of Pólya-Gamma augmentation are provided in Section 3. Section
4 includes an empirical evaluation and shows substantial performance improvements in favor of
PG-TS over existing approaches. We conclude in Section 5.

2 Background

In the following, x ∈ Rd denotes a d-dimensional column vector with scalar entries xj , indexed by
integers j = {1, 2 . . . d}; x> is transposed vector x. X denotes a square matrix, while X refers to a
random variable. We use ‖ · ‖ for the 2-norm, while ‖x‖A denotes x>Ax, for a matrix A. Let 1B(x)
be the indicator function of a set B defined as 1 if x ∈ B, and 0 otherwise. MVN(b,B) denotes a
multivariate normal distribution with mean b and covariance B, and Id is the d× d identity matrix.

2.1 Contextual Bandits with Binary Rewards

We consider contextual bandits with binary rewards with a finite, but possibly large, number of arms
K. These models belong to the class of generalized linear bandits with binary rewards [15]. Let
A be the set of arms. At each time step t, the learner observes contexts xt,a ∈ Rd, where d is the
number of features per arm. The learner then chooses an arm at and receives a reward rt ∈ {0, 1}.
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The expectation of this reward is related to the context through a parameter θ∗ ∈ Rd and a logistic
link function µ: E[r|x] = µ(x>θ∗), where µ(z) = exp(z)/(1 + exp(z)).

For example, in a news article recommendation setting, the recommendation algorithm (learner) has
access to a discrete number of news articles (arms) A and interacts with users across discrete trials
t = 1, 2, . . . where the logistic reward is whether or not the user clicks on the recommended article.
The articles and the users are characterized by attributes (context), such as genre and popularity
(articles), or age and gender (users). At trial t, the learner observes the current user ut, the available
articles a ∈ A, and the corresponding contexts xt,a. The context is a d-dimensional summary of both
the user’s and the available articles’ context. At each time point, the goal of the learner is to provide
the user with an article recommendation (arm choice) that they then may choose to click (reward
of 1) or not (reward of 0). The relationship between rewards and contexts is mediated through an
underlying coefficient vector θ∗, which can be interpreted as an encoding of the users’ preferences
with respect to the various context features of the articles.

Formally, letDt be the set of triplets (xi,ai , ai, ri) for i = 1, . . . , t representing the past t observations
of the contexts, the actions chosen, and their corresponding rewards. The objective of the learner is to
minimize the cumulative regret given Dt−1 after a fixed budget of t steps. The regret is the expected
difference between the optimal reward received by always playing the optimal arm a∗ and the reward
received following the actual arm choices made by the learner.

rt =

t∑
i=1

[
µ(x>i,a∗θ

∗)− µ(x>i,aiθ
∗)
]

(1)

The parameter θ is reestimated after each round t using a generalized linear model estimator [15], The
point estimate of the coefficient at round t, θt, can be computed using approaches for online convex
optimization [18, 19]. However, these approaches scale exponentially with the context dimension
d, leading to computationally intractable solutions for many real world contextual logistic bandit
problems [19, 25].

2.2 Thompson Sampling for Contextual Logistic Bandits

TS provides a flexible and computationally tractable framework for inference in contextual logistic
bandits. TS for the contextual bandit is broadly defined in Bayesian terms, where a prior distribution
p(θ) over the parameter θ is updated iteratively using a set of historical observations Dt−1 =
{(xi,ai , ai, ri)|i = 1, . . . , t − 1}. The posterior distribution p(θ|Dt−1) is calculated using Bayes’
rule and is proportional to the distribution

∏t−1
i=1 p(ri|ai,xi,ai ,θ)p(θ). A random sample θt is drawn

from this posterior, corresponding to a stochastic estimate of θ∗ after t steps. The optimal arm is then
the arm offering the highest reward with respect to the current estimate θt. In other words, the arm
with the highest expected reward is chosen according to a probability p(at = a|θt,Dt−1), which is
expressed formally as ∫

1Amax
t (θt)

(
E[rt|a,xt,a,θt]

)
p(θt|Dt−1)dθt, (2)

where Amax
t (θt) is the set of arms with maximum rewards at step t if the true parameter were θt.

After t steps, the joint probability mass function over the rewards r1, r2, . . . , rt observed upon taking
actions a1, a2, . . . , at is

∏t
i=1 p(ri = 1|ai,xi,a,θi) or

t∏
i=1

µ(x>i,aiθi)
ri [1− µ(x>i,aiθi)]

1−ri , (3)

where θ1,θ2, . . . ,θt are the estimates of θ∗ at each trial up to t.

In the case of logistic regression for binary rewards, the posterior derived from this joint probability
is intractable. Laplace-TS addresses this issue by approximating the posterior with a multivariate
Gaussian distribution with a diagonal covariance matrix following a Laplace approximation. The
mean of this distribution is the maximum a posteriori estimate and the inverse variance of each feature
is the curvature [15].

Laplace approximations are effective in finding smooth densities peaked around their posterior modes,
and are thus applicable to the logistic posterior, which is strictly exp-concave [18]. This approach has
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shown superior empirical performance versus UCB algorithms [9] and other TS-based approximation
methods [30]. Laplace-TS is therefore an appropriate benchmark in the evaluation of contextual
bandit algorithms using TS approaches.

3 Pólya-Gamma Augmentation for Logistic Contextual Bandits

The Laplace approximation leads to simple, iterative algorithms, which in the offline setting lead to
accurate estimates across a potentially large number of sparse models [7]. In this section, we propose
PG-TS, an alternative approach stemming from recent developments in augmentation for Bayesian
inference in logit models [27, 31].

3.1 The Pólya-Gamma Augmentation Scheme

Consider a logit model with t binary observations ri ∼ Bin(1, µ(x>i θ)), parameter θ ∈ Rd and
corresponding regressors xi ∈ Rd, i = 1, . . . , t. To estimate the posterior p(θ|Dt), classic MCMC
methods use independent and identically distributed (i.i.d) samples. Such samples can be challenging
to obtain, especially if the dimension d is large [10]. To address this challenge, we reframe the discrete
rewards as functions of latent variables with Pólya-Gamma (PG) distributions over a continuous
space [27]. The PG latent variable construction relies on the theoretical properties of PG random
variables to exploit the fact that the logistic likelihood is a mixture of Gaussians with PG mixing
distributions [27, 12, 13].

Definition 1 Let X be a real-valued random variable. X follows a Pólya-Gamma distribution with
parameters b > 0 and c ∈ R, X ∼ PG(b, c) if the following holds:

X =
1

2π2

∞∑
k=1

Gk
(k − 1/2)2 + c2/(4π2)

,

where Gk ∼ Ga(b, 1) are independent gamma variables.

The identity central to the PG augmentation scheme [27] is

(eψ)a

(1 + eψ)b
= 2−beκψ

∫ ∞
0

e−ωψ
2/2p(ω)dω, (4)

where ψ ∈ R, a ∈ R, b > 0, κ = a− b/2 and ω ∼ PG(b, 0). When ψ = x>t θ, the previous identity
allows us to write the logistic likelihood contribution of step t as

Lt(θ) =
[exp(x>t θ)]

rt

1 + exp(x>t θ)
∝ exp(κtx

>
t θ)

∫ ∞
0

exp[−ωt(x>t θ)2/2]p(ωt; 1, 0)dωt,

where κt = rt−1/2 and p(ωt; 1, 0) is the density of a PG-distributed random variable with parameters
(1, 0). In turn, the conditional posterior of θ given latent variables ω = [ω1, . . . , ωt] and past rewards
r = [r1, . . . , rt] is a conditional Gaussian:

p(θ|ω, r) = p(θ)

t∏
i=1

Li(θ|ωi) ∝ p(θ)
t∏
i=1

exp{ωi
2
(x>i θ − κi/ωi)2}.

With a multivariate Gaussian prior for θ ∼ MVN(b,B), this identity leads to an efficient Gibbs
sampler. The main parameters are drawn from a Gaussian distribution, which is parameterized with
latent variables drawn from the PG distribution [27]. The two steps are:

(ωi|θ) ∼ PG(1,x>i θ) (5)
(θ|r,ω) ∼ N (mω,Vω), (6)

with Vω = (X>ΩX + B−1)−1, and mω = Vω(X
>κ+ B−1b) where κ = [κ1, . . . , κt].

Conveniently, efficient algorithms for sampling from the PG distribution exist [27]. Based on ideas
from Devroye [12, 13], which avoid the need to truncate the infinite sum in Eq 4, the algorithm relies
on an accept-reject strategy for which the proposal distribution only requires exponential, uniform,
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and Gaussian random variables. With an acceptance probability uniformly lower bounded by 0.9992
(at most 9 rejected draws out of every 10, 000 proposed), the resulting algorithm is more efficient than
all previously proposed augmentation schemes in terms of both effective sample size and effective
sampling rate [27]. Furthermore, the PG sampling procedure leads to a uniformly ergodic mixture
transition distribution of the iterative estimates {θi}∞i=0 [10]. This result guarantees the existence
of central limit theorems regarding sample averages involving {θi}∞i=0 and allows for consistent
estimators of the asymptotic variance. The advantage of PG augmentation has been proven in multiple
Gibbs sampling and variational inference approaches, including binomial models [27], multinomial
models [24], and negative binomial regression models with logit link functions [38, 31]. In the next
section, we leverage its strengths to perform online, fully Bayesian inference for logistic contextual
bandits with state-of-the-art performance.

3.2 PG-TS Algorithm Definition

Our algorithm, PG-TS, uses the PG augmentation scheme to represent the binomial distributions of
the sequential rewards in terms of latent variables with Gaussian distributions to perform tractable
Bayesian logistic regression in a Thompson sampling setting.

We consider a multivariate Gaussian distribution over parameter θ ∼MVN(b,B) with prior mean
b and covariance B. For simplicity, let Xt be the d× t design matrix [x1, . . . ,xt] that includes the
context of all arms chosen up to round t. Ωt is the diagonal matrix of the PG auxiliary variables
[ω1, . . . , ωt] and let κt = [r1− 1

2 , . . . , rt−
1
2 ]. Further, let rt = [r1, . . . , rt] be the history of rewards.

Algorithm 1 PG-TS

Input: b, B, M , D = ∅, θ0 ∼MVN(b,B)
for t = 1, 2, . . . do

Receive contexts xt,a ∈ Rd

θ
(0)
t ← θt−1

for m = 1 to M do
for i = 1 to t− 1 do

ωi|θ(m−1)t ∼ PG(1,x>i,aiθ
(m−1)
t )

Ωt−1 = diag(ω1, ω2, . . . ωt−1)

κt−1 =
[
r1 − 1

2 , ..., rt−1 −
1
2

]>
Vω ← (X>t−1Ωt−1Xt−1 + B−1)−1

mω ← Vω(X
>κt−1 + B−1b)

θ
(m)
t |rt−1,ω ∼MVN(mω,Vω)

θt ← θ
(M)
t

Select arm at ← argmaxaµ(x
>
t,aθt)

Observe reward rt ∈ {0, 1}
D = D ∪ {xt,at , at, rt}

The PG-TS algorithm uses a Gibbs sampler
based on the PG augmentation scheme to ap-
proximate the logistic likelihood corresponding
to observations up to the current step. At each
step, sampling from the posterior is exact. The
ergodicity of the sampler guarantees that, as the
number of trials increases, the algorithm is able
to consistently estimate both the mean and the
variance of parameter θ [36].

We sample from the PG distribution [24, 27] in-
cluding M = 100 burn-in steps. This number
is empirically tuned, as evaluating how close a
sampled θt is to the true GLM estimator θGLMt
as a function of the burn-in step M is a challeng-
ing problem. Thus, frequentist-derived TS algo-
rithms and regret bounds cannot be derived for
the PG distributions, unlike other formulations
of this problem [2]. In our empirical studies, we
find PG-TS with M = 100 to be sufficient for
reliable mixing, as measured by the competitive
regret achieved. When M = 1, the resulting
algorithm, PG-TS-stream, is reminiscent of a
streaming Gibbs inference scheme. In practice,
this leads to a faster algorithm. As shown in
the Results, PG-TS-stream shows competitive performance in terms of cumulative rewards in both
simulated and real-world data scenarios.

4 Results of PG-TS for contextual bandit applications

We evaluate and compare our PG-TS method with Laplace-TS. Laplace-TS has been shown to
outperform its UCB competitors in all settings considered here [9].

We evaluate our algorithm in three scenarios: simulated data sets with parameters sampled from
Gaussian and mixed Gaussian distributions, a toy data set based on the Forest Cover Type data set
from the UCI repository [15], and an offline evaluation method for bandit algorithms that relies on
real-world log data [23].
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4.1 Generating Simulated Data

Figure 1: Comparison of the average cumulative re-
gret of the PG-TS, PG-TS-stream, and Laplace-TS
algorithms on the simulated data set with Gaussian
θ∗ over 100 runs with 1, 000 trials (standard devi-
ation shown as shaded region). Both PG-TS and
PG-TS-stream outperform Laplace-TS in consis-
tently achieving lower cumulative regret.

Gaussian simulation. We generated a simu-
lated data set with 100 arms and 10 features per
context across 1, 000 trials. We generated con-
texts xt,a ∈ R10 from multivariate Gaussian dis-
tributions xt,a ∼ MVN(−3, I10) for all arms
a. The true parameters were simulated from a
multivariate Gaussian with mean 0 and identity
covariance matrix, θ∗ ∼ MVN(0, I10). The
resulting reward associated with the optimal arm
was 0.994 and the mean reward was 0.195. We
set the hyperparameters b = 0, and B = I10.
We averaged the experiments over 100 runs.

We first considered the effect of the burn-in pa-
rameter M on the resulting average cumulative
regret (Eq. 1; Fig. S1 Supplementary Material).
As expected, larger M led to lower regret, as
the Markov chain had more time to mix. We
note that M > 100 burn-in iterations was not
noticeably better than M = 100, while the com-
putational time grew. Interestingly, the average cumulative regret of PG-TS-stream with M = 1 was
comparable to that of PG-TS. This suggests that, after a number of steps greater than the number of
iterations necessary for mixing, the sampler in PG-TS-stream has had sufficient time to mix.

In this simulation, both PG-TS strategies outperformed their Laplace counterpart, which failed to
converge on average (Fig. 1). This behavior is expected: due to its simple Gaussian approximation,
Laplace-TS does not always converge to the global optimum of the logistic likelihood in non-
asymptotic settings.

Furthermore, the PG-TS algorithms outperform Laplace-TS in terms of balancing exploration and
exploitation: Laplace-TS gets stuck on sub-optimal arm choices, while PG-TS continues to explore
relative to the estimated variance of the posterior distribution of θ to find the optimal arm (Fig. 2).

Mixture of Gaussians: Prior misspecification. Laplace approximations are sensitive to multimodal-
ity. We therefore explored a prior misspecification scenario, where true parameter θ∗ is sampled from
a four-component Gaussian mixture model, as opposed to the Gaussian distribution assumed by both
algorithms. As before, we simulated a data set with 100 arms, each with 10 features, and marginally
independent contexts xt,a ∼MVN(0, I10), across 5, 000 trials.

The true parameters were generated from a mixed model with variances σ2
j=1:4 ∼

Inverse-Gamma(3, 1), means µj=1:4 ∼ N(−3, σ2
j ), and mixture weights φ ∼ Dirichlet(1, 3, 5, 7)

such that θ∗(i) ∼
∑4
j=1 φjN(µj , σ

2
j ), with θ∗ = [θ∗1 , θ

∗
2 , . . . , θ

∗
10]. The reward associated with

the optimal arm was 0.999 and the mean reward was 0.306. We found that the misspecified model
does not prevent the PG-TS algorithms from consistently finding the correct arm, while Laplace-TS
exhibits poor average behavior (Fig. S3 Supplementary Materials).

4.2 PG-TS applied to Forest Cover Type Data

We further compared these methods using the Forest Cover Type data from the UCI Machine Learning
repository [8]. These data contain 581, 021 labeled observations from regions of a forest area. The
labels indicate the dominant species of trees (cover type) in each region. Following the preprocessing
pipeline proposed by [15], we centered and standarized the 10 non-categorical variables and added a
constant covariate; we then partitioned the 581, 012 samples into k = 32 clusters using unsupervised
mini-batch k-means clustering. We took the cluster centroids to be the contexts corresponding to
each of our arms. To fit the logistic reward model, rewards were binarized for each data point by
associating the first class "Spruce/Fir" to a reward of 1, and to a reward of 0 otherwise. We then set
the reward for each arm to be the average reward of the data points in the corresponding cluster; these
ranged from 0.020 to 0.579. The task then becomes the problem of finding the cluster with the highest
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Figure 2: Comparison of arm choices for the PG-TS (Left) and Laplace-TS algorithms (Right)
on simulated data with Gaussian θ∗ across 1, 000 trials. Arms were sorted by expected reward in
decreasing order, with arm 0 giving the highest reward, and arm 99 the lowest. The selected arms are
colored by the distance of their expected reward from the optimal reward (regret). Laplace-TS gets
stuck on a sub-optimal arm, while PG-TS explores successfully and settles on the optimal one.

Figure 3: Left: comparison of the average cumulative regret of the PG-TS, PG-TS-stream, Laplace-
TS, and GLM-UCB algorithms on the Forest Cover Type data over 100 runs with 1, 000 trials (one
standard deviation shaded). PG-TS significantly outperforms Laplace-TS and GLM-UCB, with slight
improvement over PG-TS-stream. Right: median frequencies of the six best arms’ draws. The arms
were sorted by expected reward in decreasing order, with arm 0 giving the highest reward, and arm 5
the lowest. PG-TS explores better than Laplace-TS, which gets stuck in a sub-optimal arm.

proportion of Spruce/Fir forest cover in a setting with 32 arms and 11 context features. As a baseline,
we implemented the generalized linear model upper confidence bound algorithm (GLM-UCB) [15].

On this forest cover task, the PG-TS algorithms show improved cumulative regret with respect to both
the Laplace-TS and the GLM-UCB procedures, with PG-TS performing slightly better of the two
(Fig. 3). Both PG-TS and PG-TS-stream explored the arm space more successfully, and exploited
high-reward arms with a higher frequency than their competitors (Fig. 3).

4.3 PG-TS Applied to News Article Recommendation

We evaluated the performance of PG-TS in the context of news article recommendations on the public
benchmark Yahoo! Today Module data through an unbiased offline evaluation protocol [22]. As
before, users are assumed to click on articles in an i.i.d manner. Available articles represent the pool
of arms, the binary payoff is whether a user clicks on a recommended article, and the expected payoff
of an article is the click-through rate (CTR). Our goal is to choose the article with the maximum
expected CTR at each visit, which is equivalent to maximizing the total expected reward. The full data
set contains 45, 811, 883 user visits from the first 10 days of May 2009; for each user visit, the module
features one article from a changing pool of K ≈ 20 articles, which the user either clicks (r = 1) or
does not click (r = 0). We use 200, 000 of these events in our evaluation for efficiency; ≤ 24, 000
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Figure 4: Comparison of the average click-through rate (CTR) achieved by the PG-TS, PG-TS-stream,
and Laplace-TS algorithms with 10-minute delay (Left) and with varying delay (Right) on 24, 000
events in the Yahoo! Today Module data set over 20 runs. Left: the moving average CTR is observed
every 1, 000 observations. Right: the standard deviation of the average CTR is shown. PG-TS
achieves higher CTR across all delays, especially for short delays.

of these are valid events for each of our evaluated algorithms. Each article is associated with a
feature vector (context) x ∈ R6 including a constant feature capturing an intercept, preprocessed
using a conjoint analysis with a bilinear model [11]; note that we do not use user features as context.
In this evaluation, we maintain separate estimates θa for each arm. We also update the model in
batches (groups of observations across time delays) to better match the real-world scenario where
computation is expensive and delay is necessary. In all settings, PG-TS consistently and significantly
out-performs the Laplace-TS approach (Fig. 4). In particular, PG-TS shows a significant improvement
in CTR across all delays. Note that PG-TS benefits in performance in particular with short delays.
Despite showing only marginal improvement when compared to Laplace-TS, PG-TS-stream offers
the advantage of a flexible, fast data streaming approach without compromising performance on this
task.

5 Discussion

We introduced PG-TS, a fully Bayesian algorithm based on the Pólya-Gamma augmentation scheme
for contextual bandits with logistic rewards. This is the first method where Pólya-Gamma augmen-
tation is leveraged to improve bandit performance. Our approach addresses two deficiencies in
current methods. First, PG-TS provides an efficient online approximation scheme for the analytically
intractable logistic posterior. Second, because PG-TS explicitly estimates context feature covariances,
it is more effective in balancing exploration and exploitation relative to Laplace-TS, which assumes
independence of each context feature. We showed through extensive evaluation in both simulated
and real-world data that our approach offers improved empirical performance while maintaining
comparable computational costs by leveraging the simplicity of the Thompson sampling framework.
We plan to extend our framework to address computational challenges in high-dimensional data via
hash-amenable extensions [20].

Motivated by our results and by recent work on PG inference in dependent multinomial models [24],
we aim to extend our work to the problem of multi-armed bandits with categorical rewards. We
further envision a generalization of this approach to sampling in bandit problems where additional
structure is imposed on the contexts; for example, settings where arm contexts are sampled from
dynamic linear topic models [17], or settings in which social network information is available for
users and contexts [16].

Future work will address the more general reinforcement learning setting of Bayes-Adaptive MDP
with discrete state and action sets [14]. In this case, the state transition probabilities are multinomial
distributions; therefore, our online Pólya-Gamma Gibbs sampling procedure can be extended to
approximate the emerging intractable posteriors.
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