
Algorithmic Assurance: An Active Approach to
Algorithmic Testing using Bayesian Optimisation

Shivapratap Gopakumar, Sunil Gupta∗, Santu Rana, Vu Nguyen, Svetha Venkatesh
Centre for Pattern Recognition and Data Analytics

Deakin University, Geelong, Australia

Abstract

We introduce algorithmic assurance, the problem of testing whether machine
learning algorithms are conforming to their intended design goal. We address this
problem by proposing an efficient framework for algorithmic testing. To provide
assurance, we need to efficiently discover scenarios where an algorithm decision
deviates maximally from its intended gold standard. We mathematically formulate
this task as an optimisation problem of an expensive, black-box function. We use an
active learning approach based on Bayesian optimisation to solve this optimisation
problem. We extend this framework to algorithms with vector-valued outputs by
making appropriate modification in Bayesian optimisation via the EXP3 algorithm.
We theoretically analyse our methods for convergence. Using two real-world
applications, we demonstrate the efficiency of our methods. The significance of
our problem formulation and initial solutions is that it will serve as the foundation
in assuring humans about machines making complex decisions.

1 Introduction

Supervised learning algorithms today serve as proxies for decision processes traditionally performed
by humans. As decision making processes get increasingly automated, it is reasonable to ask if
our algorithms are behaving as intended. How far is the algorithm from the gold standard (human
decision maker) it is serving as a proxy for? For example, consider a metallurgist who routinely
makes decisions about elemental compositions to design a target alloy. If an algorithm is built to
serve as a proxy for this decision process, can we provide assurance that the difference in the decision
made by the algorithm and the metallurgist is within a stipulated bound? Similarly if an algorithm
has been trained to recognize digits, can we ensure that the recognition error of the algorithm is
acceptable across all allowable visual variations within which a human can recognise digits correctly?
To provide such assurance we need to compare an algorithm against its gold standard and find the
maximum deviation. An exhaustive comparison may solve this problem but would be prohibitively
expensive as we need gold standard decisions for a large number of test instances. In absence of such
a large set, how do we find such deviations efficiently?

Traditionally machine learning algorithms are tested by separating a small fraction of the available
data as a validation set. Considering the validation set as a collection of random samples from the
data space, we may need a large validation set to have high confidence on the algorithmic assurance,
i.e. the maximal deviation of the algorithm from its gold standard is within an acceptable limit. Let
us assume a hypervolume vε wherein a function takes values within 1− ε of its maximum. Then
a random search will sample this hypervolume with the probability vε

V where V is the total search
space volume. Assuming V = Rd and vε ≈ rd , where d is the input dimension, the random search
scheme would need, on an average O

((r
R

)−d
)

number of samples [3]. This can be expensive - e.g.

∗Corresponding author email:sunil.gupta@deakin.edu.au

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

if r
R = 0.01, nearly a million samples are required in just a three dimensional space. Therefore, a

sample efficient alternative is needed for the algorithmic assurance.

We propose to use an active strategy for finding the maximum deviation that samples the data
space such that each sample is only queried if it is aligned with the goal to find the maximum.
Bayesian optimisation is one such efficient active learning method with a convergence guarantee

on the average regret as O

(√
dln T

T

)
(using a Gaussian process model with squared-exponential

kernel [4, 19]) where T is the number of iterations/samples. Thus to reach the same regret level ε ,
Bayesian optimisation requires much smaller sample numbers. This approach actively recommends
new instances during validation for which decisions are required from both algorithm and the human
expert. Although costly, it remains practical because of the sample-efficiency guarantee of Bayesian
optimisation. Our experience shows that it common to reach the maximum within tens of samples
per dimension.

We develop a Bayesian Optimisation (BO) framework to efficiently discover the scenario wherein an
algorithm maximally deviates from its gold standard. Given a difference function y = f (x), where
x representing input instances and y representing the difference of the algorithm’s decision, our
proposed algorithmic assurance framework aims to efficiently discover the instance for which the
algorithmic decision differs most from the gold standard. We assume that functions underlying
the decision making of both the gold standard process and the algorithm are smooth and therefore
their difference function f (x) is also smooth. We model f (x) using a Gaussian process [15], and
its predictive distribution is used to predict the deviation of the algorithm from the gold standard
along with any epistemic uncertainty. This prediction is then used to construct a cheap surrogate
function (acquisition function) that takes higher values at points where either the algorithm deviation
or the epistemic uncertainty is high. The acquisition function is finally maximised to recommend a
new instance for the algorithm testing. Both the gold standard and the algorithm decisions are then
acquired to evaluate f (x) at the new instance and this information is used to update the Gaussian
process model of f (x). This process iterates until convergence. We call this framework single-task
algorithmic assurance.

We next move to multi-task algorithmic assurance where we extend our framework to provide
assurance for algorithms that have vector-valued outputs. Our goal now is to find the scenario where
an algorithm maximally deviates from its gold standard across any output. For example, in alloy
design, elements are combined and heated, leading to phase formations. The strength of the resultant
alloy is related to these phase fractions. An algorithm can be used to model the relation between the
elemental composition and phases. Some phases are more common, thus statistics for each phase is
not equally strong. This makes the rarer phase prediction more error prone. We therefore need to
efficiently find the elemental composition where our algorithm’s phase prediction maximally deviates
from the true phase values across any phase, since predicting each phase is equally important. This
boils down to a BO problem with C black-box expensive functions and our task is find the largest
global maximum across all the functions. To address this efficiently, we formulate each function as
an arm of a multi-arm bandit and define the reward for pulling an arm as the best value found by
BO for the corresponding function (up to any iteration). This method can efficiently switch across C
optimisation problems to quickly discover the optimum point. We theoretically analyse this algorithm

and show that its simple regret has the order O

(√
dln T

T +
√

ClnC
T

)
.

It may appear superficially that the multi-task BO [20] is related, however, this method optimizes
multiple related functions concurrently through mutual learning. We note that our problem is different
in two ways: (1) we do not aim to maximise each function, rather quickly identify the function with
the largest maximum and then find its maximum point; and, (2) multiple functions in our setting need
not be related, which is a crucial assumption in the multi-task BO.

We demonstrate our framework on two problems: Prediction of strength-determining phases in
an alloy design process, and recognition of handwritten digits under visual distortions. Our main
contributions are:

• Introduction of a new notion of algorithmic assurance to assess the deviation behaviour of
an algorithm from its intended use;

• Construction of an efficient framework for algorithmic assurance in both single and multi-
task settings;

2

• Demonstration of the efficiency of our methods using two real world applications.

The significance of our problem formulation and solutions is that it will be the first step towards
providing assurance to users of an algorithm.

2 An Active Approach to Algorithmic Testing

In this section we present our proposed framework for efficient algorithmic testing. Let us assume
we have an unknown function a(x) to be modelled using a set of observations of the form Dtrain

n =
{(xtr

i ,o
tr
i), i = 1, . . . ,n}. Given the dataset Dtrain

n , a typical approach is to use a machine learning
algorithm (e.g. a neural network) to learn an approximation A (x) of a(x). Define a function
f (x) =L (a(x),A (x)) that measures the deviation of A (x) from a(x) at any point x. Various form of
deviation can be used, for example, L (a(x),A (x)) = (a(x)−A (x))2 when dealing with a regression
problem. In our proposed algorithmic testing framework, our goal is to efficiently identify a scenario
x∗ wherein the algorithm output A (x∗) maximally deviates from the function a(x∗). We express this
goal through the following optimisation problem

x∗ = argmax
x∈X

f (x) = argmax
x∈X

(a(x)−A (x))2 (1)

Since function f (x) is not known analytically, the objective function in the above optimisation
problem is treated as a black-box function. In addition, evaluating f (x) is expensive. The problem is
thus finding the optimum of an expensive, black-box function.

Bayesian Optimisation: A method that has recently become popular for efficient global optimisa-
tion of expensive, black-box functions is Bayesian optimisation (BO) [17, 6, 7, 13]. It represents the
black-box function through a probabilistic model, which is then used to reason about where in the
space the optimum is located (for exploitation of available knowledge) and where we have the least
knowledge about the function (for exploration for further knowledge). Based on this reasoning, the
function is evaluated at a new location balancing the exploration and exploitation requirements and
the new observation is used to update the function model. This sequential procedure repeats until
the global optimum is reached or the optimisation budget is exceeded. The BO algorithms [19, 4]
come with an efficiency guarantee on their convergence and usually have sub-linear growth rate for
cumulative regret.

Gaussian processes are most popular for modelling the unknown function when doing Bayesian
optimisation though other models have also been used [9, 18, 14]. Using Gaussian process prior, a
function is modelled as f (x)∼ GP(m(x) ,k (x,x′)), where m is a mean function and k (x,x′) contains
the covariance of any two points on the function. With availability of noisy observations of the form
yi = f (xi)+ εi (where εi ∼N (0,σ2

ε)), collectively denoted as Dt = {xi,yi}t
i=1, we can derive the

predictive distribution for the function value at a new observation x′ to be a Gaussian distribution [15] -
its mean and variance are given as µt (x′) = kT (K+σ2

ε I)−1y and σ2
t (x

′) = k(x′,x′)−kT (K+σ2
ε I)−1k

where assuming k as a covariance function [15], K is a matrix of size t× t whose (i, j)-th element is
defined as k(xi,x j) and k is a vector (overloaded notation) with its i-th element defined as k(x,xi).

A nice property of BO when using Gaussian processes is that it usually avoids convergence to any
“spurious peaks” and mostly converges to a stable peak. This property is useful for our algorithmic
testing framework when we are interested in finding not just the location of the largest deviation of
the algorithm but a region where the deviations are generally high. This may help in understanding
the reasons of algorithm deviation and any potential remedies.

An illustrative example: To understand how BO avoids convergence to any “spurious peaks”, let us
consider an illustrative example function f (x) with two peaks (see Figure 1) at locations x0 and x′0 such
that f (x0)> f (x′0). Now consider two cases such that in the first case, the peak at x is sharper (red)
than the second case (grey). When using a Gaussian process model, we can show that if the two cases
have previous observations at the same locations {x1, . . . ,xt}, the predictive mean of the Gaussian pro-
cess model µt(x) for case-1 will be lower than that of case-2. This is because µt(x) = kT (K+σ2

ε I)−1y
and since yi’s of the case-1 are only equal or lower than the corresponding yi’s of case-2. With the
assumption of previous observations for the two cases being at the same locations, the predictive
variance of the Gaussian process model σt(x) for both cases would be equal. Thus an acquisition func-
tion αt(x) (based on typical acquisition function such as GP-UCB [19] or EI [10]) will take a lower
value for case-1 than case-2. Since the two cases mainly differ around location x0 (see Figure), the

3

x

f(
x)

Case 1

Case 2

x0x'0

Figure 1 – An example function illustrating spuri-
ous (red) and wider (grey) peaks.

acquisition function αt(x) around x0 will be
lower for case-1 than case-2. Therefore the prob-
ability of a point x around x0 being the maxima
of αt(x) is lower for case-1 than case-2. Further,
the narrower the peak of case-1, the lower is this
probability. Therefore, Bayesian optimisation
algorithm converges to the narrower peak with
lower probability. This result would generally
hold as long as the observations used in BO have
a small measurement noise. If convergence to
narrow peaks is becoming unavoidable or com-
mon, one may resort to BO methods that are
customised to avoid spurious peaks [12, 5].

3 Multi-Task Algorithmic Testing

There are several applications where we need to model vector-valued outputs. In other words, this
involves modelling multiple outputs or tasks. For example, in alloy design, for each composition
of constituent elements, we have multiple phases. Let us assume that we have trained one machine
learning model for each of these tasks. These models can be either independently or jointly trained
depending on whether the tasks are independent or related. Since each task is different, the scenario
where the algorithm output maximally deviates from the true output differs from task to task. Our
above-mentioned single-task algorithmic testing method can be applied to this multi-task problem by
aggregating the deviations for all tasks and thus can only discover the scenario where the algorithm
deviates from the true output in an average sense. However, when it is important to get the assurance
for each task or output, this approach may be insufficient.

In our proposed multi-task algorithmic testing, we aim to efficiently discover the scenario wherein the
algorithm maximally differs from the true function for any of the outputs or tasks. Let us assume that
there are C tasks, indexed as c = 1, . . . ,C and for c-th task, the true and the trained algorithm functions
are ac(x) and Ac(x) respectively. We denote the discrepancy functions between the algorithm and the
true functions by f1(x), ..., fC(x). Each function has an optimum f ∗c = max∀x∈X fc(x). We aim to find
both the optimal index c∗ such that c∗ = argmax

c∈C

f ∗c and the optimizer location x∗ = argmaxx∈X fc∗(x).

A simple approach to solve our problem is to perform Bayesian optimisation for each function fc(x)
to obtain f ∗c and then finally find c∗ and x∗. However this approach is inefficient as it unnecessarily
evaluates the suboptimal functions for their complete Bayesian optimisation sequence. Our intuition
is that it is possible to identify the tasks for which the algorithm has high errors within few function
evaluations from all tasks and then mostly perform function evaluations for tasks with high deviations
from the gold standard. In multi-arm bandit (MAB) research, this problem can be thought of
identifying an arm with the best reward (or simply the “best arm”). There are several algorithms to
identify the best arm, e.g. UCB1, ε-greedy, Hedge, EXP3 etc [1, 2]. Of these, Hedge and EXP3
are the algorithms that can be used under most general conditions with few assumptions on reward
distributions unlike UCB1 and ε-greedy that require i.i.d. assumption. In our case, at any iteration of
Bayesian optimisation, we define the reward of choosing a task at any iteration as the best function
value reached up to that iteration from that task. Since the “best so far” statistics is not independent
across iterations, the reward distribution is not i.i.d.The use of Hedge algorithm with BO has been
considered earlier by [8] in a different context to ours. The Hedge algorithm in [8] is used to select
acquisition functions for Bayesian optimisation. A requirement of the Hedge algorithm is that it
needs the observation of rewards from each arm at all iterations. Unfortunately this requirement is not
met in our scheme as if we only receive the reward for the selected arm – a partial reward feedback
scenario. Therefore, for our multi-task algorithmic testing framework we use EXP3 algorithm [2, 16]
which is capable of working in a partial reward feedback scenario.

Using the EXP3 algorithm we proceed as follows. At each iteration t, we first select a function
indexed as ht = c and then advance its (one step) Bayesian optimisation to select the next point for
evaluation by maximising the acquisition function as xt = argmax

x∈X
αt(x | Dt(ht)) where Dt(ht) are

observations up to iteration t for the task indexed as ht . The reward for the selected function is denoted

4

by gt(c) and is defined as the best function value so far, i.e. gt(c) = max∀xi∈Dt (c) fc(xi). Using rewards
gt(c), we compute a probability pc

t as pc
t = (1−η) ωc

∑
C
c=1 ωc

+ η

C , where ωc = ωc×exp(η ĝt(c)/C) and

η =
√

C lnC
(e−1)T is a EXP3 parameter pre-defined given the maximum budget T (as per Corollary 3.2

of [2]). The probability vector pt = [p1
t , ..., pC

t] indicates the promise of different tasks for obtaining
high values and is used to select a function for performing Bayesian optimisation. This process
continues iteratively either until convergence or the function evaluation budget is exhausted. We refer
to this algorithm as EXP3BO (see Algorithm 1).

Algorithm 1 EXP3BO Algorithm for Multi-task Algorithmic Testing

Input η =
√

C lnC
(e−1)T , C #categorical choice, T #max iteration

1: Init ωc = 1,∀c = 1...C.
2: for t = 1 to T
3: Compute the probability pc

t = (1−η) ωc
∑

C
c=1 ωc

+ η

C ,∀c = 1...C.

4: Choose a categorical variable at random ht ∈ [1, ...,C]∼ pt = [p1
t , ..., pC

t].
5: Optimize the acquisition function xt = argmaxαt (x|Dt(ht)) given ht .
6: Evaluate the blackbox function yt = f ([xt ,ht = c]) and augment Dt(ht) = Dt−1(ht)∪ (xt ,yt).
7: Update the reward gt(ht) = max∀xi∈Dt (ht) fht (xi) and normalise as ĝt(ht) = gt (ht)/pt

c.
8: Update the weight ωht = ωht × exp(η ĝt(ht)/C).
9: end for

Output: DT

Convergence Analysis

We now present the convergence analysis. All the bounds are probabilistic bounds that hold with
high probability. Let γT be the maximum information gain over any T iterations, it can be bounded
for common kernels (e.g. for SE kernel γT ∼ O

(
(lnT)d+1

)
) [19].

Lemma 1. (Due to [19]) Let T be the number of iterations, d be the input space dimension, then we
can bound the simple regret ST after T iterations of GP-UCB by a sublinear term as

ST = f ∗c − max
∀xt ,t≤T

fc(xt)≤
1
T

T

∑
t=1

(f ∗c − fc(xt))≤ O
(√

γT lnT/T
)
.

Since we do not know which function among f1, . . . , fC has the overall maxima f ∗, as discussed
earlier a naïve algorithm can divide any available function evaluation budget T equally among C
options. We refer to this algorithm as Round-robin BO. This algorithm only allocates T

C evaluations
for the optimal function indexed by c∗. We next provide the convergence rate for this Round-robin
algorithm and later show that our proposed EXP3BO algorithm will have a tighter bound than the
Round-robin BO. Another similar naïve approach (Random Categorical BO) is to randomly select a
function and optimise. On average, this approach will also allocate T

C evaluations for each function.
Lemma 2. Given C choices, the Round-robin BO and the Random Categorical BO methods will
have the simple regret bounded as ST ≤O(

√
CγT lnT/T).

Proof. Since these methods allocate only T
C evaluations to optimize the optimal function fc∗(x), using

Lemma 1 we can write the simple regret bound as ST = S T
C
(c∗)≤ O(

√
CγT

T ln T
C). We can see that

the regret increases as O(
√

C).

Lemma 3. (Due to [2]) For T > 0, setting η =
√

C lnC
(e−1)T , the expected regret of the EXP3 algorithm

is bounded as

max
h∈[C]

T

∑
t=1

gt(h)−E

[
T

∑
t=1

gt(ht)

]
≤ O

(√
TC lnC

)
,

5

Cr Cu Mg Ti Zn Mn Si
0

2

4

6

8

10

%
 C

om
po

si
tio

n

Train RMSE: 0.27
SingleTask BO RMSE: 0.59

0 100 200 300 400
Iterations

0.1

0.3

0.6

RM
SE

Figure 2 – Left: Element compositions (parallel coordinates) for max error during training and test.
Bounds for each element composition in shaded regions. Right: Convergence of test error (RMSE).

where we denote gt(c) = max∀xi∈Dt (c) fc(xi). The expectation is under randomness in the algorithm
to select ht .
Theorem 4. The EXP3BO algorithm has its simple regret bounded by

E
[
SExp3BO

T

]
≤ O

(√
γT lnT/T +

√
C lnC/T

)
.

Proof. Let f ∗ = max∀c∈C,∀x∈X fc(x) be the optimum value that we seek. From Lemma 3, we can
write

f ∗−E

[
1
T

T

∑
t=1

gt(ht)

]
−

{
f ∗−max

h∈[C]

1
T

T

∑
t=1

gt(h)

}
< O

(√
C lnC

T

)
. (2)

Since 1
T ∑

T
t=1 gt(ht) ≤ gT (hT), we have E

[
SEXP3BO

T
]
= f ∗−E [gT (hT)] ≤ f ∗−E

[1
T ∑

T
t=1 gt(ht)

]
.

Denote the oracle simple regret as SOracle
T = f ∗−maxh∈[C]

1
T ∑

T
t=1 gt(h). Further assuming that the

best arm can be identified by oracle with high probability, using Lemma 1, we have SOracle
T ≤

O
(√

γT lnT/T
)

and thus

E
[
SEXP3BO

T
]
< O

(√
C lnC/T

)
+O

(√
γT lnT/T

)
.

We can see that the regret bound remains sublinear in T and is tighter than the regret bound of the
Random Categorical or the Round-robin algorithm.

4 Experiments

We evaluate single and multi-task assurance using the two real world applications: (1) Alloy design,
and (2) hand written digit recognition. In our algorithm, a squared exponential kernel is used for BO.
All our results are reported by aggregating results from 10 runs with each run initialized randomly.

4.1 A neural network model predicting alloy-strengthening phases

Alloys are mixtures of elements that are able to achieve properties that are not possible by a single
element. Laboriously collected experimental data elaborate how a mixture of elements form “phases”.
A phase is a homogeneous part of the alloy that has uniform physical and chemical characteristics,
and determines the alloy strength. Experimental data for alloys are contained in proprietary simulators
(eg. Thermocalc) and experimenters query such simulators for computed phase characteristics. These
complex computations are expensive.

We construct a proxy algorithm for Thermocalc using a neural network to predict phases. We then
apply our model to discover the test data point where the network prediction differs most from the
Thermocalc output. Our proxy network is trained on 1000 samples generated from Thermocalc for

6

Aluminium 7000 series alloys that mainly consists of Aluminium and seven other elements (Cr, Cu,
Mg, Ti, Zn, Mn, Si) whose % compositions are in a defined range as shown by the shaded region in
Fig. 2 (Left). Input to the network is a 7 dimensional vector of element compositions. The output is
a vector of alloy phases. After consulting with domain experts, we model 16 relevant phases. Our
neural network consists of 2 hidden layers with 14 and 36 nodes respectively. A 30% dropout was
introduced between the second layer and the output layer. The network was trained to minimize the
error averaged over 16 phases. The neural network was trained for 100 epochs using a batch size of 5.
The alloy composition corresponding to the maximal training RMSE of 0.27 was: Cr = 0.85 %, Cu=
2.06 %, Mg=0.18 %, Ti= 0.88 %, Zn= 8.25 %, Mn=0.37 %, and Si= 0.56 % (Fig. 2 (Left)). We use
this neural network model for single and multi-task assurance. Single task measures the average error
made across all phases, whilst multi-task measures error in each phase individually. In our notation, x
denotes an elemental composition and y denotes the error in phase prediction.

4.1.1 Single task assurance

We run BO for our single task assurance to discover the composition with the maximal deviation from
Thermocalc. The optimisation result is shown in Fig. 2 (Right). The element composition discovered
by our method corresponding to the maximal error is Cr = 0.38 %, Cu = 6.04 %, Mg = 4.89 %, Ti =
0.48 %, Zn = 6.95 %, Mn = 0.86 % and Si = 2.51 %. As seen from Fig. 2, our algorithm discovers a
significantly different composition with a much larger error (0.59) in just about 200 iterations.

4.1.2 Multi-task assurance

Cr Cu Mg Ti Zn Mn Si
0

2

4

6

8

10
%

 C
om

po
si

tio
n

Train RMSE: 0.75
EXP3BO RMSE: 1.05

Figure 3 – Element compositions (parallel
coordinates) for maximal error found dur-
ing training and test stages by EXP3BO.

We use EXP3BO for multi-task assurance to discover the
composition with the maximal deviation from Thermo-
calc for any alloy phase. Instead of measuring the error
averaged across all phases, we consider the error of each
phase separately. This gives rise 16 error functions where
the highest error needs to be found efficiently without
exhaustively optimising all. To evaluate the optimisation
efficiency of our proposed EXP3BO algorithm we com-
pare it against the baselines - Round-robin BO, Random
Categorical BO and SMAC [9]. To find the phase that
has the highest error (Oracle), we run BO for each phase
separately and identify the phase with the highest error
(c∗). Fig. 4 (Left) shows that the EXP3BO outperforms
other baselines and reaches close to the Oracle. Also
it accurately identifies the “AL12MN” phase that has
the highest error - see histogram in Fig. 4 (Right). We
found the maximal error for “AL12MN” phase for RMSE=1.05, at a substantially different element
composition compared to the one found during the algorithm training stage (see Fig. 3).

0 200 400 600 800 1000
Iteration

0.6

0.7

0.8

0.9

1.0

1.1

R
M

S
E

Thermocalc D=7 C=16

EXP3BO
Round­robin BO
Random Categorical BO

Oracle
SMAC

AL
12

M
N

AL
13

C
R

4S
I4

AL
15

SI
2M

4
AL

2C
U

_C
16

AL
3T

I_
D

02
2

AL
45

V7
C

14
_L

AV
ES

D
IA

M
O

N
D

_A
4

FC
C

_L
12

H
C

P_
A3

M
G

2S
I_

C
1

Q
_A

LC
U

M
G

SI
SI

2T
I_

C
54

T_
PH

AS
E

V_
PH

AS
E

T_
PH

AS
E#

20

100

200

C
ou

nt

Figure 4 – Alloy phase prediction using EXP3BO. Left: Performance comparison - RMSE vs
iterations. Right: Histogram of phases selected. It converges and exploits “AL12MN” phase more.

4.2 A convolutional neural network for handwritten digit recognition

We construct a proxy algorithm for recognising digits and the task is to identify the level of distortion
causing the largest error in a transformed MNIST[11] dataset. In our notation, x denotes a visual

7

distortion (shear and rotation) while y denotes recognition error. The training data consists of MNIST
images distorted with shear (shx, shy) and rotation (θ). Our training dataset is created as follows:
Each MNIST digit is first randomly sheared between shx, shy ∈ [−0.2, 0.2], followed by a random
rotation θ ∈ [0,360]. We removed digit 9 from our data to avoid confusions with digit 6 when
subjected to rotation transform. 54,051 such sheared and rotated MNIST digits are used for training a
CNN. We use the LENET-5 architecture (as in [11]) with learning rate = 10−3 and number of epochs
set to 20. The mean training error was found to be 4.1%. Maximal error from grid search was found
to be 5.7% at shear (shx =−0.2,shy =−0.2) and rotation θ = 3◦.

4.2.1 Single assurance task

0 100 200 300 400
Iterations

5

6

Er
ro

r %

Figure 5 – Single task assurance for digit
recognition- optimisation results showing
recognition error vs iteration.

We run BO for our single task assurance to discover the
distortion for maximal recognition error. The optimisa-
tion result is shown in Fig. 5. BO discovered a highest
error of 7.1% at distortion parameters (shx = 0.088,shy =
−0.2) and rotation θ = 175.7◦.

4.2.2 Multi-task assurance

We use EXP3BO for multi-task assurance to discover
the maximal recognition error for any digits. Instead
of measuring the error averaged across all digits, we
consider error of each digit separately. This is important
because the error in recognising each digit may differ
depending on its visual complexity and distortion. Once
again we compare EXP3BO with the baselines described
in Section 4.1.2. The performance of EXP3BO is superior
to SMAC (Fig. 6 (Left)). EXP3BO selects digit ‘2’ as that with the highest error (Fig. 6 (Right)). The
confusion between digits 2, 7 and 4 from shearing and rotation causes comparable performance of
other methods.

Our implementation is available at URL https://github.com/shivapratap/
AlgorithmicAssurance_NIPS2018.

0 100 200 300 400 500
Iteration

0

5

10

15

E
rr

or
 %

CNN MNIST D=3 C=9

EXP3BO
Round­robin BO
Random Categorical BO

Oracle
SMAC

0 1 2 3 4 5 6 7 80

10

20

30

40

50

60

70

C
ou

nt

Figure 6 – Multitask assurance using EXP3BO on digit recognition. Left: Performance comparison
of recognition error vs iterations; Right: Histogram of digits selected.

5 Conclusion

We have introduced a novel problem of algorithmic assurance to assess the deviation of an algorithm
from its intended use. We have developed an efficient framework for algorithmic testing for single-
task and multi-task settings. The usefulness of our framework is demonstrated on two problems:
prediction of strength-determining phases in alloy design and recognition of handwritten digits under
shear and rotation distortions. In the modern era of artificial intelligence, algorithms are increasingly
taking decisions pertinent to our life, it is very timely to build the confidence that algorithms can be
trusted and our proposed algorithmic assurance framework is an early attempt towards this goal.

8

https://github.com/shivapratap/AlgorithmicAssurance_NIPS2018
https://github.com/shivapratap/AlgorithmicAssurance_NIPS2018

Acknowledgements

This research was partially funded by the Australian Government through the Australian Re-
search Council (ARC). Prof Venkatesh is the recipient of an ARC Australian Laureate Fellowship
(FL170100006).

References
[1] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit problem.

Machine learning, 47(2-3):235–256, 2002.
[2] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The nonstochastic multiarmed bandit

problem. SIAM journal on computing, 32(1):48–77, 2002.
[3] J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. Journal of

Machine Learning Research, 13(Feb):281–305, 2012.
[4] A. D. Bull. Convergence rates of efficient global optimization algorithms. The Journal of

Machine Learning Research, 12:2879–2904, 2011.
[5] T. Dai Nguyen, S. Gupta, S. Rana, and S. Venkatesh. Stable bayesian optimization. In

Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages 578–591. Springer,
2017.

[6] P. Hennig and C. J. Schuler. Entropy search for information-efficient global optimization.
Journal of Machine Learning Research, 13:1809–1837, 2012.

[7] J. M. Hernández-Lobato, M. W. Hoffman, and Z. Ghahramani. Predictive entropy search
for efficient global optimization of black-box functions. In Advances in Neural Information
Processing Systems, pages 918–926, 2014.

[8] M. Hoffman, E. Brochu, and N. de Freitas. Portfolio allocation for bayesian optimization. In
Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence, pages
327–336. AUAI Press, 2011.

[9] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general
algorithm configuration. In Learning and Intelligent Optimization, pages 507–523. Springer,
2011.

[10] D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of expensive black-box
functions. Journal of Global optimization, 13(4):455–492, 1998.

[11] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[12] J. Nogueira, R. Martinez-Cantin, A. Bernardino, and L. Jamone. Unscented bayesian opti-
mization for safe robot grasping. In Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ
International Conference on, pages 1967–1972. IEEE, 2016.

[13] S. Rana, C. Li, S. Gupta, V. Nguyen, and S. Venkatesh. High dimensional Bayesian optimization
with elastic gaussian process. In Proceedings of the 34th International Conference on Machine
Learning (ICML), pages 2883–2891, 2017.

[14] C. E. Rasmussen. The infinite gaussian mixture model. In NIPS, volume 12, pages 554–560,
1999.

[15] C. E. Rasmussen. Gaussian processes for machine learning. Citeseer, 2006.
[16] Y. Seldin, C. Szepesvári, P. Auer, and Y. Abbasi-Yadkori. Evaluation and analysis of the

performance of the exp3 algorithm in stochastic environments. In EWRL, pages 103–116, 2012.
[17] J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian optimization of machine learning

algorithms. In Advances in neural information processing systems, pages 2951–2959, 2012.
[18] J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram, M. Patwary, M. Prabhat,

and R. Adams. Scalable bayesian optimization using deep neural networks. In Proceedings of
the 32nd International Conference on Machine Learning, pages 2171–2180, 2015.

[19] N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Gaussian process optimization in the bandit
setting: No regret and experimental design. In Proceedings of the 27th International Conference
on Machine Learning, pages 1015–1022, 2010.

[20] K. Swersky, J. Snoek, and R. P. Adams. Multi-task Bayesian optimization. In Advances in
neural information processing systems, pages 2004–2012, 2013.

9

