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Abstract

A key task in Bayesian machine learning is sampling from distributions that are
only specified up to a partition function (i.e., constant of proportionality). One
prevalent example of this is sampling posteriors in parametric distributions, such
as latent-variable generative models. However sampling (even very approximately)
can be #P-hard.

Classical results (going back to [BÉ85]) on sampling focus on log-concave dis-
tributions, and show a natural Markov chain called Langevin diffusion mixes in
polynomial time. However, all log-concave distributions are uni-modal, while in
practice it is very common for the distribution of interest to have multiple modes.
In this case, Langevin diffusion suffers from torpid mixing.

We address this problem by combining Langevin diffusion with simulated temper-
ing. The result is a Markov chain that mixes more rapidly by transitioning between
different temperatures of the distribution. We analyze this Markov chain for a
mixture of (strongly) log-concave distributions of the same shape. In particular, our
technique applies to the canonical multi-modal distribution: a mixture of gaussians
(of equal variance). Our algorithm efficiently samples from these distributions
given only access to the gradient of the log-pdf. To the best of our knowledge, this
is the first result that proves fast mixing for multimodal distributions in this setting.

For the analysis, we introduce novel techniques for proving spectral gaps based on
decomposing the action of the generator of the diffusion. Previous approaches rely
on decomposing the state space as a partition of sets, while our approach can be
thought of as decomposing the stationary measure as a mixture of distributions (a
“soft partition”).

Additional materials for the paper can be found at http://tiny.cc/glr17. Note
that the proof and results have been improved and generalized from the precursor
at http://www.arxiv.org/abs/1710.02736. See Section ?? for a compari-
son.
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1 Introduction

Sampling is a fundamental task in Bayesian statistics, and dealing with multimodal distributions is
a core challenge. One common technique to sample from a probability distribution is to define a
Markov chain with that distribution as its stationary distribution. This general approach is called
Markov chain Monte Carlo. However, in many practical problems, the Markov chain does not mix
rapidly, and we obtain samples from only one part of the support of the distribution.

Practitioners have dealt with this problem through a variety of heuristics. A popular family of
approaches involve changing the temperature of the distribution. However, there has been little
theoretical analysis of such methods. We give provable guarantees for a temperature-based method
called simulated tempering when it is combined with Langevin diffusion.

More precisely, the setup we consider is sampling from a distribution given up to a constant of
proportionality. This is inspired from sampling a posterior distribution over the latent variables of a
latent-variable Bayesian model with known parameters. In such models, the observable variables
𝑥 follow a distribution 𝑝(𝑥) which has a simple and succinct form given the values of some latent
variables ℎ, i.e., the joint 𝑝(ℎ, 𝑥) factorizes as 𝑝(ℎ)𝑝(𝑥|ℎ) where both factors are explicit. Hence,
the posterior distribution 𝑝(ℎ|𝑥) has the form 𝑝(ℎ|𝑥) = 𝑝(ℎ)𝑝(𝑥|ℎ)

𝑝(𝑥) . Although the numerator is easy
to evaluate, the denominator 𝑝(𝑥) =

∫︀
ℎ
𝑝(ℎ)𝑝(𝑥|ℎ) can be NP-hard to approximate even for simple

models like topic models [SR11]. Thus the problem is intractable without structural assumptions.

Previous theoretical results on sampling have focused on log-concave distributions, i.e., distributions
of the form 𝑝(𝑥) ∝ 𝑒−𝑓(𝑥) for a convex function 𝑓(𝑥). This is analogous to convex optimization
where the objective function 𝑓(𝑥) is convex. Recently, there has been renewed interest in analyzing
a popular Markov Chain for sampling from such distributions, when given gradient access to 𝑓—a
natural setup for the posterior sampling task described above. In particular, a Markov chain called
Langevin Monte Carlo (see Section 2.1), popular with Bayesian practitioners, has been proven to
work, with various rates depending on the precise properties of 𝑓 [Dal16, DM16, Dal17].

Yet, just as many interesting optimization problems are nonconvex, many interesting sampling prob-
lems are not log-concave. A log-concave distribution is necessarily uni-modal: its density function
has only one local maximum, which is necessarily a global maximum. This fails to capture many
interesting scenarios. Many simple posterior distributions are neither log-concave nor uni-modal, for
instance, the posterior distribution of the means for a mixture of gaussians, given a sample of points
from the mixture of gaussians. In a more practical direction, complicated posterior distributions asso-
ciated with deep generative models [RMW14] and variational auto-encoders [KW13] are believed to
be multimodal as well.

In this work we initiate an exploration of provable methods for sampling “beyond log-concavity,”
in parallel to optimization “beyond convexity”. As worst-case results are prohibited by hardness
results, we must make assumptions on the distributions of interest. As a first step, we consider a
mixture of strongly log-concave distributions of the same shape. This class of distributions captures
the prototypical multimodal distribution, a mixture of Gaussians with the same covariance matrix.
Our result is also robust in the sense that even if the actual distribution has density that is only close
to a mixture that we can handle, our algorithm can still sample from the distribution in polynomial
time. Note that the requirement that all Gaussians have the same covariance matrix is in some sense
necessary: in Appendix K we show that even if the covariance of two components differ by a constant
factor, no algorithm (with query access to 𝑓 and∇𝑓 ) can achieve the same robustness guarantee in
polynomial time.

1.1 Problem statement

We formalize the problem of interest as follows.

Problem 1.1. Let 𝑓 : R𝑑 → R be a function. Given query access to ∇𝑓(𝑥) and 𝑓(𝑥) at any point
𝑥 ∈ R𝑑, sample from the probability distribution with density function 𝑝(𝑥) ∝ 𝑒−𝑓(𝑥).

In particular, consider the case where 𝑒−𝑓(𝑥) is the density function of a mixture of strongly log-
concave distributions that are translates of each other. That is, there is a base function 𝑓0 : R𝑑 → R,
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centers 𝜇1, 𝜇2, . . . , 𝜇𝑚 ∈ R𝑑, and weights 𝑤1, 𝑤2, . . . , 𝑤𝑚 (
∑︀𝑚

𝑖=1 𝑤𝑖 = 1) such that

𝑓(𝑥) = − log

(︃
𝑚∑︁
𝑖=1

𝑤𝑖𝑒
−𝑓0(𝑥−𝜇𝑖)

)︃
, (1)

For notational convenience, we will define 𝑓𝑖(𝑥) = 𝑓0(𝑥− 𝜇𝑖).

The function 𝑓0 specifies a basic “shape” around the modes, and the means 𝜇𝑖 indicate the locations
of the modes.

Without loss of generality we assume the mode of the distribution 𝑒−𝑓0(𝑥) is at 0 (∇𝑓0(0) =
0). We also assume 𝑓0 is twice differentiable, and for any 𝑥 the Hessian is sandwiched between
𝜅𝐼 ⪯ ∇2𝑓0(𝑥)) ⪯ 𝐾𝐼 . Such functions are called 𝜅-strongly-convex, 𝐾-smooth functions. The
corresponding distribution 𝑒−𝑓0(𝑥) are strongly log-concave distributions. 1

1.2 Our results

We show that there is an efficient algorithm that can sample from this distribution given just access to
𝑓(𝑥) and ∇𝑓(𝑥).
Theorem 1.2 (main). Given 𝑓(𝑥) as defined in Equation (1), where the base function 𝑓0 satisfies
for any 𝑥, 𝜅𝐼 ⪯ ∇2𝑓0(𝑥) ⪯ 𝐾𝐼 , and ‖𝜇𝑖‖ ≤ 𝐷 for all 𝑖 ∈ [𝑚], there is an algorithm (given as
Algorithm 2 with appropriate setting of parameters) with running time poly

(︀
𝑤min, 𝐷, 𝑑, 1

𝜀 ,
1
𝜅 ,𝐾

)︀
,

which given query access to∇𝑓 and 𝑓 , outputs a sample from a distribution within TV-distance 𝜀 of
𝑝(𝑥) ∝ 𝑒−𝑓(𝑥).

Note that importantly the algorithm does not have direct access to the mixture parameters 𝜇𝑖, 𝑤𝑖, 𝑖 ∈
[𝑛] (otherwise the problem would be trivial). Sampling from this mixture is thus non-trivial: algo-
rithms that are based on making local steps (such as the ball-walk [LS93, Vem05] and Langevin
Monte Carlo) cannot move between different components of the gaussian mixture when the gaus-
sians are well-separated. In the algorithm we use simulated tempering (see Section 2.2), which is
a technique that adjusts the “temperature” of the distribution in order to move between different
components.

Of course, requiring the distribution to be exactly a mixture of log-concave distributions is a very
strong assumption. Our results can be generalized to all functions that are “close” to a mixture of
log-concave distributions.

More precisely, assume the function 𝑓 satisfies the following properties:

∃𝑓 : R𝑑 → R where
⃦⃦⃦
𝑓 − 𝑓

⃦⃦⃦
∞
≤ ∆ ,

⃦⃦⃦
∇𝑓 −∇𝑓

⃦⃦⃦
∞
≤ 𝜏 and ‖∇2𝑓(𝑥)−∇2𝑓(𝑥)‖2 ≤ 𝜏,∀𝑥 ∈ R𝑑

(2)

and 𝑓(𝑥) = − log

(︃
𝑚∑︁
𝑖=1

𝑤𝑖𝑒
−𝑓0(𝑥−𝜇𝑖)

)︃
(3)

where∇𝑓0(0) = 0, and ∀𝑥, 𝜅𝐼 ⪯ ∇2𝑓0(𝑥) ⪯ 𝐾𝐼. (4)

That is, 𝑓 is within a 𝑒Δ multiplicative factor of an (unknown) mixture of log-concave distributions.
Our theorem can be generalized to this case.
Theorem 1.3 (general case). For function 𝑓(𝑥) that satisfies Equations (2),(3) and (4), there is
an algorithm (given as Algorithm 2 with appropriate setting of parameters) that runs in time
poly

(︀
𝑤min, 𝐷, 𝑑, 1

𝜀 , 𝑒
Δ, 𝜏, 1

𝜅 ,𝐾
)︀
, which given query access to∇𝑓 and 𝑓 , outputs a sample 𝑥 from

a distribution that has TV-distance at most 𝜀 from 𝑝(𝑥) ∝ 𝑒−𝑓(𝑥).

Both main theorems may seem simple. In particular, one might conjecture that it is easy to use local
search algorithms to find all the modes. However in Section J, we give a few examples to show that
such simple heuristics do not work (e.g. random initialization is not enough to find all the modes).

1On a first read, we recommend concentrating on the case 𝑓0(𝑥) =
1

2𝜎2 ‖𝑥‖2. This corresponds to the case
where all the components are spherical Gaussians with mean 𝜇𝑖 and covariance matrix 𝜎2𝐼 .

3



The assumption that all the mixture components share the same 𝑓0 (hence when applied to Gaussians,
all Gaussians have same covariance) is also necessary. In Section K, we give an example where for a
mixture of two gaussians, even if the covariance only differs by a constant factor, any algorithm that
achieves similar gaurantees as Theorem 1.3 must take exponential time.

2 Overview of algorithm

Our algorithm combines Langevin diffusion, a chain for sampling from distributions in the form
𝑝(𝑥) ∝ 𝑒−𝑓(𝑥) given only gradient access to 𝑓 and simulated tempering, a heuristic used for tackling
multimodality. We briefly define both of these and recall what is known for both of these techniques.
For technical prerequisites on Markov chains, the reader can refer to Appendix B.

The basic idea to keep in mind is the following: A Markov chain with local moves such as Langevin
diffusion gets stuck in a local mode. Creating a “meta-Markov chain” which changes the temperature
(the simulated tempering chain) can exponentially speed up mixing.

2.1 Langevin dynamics

Langevin Monte Carlo is an algorithm for sampling from 𝑝 ∝ 𝑒−𝑓 given access to the gradient of the
log-pdf,∇𝑓 .

The continuous version, overdamped Langevin diffusion (often simply called Langevin diffusion), is
a stochastic process described by the stochastic differential equation (henceforth SDE)

𝑑𝑋𝑡 = −∇𝑓(𝑋𝑡) 𝑑𝑡 +
√

2 𝑑𝑊𝑡 (5)

where 𝑊𝑡 is the Wiener process (Brownian motion). For us, the crucial fact is that Langevin dynamics
converges to the stationary distribution given by 𝑝(𝑥) ∝ 𝑒−𝑓(𝑥).

Substituting 𝛽𝑓 for 𝑓 in (5) gives the Langevin diffusion process for inverse temperature 𝛽, which
has stationary distribution ∝ 𝑒−𝛽𝑓(𝑥). Equivalently we can consider the temperature as changing the
magnitude of the noise:

𝑑𝑋𝑡 = −∇𝑓(𝑋𝑡)𝑑𝑡 +
√︀

2𝛽−1𝑑𝑊𝑡.

Of course algorithmically we cannot run a continuous-time process, so we run a discretized version of
the above process: namely, we run a Markov chain where the random variable at time 𝑡 is described
as

𝑋𝑡+1 = 𝑋𝑡 − 𝜂∇𝑓(𝑋𝑡) +
√︀

2𝜂𝜉𝑘, 𝜉𝑘 ∼ 𝑁(0, 𝐼) (6)
where 𝜂 is the step size. (The reason for the

√
𝜂 scaling is that running Brownian motion for 𝜂 of

the time scales the variance by
√
𝜂.) This is analogous to how gradient descent is a discretization of

gradient flow.

2.1.1 Prior work on Langevin dynamics

For Langevin dynamics, convergence to the stationary distribution is a classic result [Bha78]. Fast
mixing for log-concave distributions is also a classic result: [BÉ85, BBCG08] show that log-
concave distributions satisfy a Poincaré and log-Sobolev inequality, which characterize the rate
of convergence—If 𝑓 is 𝛼-strongly convex, then the mixing time is on the order of 1

𝛼 . Of course,
algorithmically, one can only run a “discretized” version of the Langevin dynamics. Analyses of the
discretization are more recent: [Dal16, DM16, Dal17, DK17, DMM18] give running times bounds
for sampling from a log-concave distribution over R𝑑, and [BEL18] give a algorithm to sample
from a log-concave distribution restricted to a convex set by incorporating a projection. We note
these analysis and ours are for the simplest kind of Langevin dynamics, the overdamped case; better
rates are known for underdamped dynamics ([CCBJ17]), if a Metropolis-Hastings rejection step is
used ([DCWY18]), and for Hamiltonian Monte Carlo which takes into account momentum ([MS17]).

[RRT17] consider arbitrary non-log-concave distributions with certain regularity and decay properties,
but the mixing time is exponential in general; furthermore, it has long been known that transition-
ing between different modes can take exponentially long, a phenomenon known as meta-stability
[BEGK02, BEGK04, BGK05]. The Holley-Stroock Theorem (see e.g. [BGL13]) shows that guaran-
tees for mixing extend to distributions 𝑒−𝑓(𝑥) where 𝑓(𝑥) is a “nice” function that is close to a convex
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function in 𝐿∞ distance; however, this does not address more global deviations from convexity.
[MV17] consider a more general model with multiplicative noise.

2.2 Simulated tempering

For distributions that are far from being log-concave and have many deep modes, additional techniques
are necessary. One proposed heuristic, out of many, is simulated tempering, which swaps between
Markov chains that are different temperature variants of the original chain. The intuition is that
the Markov chains at higher temperature can move between modes more easily, and hence, the
higher-temperature chain acts as a “bridge” to move between modes.

Indeed, Langevin dynamics corresponding to a higher temperature distribution—with 𝛽𝑓 rather
than 𝑓 , where 𝛽 < 1—mixes faster. (Here, we use terminology from statistical physics, letting 𝜏
denote teh temperature and 𝛽 = 1

𝜏 denote the inverse temperature.) A high temperature flattens
out the distribution. However, we can’t simply run Langevin at a higher temperature because the
stationary distribution is wrong; the simulated tempering chain combines Markov chains at different
temperatures in a way that preserves the stationary distribution.

We can define simulated tempering with respect to any sequence of Markov chains 𝑀𝑖 on the same
space Ω. Think of 𝑀𝑖 as the Markov chain corresponding to temperature 𝑖, with stationary distribution
𝑒−𝛽𝑖𝑓 .

Then we define the simulated tempering Markov chain as follows.

∙ The state space is Ω× [𝐿]: 𝐿 copies of the state space (in our case R𝑑), one copy for each
temperature.

∙ The evolution is defined as follows.
1. If the current point is (𝑥, 𝑖), then evolve according to the 𝑖th chain 𝑀𝑖.
2. Propose swaps with some rate 𝜆. When a swap is proposed, attempt to move to a

neighboring chain, 𝑖′ = 𝑖± 1. With probability min{𝑝𝑖′(𝑥)/𝑝𝑖(𝑥), 1}, the transition is
successful. Otherwise, stay at the same point. This is a Metropolis-Hastings step; its
purpose is to preserve the stationary distribution.2

The crucial fact to note is that the stationary distribution is a “mixture” of the distributions corre-
sponding to the different temperatures. Namely:
Proposition 2.1. [MP92, Nea96] If the 𝑀𝑘, 1 ≤ 𝑘 ≤ 𝐿 are reversible Markov chains with stationary
distributions 𝑝𝑘, then the simulated tempering chain 𝑀 is a reversible Markov chain with stationary
distribution

𝑝(𝑥, 𝑖) =
1

𝐿
𝑝𝑖(𝑥).

The typical setting of simulated tempering is as follows. The Markov chains come from a smooth
family of Markov chains with parameter 𝛽 ≥ 0, and 𝑀𝑖 is the Markov chain with parameter 𝛽𝑖,
where 0 ≤ 𝛽1 ≤ . . . ≤ 𝛽𝐿 = 1. We are interested in sampling from the distribution when 𝛽 is large
(𝜏 is small). However, the chain suffers from torpid mixing in this case, because the distribution is
more peaked. The simulated tempering chain uses smaller 𝛽 (larger 𝜏 ) to help with mixing. For us,
the stationary distribution at inverse temperature 𝛽 is ∝ 𝑒−𝛽𝑓(𝑥).

2.2.1 Prior work on simulated tempering

Provable results of this heuristic are few and far between. [WSH09, Zhe03] lower-bound the spectral
gap for generic simulated tempering chains, using a Markov chain decomposition technique due to
[MR02]. However, for the Problem 1.1 that we are interested in, the spectral gap bound in [WSH09]
is exponentially small as a function of the number of modes. Drawing inspiration from [MR02], we
establish a Markov chain decomposition technique that overcomes this.

2 This can be defined as either a discrete or continuous Markov chain. For a discrete chain, we propose
a swap with probability 𝜆 and follow the current chain with probability 1 − 𝜆. For a continuous chain, the
time between swaps is an exponential distribution with decay 𝜆 (in other words, the times of the swaps forms a
Poisson process). Note that simulated tempering is traditionally defined for discrete Markov chains, but we will
use the continuous version. See Definition C.1 for the formal definition.
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One issue that comes up in simulated tempering is estimating the partition functions; various methods
have been proposed for this [PP07, Lia05].

2.3 Main algorithm

Our algorithm is intuitively the following. Take a sequence of inverse temperatures 𝛽𝑖, starting at a
small value and increasing geometrically towards 1. Run simulated tempering Langevin on these
temperatures, suitably discretized. Take the samples that are at the 𝐿th temperature.

Note that there is one complication: the standard simulated tempering chain assumes that we can
compute the ratio between temperatures 𝑝𝑖′ (𝑥)

𝑝𝑖(𝑥)
. However, we only know the probability density

functions up to a normalizing factor (the partition function). To overcome this, we note that if we use
the ratios 𝑟𝑖′𝑝𝑖′ (𝑥)

𝑟𝑖𝑝𝑖(𝑥)
instead, for

∑︀𝐿
𝑖=1 𝑟𝑖 = 1, then the chain converges to the stationary distribution

with 𝑝(𝑥, 𝑖) = 𝑟𝑖𝑝𝑖(𝑥). Thus, it suffices to estimate each partition function up to a constant factor. We
can do this inductively: running the simulated tempering chain on the first ℓ levels, we can estimate
the partition function 𝑍ℓ+1; then we can run the simulated tempering chain on the first ℓ + 1 levels.
This is what Algorithm 2 does when it calls Algorithm 1 as subroutine.

A formal description of the algorithm follows.

Algorithm 1 Simulated tempering Langevin Monte Carlo

INPUT: Temperatures 𝛽1, . . . , 𝛽ℓ; partition function estimates ̂︀𝑍1, . . . , ̂︀𝑍ℓ; step size 𝜂, time 𝑇 , rate
𝜆, variance of initial distribution 𝜎0.
OUTPUT: A random sample 𝑥 ∈ R𝑑 (approximately from the distribution 𝑝ℓ(𝑥) ∝ 𝑒−𝛽ℓ𝑓(𝑥)).
Let (𝑖, 𝑥) = (1, 𝑥0) where 𝑥0 ∼ 𝑁(0, 𝜎2

0𝐼).
Let 𝑛 = 0, 𝑇0 = 0.
while 𝑇𝑛 < 𝑇 do

Determine the next transition time: Draw 𝜉𝑛+1 from the exponential distribution 𝑝(𝑥) = 𝜆𝑒−𝜆𝑥,
𝑥 ≥ 0.
Let 𝜉𝑛+1 ←[ min{𝑇 − 𝑇𝑛, 𝜉𝑛+1}, 𝑇𝑛+1 = 𝑇𝑛 + 𝜉𝑛+1.
Let 𝜂′ = 𝜉𝑛+1/

⌈︁
𝜉𝑛+1

𝜂

⌉︁
(the largest step size < 𝜂 that evenly divides into 𝜉𝑛+1).

Repeat
⌈︁
𝜉𝑛+1

𝜂

⌉︁
times: Update 𝑥 according to 𝑥← [ 𝑥− 𝜂′𝛽𝑖∇𝑓(𝑥) +

√
2𝜂′𝜉, 𝜉 ∼ 𝑁(0, 𝐼).

If 𝑇𝑛+1 < 𝑇 (i.e., the end time has not been reached), let 𝑖′ = 𝑖± 1 with probability 1
2 . If 𝑖′ is

out of bounds, do nothing. If 𝑖′ is in bounds, make a type 2 transition, where the acceptance

ratio is min
{︁

𝑒−𝛽
𝑖′𝑓(𝑥)/̂︀𝑍𝑖′

𝑒−𝛽𝑖𝑓(𝑥)/̂︀𝑍𝑖
, 1
}︁

.
𝑛← [ 𝑛 + 1.

end while
If the final state is (ℓ, 𝑥) for some 𝑥 ∈ R𝑑, return 𝑥. Otherwise, re-run the chain.

Algorithm 2 Main algorithm
INPUT: A function 𝑓 : R𝑑, satisfying assumption (2), to which we have gradient access.
OUTPUT: A random sample 𝑥 ∈ R𝑑.
Let 0 ≤ 𝛽1 < · · · < 𝛽𝐿 = 1 be a sequence of inverse temperatures satisfying (117) and (118).
Let ̂︀𝑍1 = 1.
for ℓ = 1→ 𝐿 do

Run the simulated tempering chain in Algorithm 1 with temperatures 𝛽1, . . . , 𝛽ℓ, partition
function estimates ̂︀𝑍1, . . . , ̂︀𝑍ℓ, step size 𝜂, time 𝑇 , and rate 𝜆 given by Lemma G.2.
If ℓ = 𝐿, return the sample.
If ℓ < 𝐿, repeat to get 𝑛 = 𝑂(𝐿2 ln

(︀
1
𝛿

)︀
) samples, and let 𝑍ℓ+1 =̂︁𝑍ℓ

(︁
1
𝑛

∑︀𝑛
𝑗=1 𝑒

(−𝛽ℓ+1+𝛽ℓ)𝑓(𝑥𝑗)
)︁

.
end for
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3 Overview of the proof techniques

We summarize the main ingredients and crucial techniques in the proof, while the full proofs are
included in the appendices.

Step 1: Define a continuous version of the simulated tempering Markov chain (Definition C.1,
Lemma C.2), where transition times are real numbers determined by an exponential weighting time
distribution.

Step 2: Prove a new decomposition theorem (Theorem D.2) for bounding the spectral gap (or
equivalently, the mixing time) of the simulated tempering chain we define. This is the main technical
ingredient, and also a result of independent interest.

While decomposition theorems have appeared in the Markov Chain literature (e.g. [MR02]), typically
one partitions the state space, and bounds the spectral gap using (1) the probability flow of the chain
inside the individual sets, and (2) between different sets.

In our case, we decompose the Markov chain itself; this includes a decomposition of the stationary
distribution into components. (More precisely, we show a decomposition theorem on the generator of
the tempering chain.) We would like to do this because in our setting, the stationary distribution is
exactly a mixture distribution (Problem 1.1).

Our Markov chain decomposition theorem bounds the spectral gap (mixing time) of a simulated
tempering chain in terms of the spectral gap (mixing time) of two chains:

1. “component” chains on the mixture components
2. a “projected” chain whose state space is the set of components, and which captures the

action of the chain between components as well as the 𝜒2-divergence between the mixture
components.

This means that if the Markov chain on the individual components mixes rapidly, and the “projected”
chain mixes rapidly, then the simulated tempering chain mixes rapidly as well. (Note [MR02,
Theorem 1.2] does partition into mixture components, but they only consider the special case where
they components are laid out in a chain.)

The mixing time of a continuous Markov chain is quantified by a Poincaré inequality.
Theorem (Simplified version of Theorem D.2). Consider the simulated tempering chain 𝑀 with
rate 𝜆 = 1

𝐶 , where the Markov chain at the 𝑖th level (temperature) is 𝑀𝑖 = (Ω,L𝑖) with stationary
distribution 𝑝𝑖, for 1 ≤ 𝑖 ≤ 𝐿. Suppose we have a decomposition of the Markov chain at each level,
𝑝𝑖𝑀𝑖 =

∑︀𝑚
𝑗=1 𝑤𝑖,𝑗𝑝𝑖,𝑗𝑀𝑖,𝑗 , where

∑︀𝑚
𝑗=1 𝑤𝑖,𝑗 = 1. If each 𝑀𝑖,𝑗 satisfies a Poincaré inequality with

constant 𝐶, and the 𝜒2-projected chain 𝑀 satisfies a Poincaré inequality with constant 𝐶, then 𝑀
satisfies a Poincaré inequality with constant 𝑂(𝐶(1 + 𝐶)).

Here, the projected chain 𝑀 is the chain on [𝐿]× [𝑚] with probability flow in the same and adjacent
levels given by

𝑃 ((𝑖, 𝑗), (𝑖, 𝑗′)) =
𝑤𝑖,𝑗′

𝜒2
sym(𝑝𝑖,𝑗 , 𝑝𝑖,𝑗′)

(7)

𝑃 ((𝑖, 𝑗), (𝑖± 1, 𝑗)) =
min

{︁
𝑤𝑖±1,𝑗

𝑤𝑖,𝑗
, 1
}︁

𝜒2
sym(𝑝𝑖,𝑗 , 𝑝𝑖±1,𝑗′)

, (8)

where 𝜒2
sym(𝑝, 𝑞) = max{𝜒2(𝑝||𝑞), 𝜒2(𝑞||𝑝)}.

The decomposition theorem is the reason why we use a slightly different simulated tempering chain,
which is allowed to transition at arbitrary times, with some rate 𝜆. Such a chain “composes” nicely
with the decomposition of the Langevin chain, and allows a better control of the Dirichlet form of the
tempering chain, which governs the mixing time.

Step 3: Finally, we need to apply the decomposition theorem to our setup, namely a distribution
which is a mixture of strongly log-concave distributions. The “components” of the decomposition in
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our setup are simply the mixture components 𝑒−𝑓0(𝑥−𝜇𝑗). We rely crucially on the fact that Langevin
diffusion on a mixture distribution decomposes into Langevin diffusion on the individual components.

We actually first analyze the hypothetical simulated tempering Langevin chain on ̃︀𝑝𝑖 ∝∑︀𝑚
𝑗=1 𝑤𝑗𝑒

−𝛽𝑗𝑓0(𝑥−𝜇𝑗) (Theorem E.1)—i.e., where the stationary distribution for each tempera-
ture is a mixture. Then in Lemma E.5 we compare to the actual simulated tempering Langevin that
we can run, where 𝑝𝑖 ∝ 𝑝𝛽 . To do this, we use the fact that 𝑝𝑖 is off from ̃︀𝑝𝑖 by at most 1

𝑤min
. (This is

where the factor of 𝑤min comes in.)

To use our Markov chain decomposition theorem, we need to show two things:

1. The component chains mix rapidly: this follows from the classic fact that Langevin diffusion
mixes rapidly for log-concave distributions.

2. The projected chain mixes rapidly: The “projected” chain is defined as having more prob-
ability flow between mixture components in the same or adjacent temperatures which are
close together in 𝜒2-divergence.
By choosing the temperatures close enough, we can ensure that the corresponding mixture
components in adjacent temperatures are close in 𝜒2-divergence. By choosing the highest
temperature large enough, we can ensure that all the mixture components at the highest
temperature are close in 𝜒2-divergence.
From this it follows that we can easily get from any component to any other (by traveling
up to the highest temperature and then back down). Thus the projected chain mixes rapidly
from the method of canonical paths, Theorem B.4.

Note that the equal variance (for gaussians) or shape (for general log-concave distributions) condition
is necessary here. For gaussians with different variance, the Markov chain can fail to mix between
components at the highest temperature. This is because scaling the temperature changes the variance
of all the components equally, and preserves their ratio (which is not equal to 1).

Step 4: We analyze the error from discretization (Lemma F.1), and choose parameters so that it is
small. We show that in Algorithm 2 we can inductively estimate the partition functions. When we
have all the estimates, we can run the simulated tempering chain on all the temperatures to get the
desired sample.

4 Conclusion

We initiated a study of sampling “beyond log-convexity." In so doing, we developed a new general
technique to analyze simulated tempering, a classical algorithm used in practice to combat multi-
modality but that has seen little theoretical analysis. The technique is a new decomposition lemma
for Markov chains based on decomposing the Markov chain rather than just the state space. We have
analyzed simulated tempering with Langevin diffusion, but note that it can be applied to any with any
other Markov chain with a notion of temperature.

Our result is the first result in its class (sampling multimodal, non-log-concave distributions with
gradient oracle access). Admittedly, distributions encountered in practice are rarely mixtures of
distributions with the same shape. However, we hope that our techniques may be built on to
provide guarantees for more practical probability distributions. An exciting research direction is
to provide (average-case) guarantees for probability distributions encountered in practice, such as
posteriors for clustering, topic models, and Ising models. For example, the posterior distribution for a
mixture of gaussians can have exponentially many terms, but may perhaps be tractable in practice.
Another interesting direction is to study other temperature heuristics used in practice, such as particle
filters [Sch12, DMHW+12, PJT15, GDM+17], annealed importance sampling [Nea01], and parallel
tempering [WSH09].
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